Toward Arakelov-Parshin Rigidity

Sándor J. Kovács

University of Washington
Fixed Notation.

- B is a smooth (not necessarily projective) curve.

- $f : X \to B$ is a smooth projective family of varieties (of general type) of dimension n.

- $X_b = f^{-1}(b)$ is the fiber of f over $b \in B$.

Definition. f is called isotrivial if $X_a \sim X_b$ for $a, b \in B$ general points.
Kodaira-Spencer map.

\[0 \to TX/B \to TX \to f^*TB \to 0 \]

induces

\[\rho_f : TB \to R_1^fT_{X/B}, \]

the Kodaira-Spencer map of \(f \).

Fact.

\(f \) is isotrivial \(\iff \rho_f = 0 \), i.e.,

\(f \) is non-isotrivial \(\iff \rho_f \neq 0 \iff \rho_f \) is injective.
First assume that $n = 1$, i.e., f is a family of curves.

Definition. Let $g \geq 2$ be fixed. Non-isotrivial families of curves of genus g will be called *admissible*.

Shafarevich’s Conjecture. (SC)
For a fixed g, there exist only finitely many isomorphism classes of admissible families.

The Arakelov-Parshin method.

Boundedness (B): There exist only finitely many deformation types of admissible families.

Rigidity (R): There exist no non-trivial deformations of admissible families.

Observe, that (B) and (R) together imply (SC).
A word about the proof.

Let \overline{B} be the projective closure of B and $\overline{f} : \overline{X} \to \overline{B}$ a flat extension of f with \overline{X} smooth and projective.

To prove (B), one proves that $\deg(\overline{f}_*\omega_X^m/\overline{B})$ is bounded in terms of fixed numerical invariants for $m \gg 0$.

To prove (R), one proves that if f is non-isotrivial, then ω_X/\overline{B} is ample on \overline{X}.

By Kodaira vanishing ω_X/\overline{B} ample implies that

$$H^1(\overline{X}, T_{\overline{X}/\overline{B}}) = H^1(\overline{X}, \omega_{\overline{X}/\overline{B}}^{-1}) = 0.$$

In other words, f has no first order deformations, and hence (R) holds.

Remark. This proof only works in the case of families of curves, i.e., when $\dim X - \dim B = 1$.
GOAL: Generalize (B) and (R) for higher dimensional families.

- B is a smooth (not necessarily projective) curve.

- $f : X \to B$ is a smooth projective family of varieties of general type of dimension n. (n is arbitrary).

Definition. Fix a polynomial h. Non-isotrivial families of smooth projective varieties of general type with Hilbert polynomial h will be called *admissible*.

Boundedness (B): Admissible families are parametrized by a scheme of finite type.

Rigidity (R): There exist no non-trivial deformations of admissible families.
Boundedness – Holds.

Theorem. (Bedulev-Viehweg) Let \bar{B} be the projective closure of B and $\bar{f} : \bar{X} \to \bar{B}$ an extension of f. Then for $m \gg 0$, there exists a constant c depending only on m, n, $K^n_{\bar{X}_b}$, $g(\bar{B})$, $\#(\bar{B} \setminus B)$, such that

$$\deg \left(\bar{f}_* \omega^m_{\bar{X}/\bar{B}} \right) \leq c \cdot \text{rk} \left(\bar{f}_* \omega^m_{\bar{X}/\bar{B}} \right)$$

Remark. Generalizations and related work by Oguiso-Viehweg, Viehweg-Zuo and K_____. (cf. Zuo’s lecture)
Rigidity – Fails.

Example. Let $Y \to B$ be a non-isotrivial family of smooth projective curves, and F an arbitrary smooth projective curve. Let $f : X = Y \times F \to B$. Deforming F gives a deformation of f.

Problem. Under what additional condition does (R) hold?

Notes.

- Let $B_0 \subseteq B$ be open and $X_0 = f^{-1}(B_0)$. A sufficient condition, if it exists, should be independent of B.
 If it holds for f, it should also hold for $f|_{X_0}$.

- If (R) fails for f, it also fails for $f|_{X_0}$.

Principle. When studying (R), we will freely restrict to open subsets of B.
Example. Let $g : Y \to B$ and $h : Z \to B$ be two families of smooth projective curves of genus at least two. Let $X = Y \times_B Z$.

![Diagram](image)

- If either g or h is isotrivial, then by the above principle we may assume that it is actually trivial.

 Hence (R) fails for f.

- It is easy to prove that

$$H^1(X, T_{X/B}) \simeq H^1(Y, T_{Y/B}) \oplus H^1(Z, T_{Z/B}).$$

Recall that if g and h are both non-isotrivial, then

$$H^1(Y, T_{Y/B}) = H^1(Z, T_{Z/B}) = 0.$$

Hence (R) holds for f.
Simple Question. Let \(g : Y \rightarrow B \) and \(h : X \rightarrow Y \) be non-isotrivial families of curves of genus at least two.

![Diagram](image)

Does (R) hold for \(f \)?

Expectation. YES.

Answer. YES.

Reason. Later.
Back to the product.

\[X = Y \times_B Z \]

\[f \quad = \quad g \times h \]

\[B \quad B \quad B \]

Kodaira-Spencer maps.

\[\rho_g : T_B \to R^1 g_* T_{Y/B} \]

\[\rho_h : T_B \to R^1 h_* T_{Z/B} \]

\[\sim \sim \]

\[\rho_g \otimes \rho_h : T_B^\otimes 2 \to R^1 g_* T_{Y/B} \otimes R^1 h_* T_{Z/B} \]

Corollary. \(\rho_g \otimes \rho_h \neq 0 \) implies that \((R)\) holds for \(f \).
Notation. $\wedge^m T_X$ will be denoted by T^m_X.

Observe. By the Künneth formula,

$$R^1 g_* T_{Y/B} \otimes R^1 h_* T_{Z/B} \simeq R^2 f_* T^2_{X/B}.$$

Iterated Kodaira-Spencer maps.

$$0 \to T_{X/B} \to T_X \to f^* T_B \to 0 \quad \sim$$

$$0 \to T^2_{X/B} \to T^2_X \to T_{X/B} \otimes f^* T_B \to 0 \quad \sim$$

$$\rho_f^{(2)} : R^1 f_* T_{X/B} \otimes T_B \to R^2 f_* T^2_{X/B}$$

$$0 \to T_{X/B} \otimes f^* T_B \to T_X \otimes f^* T_B \to f^* T_B^{\otimes 2} \to 0$$

$$\rho_f^{(1)} : T_B^{\otimes 2} \to R^1 f_* T_{X/B} \otimes T_B$$
Iterated Kodaira-Spencer maps (continued).

\[\rho^{(1)}_f : T_B \otimes 2 \rightarrow R^1 f_* T_{X/B} \otimes T_B \]

\[\rho^{(2)}_f : R^1 f_* T_{X/B} \otimes T_B \rightarrow R^2 f_* T^2_{X/B} \]

\[\rho^{(2)}_f \circ \rho^{(1)}_f : T_B \otimes 2 \rightarrow R^2 f_* T^2_{X/B} \]

\[\rho_g \otimes \rho_h : T_B \otimes 2 \rightarrow R^1 g_* T_{Y/B} \otimes R^1 h_* T_{Z/B} \simeq R^2 f_* T^2_{X/B} \]

Proposition. \(\rho^{(2)}_f \circ \rho^{(1)}_f = \rho_g \otimes \rho_h \).

Corollary. \(\rho^{(2)}_f \circ \rho^{(1)}_f \neq 0 \Rightarrow (R) \) holds for \(f \).

Remark. This statement no longer makes reference to the product structure.
General case: X is no longer a product. $1 \leq p \leq n$,

\[0 \to T^p_{X/B} \otimes f^*T_B^{(n-p)} \to T^p_X \otimes f^*T_B^{(n-p)} \to \]

\[\to T^{p-1}_{X/B} \otimes f^*T_B^{(n-p+1)} \to 0 \]

\[\rho_f^{(p)} : R^{p-1}f_*(T^{p-1}_{X/B} \otimes T_B^{(n-p+1)}) \to R^pf_*T^p_{X/B} \otimes T_B^{(n-p)} \]

Definition. $\rho_f := \rho_f^{(n)} \circ \rho_f^{(n-1)} \circ \cdots \circ \rho_f^{(1)}$

\[\rho_f : T^n_B \longrightarrow R^n f_*T^n_{X/B} \]

Definition. f is called *strongly non-isotrivial* if $\rho_f \neq 0$.

Example. Let $Y_i \to B$ be non-isotrivial families of smooth projective curves for $i = 1, \ldots, r$. Then $X = Y_1 \times_B \cdots \times_B Y_r \to B$ is strongly non-isotrivial.

Remark. Since T_B is a line bundle and $R^n f_*T^n_{X/B}$ is locally free, $\rho_f \neq 0$ if and only if it is injective.
The case of $\dim B > 1$.

Let (again) $f: X \to B$ be a smooth projective family of varieties (of general type) of dimension n, B a smooth (not necessarily projective) variety.

For an integer p, $1 \leq p \leq n$,

$$T^p_X = \mathcal{F}^0 \supset \mathcal{F}^1 \supset \cdots \supset \mathcal{F}^p \supset \mathcal{F}^{p+1} = 0$$

$$\mathcal{F}^i / \mathcal{F}^{i+1} \sim T^i_{X/B} \otimes f^*T^{p-i}_B$$

In particular, $\mathcal{F}^p \sim T^p_{X/B}$ and $\mathcal{F}^{p-1} / \mathcal{F}^p \sim T^{p-1}_{X/B} \otimes f^*T_B$.

$$\Rightarrow$$

$$0 \to T^p_{X/B} \otimes f^*T_B^{\otimes(n-p)} \to \mathcal{F}^{p-1} \otimes f^*T_B^{\otimes(n-p)} \to \cdots \to T^{p-1}_{X/B} \otimes f^*T_B^{\otimes(n-p+1)} \to 0$$

$$\rho_f^{(p)}: R^{p-1} f_*T^{p-1}_{X/B} \otimes T_B^{\otimes(n-p+1)} \to R^p f_*T^p_{X/B} \otimes T_B^{\otimes(n-p)}$$
Definition. \(\rho_f \) is called strongly non-isotrivial (everywhere) over \(B \) if \(\rho_f \) is injective.

Example. Let \(Y_i \to B \) be non-isotrivial families of smooth projective curves for \(i = 1, \ldots, r \). Then \(X = Y_1 \times_B \cdots \times_B Y_r \to B \) is strongly non-isotrivial over \(B \).

Remark. One can consider various refinements:

- Considering maps for which the composition of fewer \(\rho^{(p)} \)'s is injective or non-zero. This is important in particular to study moduli spaces of varieties that products with one rigid term.

- Combining this condition with \(\text{Var}(f) \), the variation of \(f \) in (birational) moduli.
THEOREM. Let f be a smooth projective family of varieties of general type. If f is strongly non-isotrivial over B, then (R) holds for f.

To do. Find more examples of strongly non-isotrivial families.
“Simple Question” revisited. Let \(g : Y \to B \) and \(h : X \to Y \) be non-isotrivial families of curves, \(\dim B = 1 \).

\[
\begin{array}{c}
X \xrightarrow{h} Y \xrightarrow{g} B \\
 \underset{f}{\xrightarrow{}}
\end{array}
\]

Does (R) hold for \(f \)?

Remarks.

- The assumption that \(h \) is non-isotrivial is not the most natural condition in this situation.

- Over bases of dimension \(\geq 1 \) one usually requires that the variation of the family is maximal. In this case that means \(\text{Var}(h) = \dim Y = 2 \).

- However, if \(X \) is the product of two non-isotrivial families of curves over \(B \), then \(\text{Var}(h) = 1 \).
The Kodaira-Spencer map, $\rho_h : T_Y \to R^1 h_* T_{X/Y}$, measures the variation of the family over Y, but we are only interested in variation over B.

Definition. h is *non-isotrivial with respect to B* if

$$\ker \rho_h \subset T_{Y/B}.$$

Lemma. h is *non-isotrivial with respect to B* if and only if $g^* T_B \to R^1 h_* T_{X/B}$ is injective.

Proposition. If g and h are non-isotrivial with respect to B, then f is strongly non-isotrivial over B.

Corollary.
- (R) holds for f.
- The answer to the “Simple Question” is indeed yes.
Let $f : X \to B$ be a smooth projective family,

$$n = \dim X - \dim B.$$

(Weak de Jong) Procedure.

Step One. Take a general projection onto \mathbb{P}^1_B and use Stein factorization. This produces

$$X' \overset{\text{birational}}{\longrightarrow} X \overset{f}{\longrightarrow} B \overset{f_1}{\longrightarrow} X_1 : \text{a family of curves}$$
Step Two. Iterating Step One produces $X_0 = B, X_1, \ldots, X_n$ such that there exists a birational morphism $\sigma : X_n \to X$ and for every $i = 1, \ldots, n$, $f_i : X_i \to X_{i-1}$ is a family of curves.
CONJECTURE

\[f \text{ is strongly non-isotrivial} \]
\[\updownarrow \]
\[f_i \text{ are non-isotrivial with respect to } B \text{ for } i = 1, \ldots, n. \]

Corollary of conjecture

\[f_i \text{ is non-isotrivial} \]
\[\text{with respect to } B \text{ for } i = 1, \ldots, n \]
\[\downarrow \]
\[(R) \text{ holds for } f \]

Lemma. \(f \) is strongly non-isotrivial if and only if \(f \circ \sigma \) is strongly non-isotrivial.

THEOREM. \(f_i \) is smooth and non-isotrivial
\[\text{with respect to } B \text{ for } i = 1, \ldots, n \]
\[\downarrow \]
\[f \text{ is strongly non-isotrivial} \]