Corrections to
 Introduction to Complex Manifolds

by John M. Lee
June 19, 2024
(6/15/24) Page 25, fourth full paragraph, lines 4 and 8: Change $\sigma \circ \pi$ to $\pi \circ \sigma$ (twice).
(6/15/24) Page 25, fourth full paragraph, line 7: Delete the repeated phrase "rough (local or global) section of \boldsymbol{E} is a $\operatorname{map} \sigma: U \rightarrow E$."
(6/15/24) Page 26, line 8 from the bottom: Change [Y_{2}, X_{1}] to [Y_{1}, X_{2}].
(6/19/24) Page 46, line 2: Change ($\left.\partial \bar{F}^{k} \partial \bar{z}^{k}\right)$ to $\left(\partial \bar{F}^{k} / \partial \bar{z}^{j}\right)$. [Insert missing slash and fix incorrect index.]
(6/17/24) Page 60, line 2 from the bottom: Change $\left[x_{0}, \lambda_{j}\left(x_{0}\right), 1\right]$ to [$\left.1, x_{0}, \lambda_{j}\left(x_{0}\right)\right]$.
(6/18/24) Page 80, Example 3.21, lines 3 \& 4: "Holomorphic" is misspelled.
(6/18/24) Page 91, two lines above the displayed equation: Delete repeated "on."
(6/18/24) Page 94, second-to-last line: Change "Theorem 3.41" to "Theorem 3.39."
(6/18/24) Page 110, second full paragraph, first line: Change z_{1} and b_{1} to z^{1} and b^{1}, respectively, so the formula reads $\bar{D}_{R}\left(z^{1}\right) \supseteq D_{\varepsilon}\left(b^{1}\right)$.
(6/18/24) Page 115, third line: Change "write β " to "write an arbitrary vector-valued form β."
(6/18/24) Page 115, two lines above the second-to-last display: Change $\omega \in \mathscr{E}^{q}(\operatorname{End}(E))$ to $\omega \in \mathscr{E}^{q}(M ; \operatorname{End}(E))$.
(6/18/24) Page 123, three lines above Example 5.2: Change $S_{k}(U)$ to $\mathcal{S}_{k}(U)$.
(6/17/24) Page 145, Problem 5-7: Change \mathscr{H} om to \mathscr{H} om (three times). [This printing error, which also occurs on page 191, should be fixed in later printings and later versions of the ebook.]
(6/18/24) Page 145, Problem 5-8(a): Change "Exercise 5.6" to "Problem 5-1."
(6/17/24) Page 191, Problem 6-9(b): Change \mathscr{H} / m to \mathscr{H} om.

