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1. INTRODUCTION

The ultimate goal of algebraic geometry is to classify all algebraic varieties. This is
a formidable task that will not be completed in the foreseeable future, but we can (and
should) still work towards this goal.

In this paper I will sketch the main idea of the construction of moduli spaces of higher
dimensional varieties. In order to make the length of the paper bearable and still touch on
the main issues I will make a number of restrictions that are still rather general and hope-
fully the majority of the readership will consider them to bereasonable for the purposes of
a survey.

The idea of the title is shamelessly taken from Miles Reid. His immortalYoung person’s
guide[Rei87] is an essential read for a modern algebraic geometer especially for anyone
interested in reading the present article. To some extent this is a sequel to that, although
given how fundamental Miles Reid’s YPG is there are many other topics that would allow
for making that claim.

The point is that this article, just as the original YPG, was written with an uninitiated
reader in mind. Nevertheless, as the reader progresses through the sections they might feel
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that more and more background is assumed. This is a necessitybrought on by the above
mentioned boundaries. Hopefully the article will still achieve the desired result and show
a glimpse into this exciting, active and beautiful area of research.

The paper starts with reviewing the general philosophy of classification and how it leads
to studying moduli problems. I should note that there are other areas of classification that
are equally exciting, active and beautiful. In fact, recentresults in the Minimal Model
Program [Sho03, Sho04, HM06, HM07, BCHM06] have a great positive effect on the
central problems of the present article even if I will not have the opportunity to do justice
to them and explain their influence in detail.

There are many important results one should mention and I will try to list them all,
however I fear that that is an impossible goal to live up to. Therefore, I sincerely apologize
for any omission I might commit.

The structure of the paper is the following: After the general overview of classification
and moduli theory as part of it, moduli problems are reviewedin more detail followed by
a quick look at Hilbert schemes. Then the definition and the most important properties of
moduli functors are discussed. Throughout it is kept in mindthat each observation leads
us to reconsider our objective and along the way we have to realize that we cannot escape
working with singular varieties. Because of this, the particular type of singularities that
one needs to be able to deal with are reviewed and then finally the moduli functors of
higher dimensional canonically polarized varieties are defined in the form that is currently
believed to be the “right” one.

Last but not least I should mention that this approach is not necessarily the only one
producing the desired moduli space. In fact, Abramovich andHassett recently have pro-
posed a different construction. As their result has not yet appeared, it is not discussed here.
However, the reader is urged to take a look at it as soon as possible as it might shed some
new light onto the questions discussed here.

DEFINITIONS AND NOTATION 1.1. Letk be an algebraically closed field of characteristic
0. Unless otherwise stated, all objects will be assumed to be defined overk. A schemewill
refer to a scheme of finite type overk and unless stated otherwise, apoint refers to a closed
point.

For a morphismY → S and another morphismT → S, the symbolYT will denote
Y ×S T . In particular, fort ∈ S we writeXt = f−1(t). In addition, ifT = SpecF , then
YT will also be denoted byYF .

Let X be a scheme andF anOX -module. Themth reflexive powerof F is the double
dual (or reflexive hull) of themth tensor power ofF :

F
[m] := (F⊗m)∗∗.

A line bundleon X is an invertibleOX -module. AQ-line bundleL on X is a reflexive
OX -module of rank1 one of whose reflexive power is a line bundle, i.e., there exists an
m ∈ N+ such thatL [m] is a line bundle. The smallest suchm is called theindexof L .

For the advanced reader: whenever we mention Weil divisors,assume thatX is S2 and
think of aWeil divisorial sheaf, that is, a rank1 reflexiveOX -module which is locally free
in codimension1. For flatness issues consult [Kol08, Theorem 2].

For the novice: whenever we mention Weil divisors, assume thatX is normal and adopt
the definition [Har77, p.130].
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For a Weil divisorD onX, its associatedWeil divisorial sheafis theOX -moduleOX(D)
defined on the open setU ⊆ X by the formula

Γ(U,OX(D)) =

{
a

b

∣∣∣∣ a, b ∈ Γ(U,OX), b is not a zero divisor anywhere onU , and

D + div(a) − div(b) ≥ 0

}

and made into a sheaf by the natural restriction maps.
A Weil divisorD onX is aCartier divisor, if its associated Weil divisorial sheaf,OX(D)

is a line bundle. If the associated Weil divisorial sheaf,OX(D) is aQ-line bundle, thenD
is aQ-Cartier divisor. The latter is equivalent to the property that there exists an m ∈ N+

such thatmD is a Cartier divisor.
The symbol∼ stands forlinear and≡ for numerical equivalenceof divisors.
Let L be a line bundle on a schemeX. It is said to begenerated by global sectionsif

for every pointx ∈ X there exists a global sectionσx ∈ H0(X,L ) such that the germσx

generates the stalkLx as anOX -module. IfL is generated by global sections, then the
global sections define a morphism

φL : X → PN = P
(
H0(X,L )

)
.

L is calledsemi-ampleif L m is generated by global sections form ≫ 0. L is called
ampleif it is semi-ample andφL m is an embedding form ≫ 0. A line bundleL on X
is calledbig if the global sections ofL m define a rational mapφL m : X 99K PN such
thatX is birational toφL m(X) for m ≫ 0. Note that in this caseL m is not necessarily
generated by global sections, soφL m is not necessarily defined everywhere. I will leave
it for the reader the make the obvious adaptation of these notions for the case ofQ-line
bundles.

Thecanonical divisorof a schemeX is denoted byKX and thecanonical sheafof X
is denoted byωX .

A smooth projective varietyX is of general typeif ωX is big. It is easy to see that this
condition is invariant under birational equivalence between smooth projective varieties. An
arbitrary projective variety is ofgeneral typeif so is a desingularization of it.

A projective variety iscanonically polarizedif ωX is ample. Notice that if a smooth
projective variety is canonically polarized, then it is of general type.

ACKNOWLEDGEMENT. I would like to thank Christopher Hacon, Max Lieblich and Zsolt
Patakfalvi for useful discussions and for pointing out errors and misprints in an early draft
of this manuscript.

2. CLASSIFICATION

2.A. Q&A

As mentioned in the introduction, our ultimate goal is to classify all algebraic varieties.
We will approach the classification problem through birational geometry, that is, our

plan for classification can be summarized as follows.

PLAN 2.1.

(2.1.1) Choose a “nice” representative from every birational class.
(2.1.2) Give a well-defined way of obtaining this nice representative. (I.e., given an arbi-

trary variety, provide an algorithm to find this representative).
(2.1.3) Classify the representatives.
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As we try to execute this plan, we will face many questions that will guide our journey.
The plan itself raises the first question.

QUESTION 2.2. What should we consider “nice”?

Before answering that, let us see how we might approach (2.1.3).
First, one looks for discrete invariants, preferably such that are invariant under deforma-

tion. For instance, dimension, degree, genus, etc.
Once many discrete invariants are found, consider a class ofvarieties that share the same

discrete invariants. One expects that these will be parametrized by continuous invariants,
or as Riemann called them,moduli.

EXAMPLE 2.3 Plane Curves.Let X ⊆ P2 be a projective plane curve. The discrete
invariant we need is the degree. Let us suppose that we fix thatand we are only considering
curves of degreed. It is easy to see that plane curves of degreed are parametrized by

P
d(d+3)

2 . The continuous parameters are the coefficients of the defining equation of the
curve.

Still, before answering Question 2.2, let us ask another one:

QUESTION 2.4. What discrete invariants should we consider?

The first one seems obvious:dimension. The next that comes to mind is perhapsdegree,
but this leads to another issue: Degree depends on the embedding and so do many other
invariants. So the next question to answer is:

QUESTION 2.5. Is there a natural way to embed our varieties?

Embeddings correspond to sets of generating global sections of very ample line bundles,
or if we forget about automorphisms of the ambient space for amoment, then to very ample
line bundles.

This brings up another question:

QUESTION 2.6. How do we find ample line bundles on a variety?

The problem is that our variety may not be given with an embedding, or even if it is
given as a subvariety of a projective space, that given embedding may not be the natural
one (if there is such).

If a varietyX, even if it is smooth, is given without additional information, it is really
hard to find non-trivial ample line bundles, or for that matter, any non-trivial line bundles.
There is practically only one that we can expect to find, thecanonical line bundle1, i.e.,
ωX , the determinant of the cotangent bundleΩX . (Of course there is also the determinant
of the tangent bundle as well, but that is simply the inverse of the canonical bundle and so
doesn’t give an independent line bundle. Obviously, if we find one line bundle, we will
have all of its powers, positive and negative included.)

So we could ask ourselves:

QUESTION 2.7. Is the canonical bundle ample?

Most likely the readers know the answer to this one: No, not necessarily. So perhaps the
better question is,

QUESTION 2.8. How likely is it that the canonical bundle is ample?

Let us consider the case of curves. In this case, the right answer (2.1.1) is very simple
(not its proof however!): In each birational class there exists exactly one smooth projective

1“The canonical bundle is not called canonical for nothing” –Joe Harris
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curve. It is known and well documented how one obtains this representative (one possibil-
ity is explained in [Har77, §I.6]) so (2.1.2) is also covered.

With respect to (2.1.3) and more particularly Question 2.8,there are three different types
of behavior:

• X = P1: ωX ≃ OP1(−2) is anti-ample,
• X an elliptic curve:ωX ≃ OX is trivial.
• X any other smooth projective curve:ωX is ample.

This suggests that we may expect that most birational classes will contain a member with
an ample canonical bundle.

Let us take a moment to examine the third case, that is, whenX is a smooth projective
curve andωX is ample. In this caseω⊗3

X is always very ample and thusX can be embedded
by the global sections of that line bundle:

H0(X,ω⊗3
X ) : X →֒ PN .

The obvious discrete invariant to consider now is the degreeof this embedding, i.e.,

d = 3deg ωX = 6χ(X,ωX).

Using Kodaira vanishing, Riemann-Roch and Serre duality wecan computeN :

N + 1 = h0(X,ω⊗3
X ) = χ(X,ω⊗3

X ) = d + χ(X,OX) = 5χ(X,ωX).

Therefore, we are interested in classifying smooth projective curves of degree6χ in
P5χ−1, whereχ = χ(X,ωX). In this case the discrete invariant we needed, that is, in
addition todim = 1, was the degree of the third pluricanonical embedding. However,
in order to make this work in higher dimensions we will need more invariants to get a
reasonable moduli space. The right invariant will be the Hilbert polynomial ofωX , which
in the above example contains equivalent information as thedimension and the degree
combined:

hX(m) := h0(X,ω⊗m
X ) = 2χm − χ.

REMARK 2.9. The reader has probably noticed that I am going to great lengths to avoid
using thegenusof the curves involved. The reason behind this is that knowing the genus
is equivalent to knowingχ(X,ωX), or evenhX(m), and the latter is the invariant that
generalizes well to higher dimensions. So why not start getting used to it?

Now we can make our first attempt to decide what we would like tocall “nice”:

DEFINITION 2.10. LetX benice if X is smooth, projective andωX is ample.

ISSUE2.11. This is not going to fulfill all of our requirements because there are varieties
that are not birational to a nice variety as defined in (2.10).For instance, letX be a smooth
minimal surface of general type that contains a(−2)-curve (a smooth proper rational curve
with self-intersection(−2)). ThenωX is not ample. SinceX is not rational or ruled, it is
the only minimal surface in its birational class and hence cannot be birational to a surface
with an ample canonical bundle.

This is however not a huge setback. It only means that the above definition of “nice” is
not the right one yet.

2.B. Curves

The first invariant we want to fix is the dimension and so let us start to get more seri-
ous by considering the case ofdim = 1 systematically. We have seen that our second
important invariant is the Hilbert polynomial ofωX . Fixing that is equivalent to fixing
χ = χ(X,ωX). We have the following cases for nice varieties of dimension1 (cf. (2.10)):
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2.12. TRICHOTOMY.
• χ < 0 : X ≃ P1,
• χ = 0 : X is an elliptic curve,
• χ > 0 : X is a curve withωX ample.

In this case, we are able to answer our previous questions. The classes withχ ≤ 0 are
reasonably understood from a classification point of view.

For χ < 0 we have only one smooth projective curve, while forχ = 0 we have the
elliptic curves which are classified by theirj-invariant. There are of course plenty of things
to still understand about elliptic curves, but those belongto a different study.

For χ > 0 the definition of “nice” in (2.10) works well as there is a unique nice curve
in each birational class. The moduli part of the classification was first accomplished by
Mumford. There are many excellent sources on moduli of curves. Perhaps the two most
frequently used ones are [MFK94] and [HMo98].

To study higher dimensional varieties we need some preparations.

2.C. Fano varieties

ISSUES2.13. In the cases of surfaces and higher dimensional varieties we encounter two
new issues that we will have to deal with:

(2.13.1) There will be a lot more varieties that are not birational to a “nice” variety ac-
cording to the current definition of “nice”.

(2.13.2) There are smooth projective varieties that are birational to each other.

EXAMPLE 2.14. As we have seen in the case of the projective line, we similarly have that
for X = Pn ωX is not ample and this is true for anyX ′ birational toPn.

EXAMPLE 2.15. More generally, we have the class of smoothFano varieties, i.e., smooth
projective varietiesX with ω−1

X ample, that are not birational to nice varieties.

EXAMPLE 2.16. Finally, in this series of examples, a varietyX admitting aFano fibration,
i.e., a flat morphismX → T such thatXt is a Fano variety for generalt ∈ T , is also not
birational to a nice variety.

CONCLUSION 2.17. We will have to deal with Fano varieties differently. However, they,
too, have a natural ample line bundle; namelyω−1

X , so all is not lost.

2.D. Kodaira dimension

In order to mirror the trichotomy of the curve case, we need tointroduce another invariant.
This is very similar and very close toχ in the curve case.

Let X be a smooth projective variety and consider the rational mapinduced by a set of
generators ofH0(X,ω⊗m

X ) :
φm : X 99K PN .

It is relatively easy to see that form ≫ 0, the birational class of the imageφm(X) is
independent ofm.

DEFINITION 2.18. TheKodaira dimensionof X is denoted byκ(X) and defined as

κ(X) := dim φm(X) for m ≫ 0.

DEFINITION 2.19. X is of general type, if κ(X) = dimX. In particular, ifωX is ample,
thenX is of general type.

EXAMPLE 2.20. κ(Pn) = dim ∅ < 0. In fact, for any Fano varietyX, κ(X) < 0.

EXAMPLE 2.21. For curves we have (again) three cases:
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• κ < 0 : X ≃ P1 (χ < 0),
• κ = 0 : X is an elliptic curve (χ = 0),
• κ = 1 : X is a curve withωX ample (χ > 0).

EXAMPLE 2.22. LetX be a uniruled variety. ThenX does not admit any global pluri-
canonical forms and henceκ(X) < 0. It is conjectured that this characterizes uniruled
varieties.

For more on the classification of uniruled varieties see [Mor87, §11] and [Kol96].

2.E. Fibrations

As in the case of curves Kodaira dimension gives us a powerfultool to separate varieties
into classes with differently behaving canonical classes in arbitrary dimensions. In fact, we
will see that even though there are more possibilities for the possible values of the Kodaira
dimension as the actual dimension grows, there will still beonly three important classes to
consider.

Our next step is to adopt the following principle.

PRINCIPLE 2.23. Letϕ : X → Y be a fibration between smooth projective varieties, i.e.,
a dominant morphism with connected fibers. Motivated by our rough birational classifi-
cation point of view, we will rest once we can classifyY and the general fiber ofϕ. Of
course, this leaves many questions unanswered, but then again, I never promised to answer
all questions.

2.24. MORI FIBRATION [KM98, §2]. Let X be a smooth projective variety such that
κ(X) < 0. Then it is conjectured that there exists a birational modelX♮ for X and a
fibrationϕ♮ : X♮ → Y ♮ such thatY ♮ is a smooth projective variety withdimY ♮ < dim X♮

andF ♮ is a Fano variety, whereF ♮ is the generic geometric fiber ofϕ♮.

This is known fordimX ≤ 3 by [Mor88] (cf. [Mor82, Rei83, Kaw84, Kol84, Sho85]).
In fact, here I am skipping the mentioning of the Minimal Model Program, which is a
beautiful and very deep theory. In particular, one could (orperhaps should?) discuss
extremal contractions and flips. However, since the focus ofthis article is on moduli theory
I will leave this topic for the reader to discover. A good place to start is [Kol87] and the
standard reference is [KM98].

It follows that iterating (2.24) will exhibitX to be birational to a tower of Fano fibrations
over a base that is either itself a Fano variety or has non-negative Kodaira dimension. In
the latter case we appeal to (2.25) and in general apply Principle 2.23.

2.25. IITAKA FIBRATION [Iit82, §11.6], [Mor87, 2.4]. Let X be a smooth projective
variety with κ(X) ≥ 0. Then there exists a birational modelX♭ for X and a fibration
ϕ♭ : X♭ → Y ♭ such thatY ♭ is a smooth projective variety withdim Y ♭ = κ(X) and
κ(F ♭) = 0, whereF ♭ is the generic geometric fiber ofϕ♭. Furthermore, the birational
class ofY ♭ is uniquely determined by these properties.

Appealing to Principle 2.23 we conclude that we may restrictour attention to three types
of varieties (cf. (2.12)) that are the building blocks of allvarieties:

2.26. TRICHOTOMY.

• Fano varieties. These includePn. (Fordim X = 1 : χ < 0).
• Varieties with Kodaira dimension0. These include Abelian and Calabi-Yau varieties.

(FordimX = 1 : χ = 0).
• Varieties with maximal Kodaira dimension, i.e., varietiesof general type. These include

varieties with an ample canonical bundle. (FordimX = 1 : χ > 0).
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In this article we will concentrate on the third case: varieties of general type. Similarly
to the case of curves, this is indeed the “general” case.

It has been a long standing conjecture and only proven recently (cf. [HM06, HM07,
BCHM06]) that every variety of general type is birational to a canonically polarized vari-
ety, itscanonical model, i.e., a variety with an ample canonical bundle. The only trouble
is that unfortunately this canonical model may be singular.On the other hand, in order to
gain a good understanding of moduli, one needs to study degenerations as well, so we will
be forced to consider singular varieties in our moduli problem anyway. Fortunately, the
singularities forced by the canonical model are not worse than the ones we must allow in
order to have a compact moduli space.

Now we are at a point that we can form a reasonable plan that wascalled for in (2.1).

PLAN 2.27. The discrete invariant we need to fix is the Hilbert polynomial of the canon-
ical bundle of the canonical model. Then we plan to do the following:

(2.27.1) Let “nice” be defined (for now) as in Definition 2.10.We will later replace
“smooth” with something else.

(2.27.2) Starting with an arbitrary varietyX, perform the following procedure to obtain a
“nice” model.
• apply Nagata’s Theorem [Nag62] to get a proper closure ofX: X̂,
• apply Chow’s Lemma [Har77, Ex.II.4.10] to obtain a projectivization of̂X if

necessary:̄X
• apply Hironaka’s Theorem [Hir64] to get a resolution of singularities of̄X: X̃
• apply the Minimal Model Program [KM98] and Mori fibrations (2.24) to re-

strict to the caseκ(X) ≥ 0,
• apply Iitaka fibrations (2.25) to restrict to the caseκ(X) = dimX,

• form the canonical model:Proj

∞⊕

m=0

H0(X,ω⊗m
X ) [HM06, HM07, BCHM06].

(2.27.3) Classify the canonical models.

Now the “only” thing left is the last step, classifying the canonical models. In other words,
we need to construct a moduli space for them.

3. MODULI PROBLEMS

3.A. Representing functors

Let Sets denote the category of sets andCat an arbitrary category. Further let

F : Cat → Sets

be a contravariant functor. Recall thatF is representableif there is an objectM ∈ ObCat

such thatF ≃ HomCat(__,M). If such anM exists, it is called auniversal objector afine
moduli spacefor F .

3.B. Moduli functors

NOTATION 3.1. Letf : X → B be a morphism andK andL two line bundles onX.
Then

K ∼B L

will mean that there exists a line bundleN on B such thatK ≃ L ⊗ f∗N .

REMARK 3.1.1. If B andXb for all b ∈ B are integral of finite type,f is flat and pro-
jective, thenK ∼B L is equivalent to the condition thatK

∣∣
Xb

≃ L
∣∣
Xb

for all b ∈ B

[Har77, Ex. III.12.6].
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DEFINITION 3.2. LetS be a scheme andSchS the category ofS-schemes. Let

MP : SchS → Sets

be themoduli functor of polarized proper schemes overS:

(3.2.1) For an objectB ∈ ObSchS ,

MP (B) :=
{
(f : X → B,L ) | f is a flat, projective morphism and

L is anf -ample line bundle onX
}/

≃

where “≃” is defined as follows:(f1 : X1 → B,L1) ≃ (f2 : X2 → B,L2) if and
only if there exists aB-isomorphismφ : X1/B

≃
−→ X2/B such thatL1 ∼B φ∗L2.

(3.2.2) For a morphismα ∈ HomSchS
(A,B),

MP (α) := (__) ×B α,

i.e.,
MP (α) : MP (B) −→ MP (A)

(f : X → B,L ) 7−→ (fA : XA → A,LA).

REMARK 3.2.1. This definition has the disadvantage that it does not satisfy faithfully flat
descent cf. [BLR90, 6.1]. This is essentially caused by similar problems with the naive
definition of the relative Picard functor [Gro62a, 232] or [BLR90, 8.1]. This problem may
be dealt with by appropriate sheafification ofMP . The notion of canonical polarization
below also provides a natural solution in many cases. For details see [Vie95, §1].

Considering our current aim, we leave these worries behind for the rest of the article, but
warn the reader that they should be addressed.

In any case, unfortunately, the functorMP is too big to handle, so we need to study
some of its subfunctors that are more reasonable. In the context of the previous section,
MP does not take into account any discrete invariants. If we follow our plan and start by
fixing certain discrete invariants, then we are led to study natural subfunctors ofMP .

DEFINITION 3.3. Letk be an algebraically closed field of characteristic0 andSchk the
category ofk-schemes. Leth ∈ Q[t] andM smooth

h : Schk → Sets the following functor:

(3.3.1) For an objectB ∈ ObSchk,

M smooth
h (B) :=

{
f : X → B | f is a smooth projective family

such that∀b ∈ B, ωXb
is ample andχ(Xb, ω

⊗m
Xb

) = h(m)
}/

≃

where “≃” is defined as follows:(f1 : X1 → B) ≃ (f2 : X2 → B) if and only if
there exists aB-isomorphismφ : X1/B

≃
−→ X2/B.

(3.3.2) For a morphismα ∈ HomSchk
(A,B),

M smooth
h (α) := (__) ×B α.

REMARK 3.4. ForS = Spec k, M smooth
h is a subfunctor ofMP .

EXAMPLE 3.5.

M smooth
h (Spec k) =

{
X|X is a smooth projective variety

with ωX ample andχ(ω⊗m
X ) = h(m)

}
.

QUESTION 3.6. So, what would it mean exactly thatM smooth
h is representable?
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OBSERVATIONS 3.7. Suppose(!) thatM smooth
h is representable, i.e., assume (but do not

believe) that there exists anM ∈ ObSchk such thatM smooth
h ≃ HomSchk

(__,M). Then
one makes the following observations.

(3.7.1) First letB = Spec k. ThenM smooth
h (Spec k) ≃ HomSchk

(Spec k,M) = M(k),
the set ofk-points ofM. In other words, the set of closed points ofM are in
one-to-one correspondence with smooth projective varietiesX with ωX ample and
χ(X,ω⊗m

X ) = h(m). For such a varietyX its corresponding point inM(k) will
be denoted by[X].

(3.7.2) Next letB = M. Then one obtains thatM smooth
h (M) ≃ HomSchk

(M,M). Now
let (f : U → M) ∈ M smooth

h (M) be the element corresponding to the identity
idM ∈ HomSchk

(M,M). For a closed pointx : Spec k → M one has by functori-
ality thatx = [Ux], whereUx = U×M x. Therefore,(f : U → M) is atautological
family.

(3.7.3) Finally, letB be arbitrary. Then by the definition of representability onehas that
M smooth

h (B) ≃ HomSchk
(B,M), i.e., every family(f : X → B) ∈ M smooth

h (B)
corresponds in a one-to-one manner to a morphismµf : B → M. Applying the
functorM smooth

h (__) ≃ Homschk
(__,M) to µf leads to the following:

M smooth
h (M)

M smooth
h (µf ) //

≃

��

M smooth
h (B)

≃

��

(f : U → M) � //
)

	

66mmmmmmmmmmmm

OO

��

(f : X → B)
)

	

66mmmmmmmmmmmm

OO

��

HomSchk
(M,M)

HomSchk
(µf ,M)

// HomSchk
(B,M)

idM

� //
)

	

66mmmmmmmmmmmmmm
µf

)

	

66mmmmmmmmmmmmmm

By (3.3.2) this implies that(f : X → B) ≃ (f ×M µf : U ×M B → B), so
(f : U → M) is actually auniversal family.

(3.7.4) Let(f : X → B) ∈ M smooth
h (B) be a non-trivial family, all of whose members

are isomorphic. For an example of such a family see (3.9) below. Let F denote
the variety to which the fibers off are isomorphic, i.e.,F ≃ Xb for all b ∈ B.
Then by (3.7.2)µf (b) = [F ] ∈ M for all b ∈ B. However, for thisf then
(f ×M µf : U ×M B → B) ≃ (B × F → B), which is a contradiction.

CONCLUSION3.8. Our original assumption led to a contradiction, so we have to conclude
thatM smooth

h is not representable.

EXAMPLE 3.9. LetB andC be two smooth projective curves admitting non-trivial double

coversB̃ → B ≃ B̃
/

Z2 andC̃ → C ≃ C̃
/

Z2. Consider the diagonalZ2-action on

B̃ × C̃: σ(b, c) := (σ(b), σ(c)) for σ ∈ Z2 and letX = B̃ × C̃
/

Z2
andf : X → B the

induced morphism[(b, c) ∼ (σ(b), σ(c))] 7→ [b ∼ σ(b)]. It is easy to see that the fibers of
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f are all isomorphic tõC, butX 6≃ B × C̃. Similar examples may be constructed as soon
as there exists a non-trivial representationπ1(B) → AutC.

3.C. Coarse moduli spaces

Since we cannot expect our moduli functors to be representable, we have to make do with
something weaker.

DEFINITION 3.10. A functorF : Schk → Sets is coarsely representableif there exists
anM ∈ ObSchk and a natural transformation

η : F → HomSchk
(__,M)

such that

(3.10.1) ηSpec k : F (Spec k)
≃
−→ HomSchk

(Spec k,M) = M(k) is an isomorphism, and
(3.10.2) given an arbitraryN ∈ ObSchk and a natural transformation

ζ : F → HomSchk
(__,N)

there exists a unique natural tranformation

ν : HomSchk
(__,M) → HomSchk

(__,N)

such that
ν ◦ η = ζ.

If such anM exists, it is called acoarse moduli spacefor F .

Let us now reconsider the question and observations we made in (3.6) and (3.7) with
regard to this new definition.

QUESTION 3.11. What would it mean thatM smooth
h is coarsely representable?

OBSERVATIONS 3.12. Assume that there exists anMh ∈ ObSchk satisfying the condi-
tions listed in Definition 3.10 above, i.e., assume thatM smooth

h is coarsely represented by
Mh. Then one makes the following observations.

(3.12.1) LetB = Spec k. Then by (3.10.1) we still haveM smooth
h (Spec k) ≃ Mh(k),

the set ofk-points ofMh. In other words, the set of closed points ofMh are
in one-to-one correspondence with smooth projective varietiesX with ωX ample
andχ(X,ω⊗m

X ) = h(m). For such a varietyX its corresponding point inMh(k)
will be denoted by[X].

(3.12.2) LetB = Mh. Then there exists a map

ηMh
: M smooth

h (Mh) → HomSchk
(Mh,Mh),

but there is no guarantee thatidMh
∈ HomSchk

(Mh,Mh) is in the image ofηMh
,

and hence a tautological family(fh : Uh → Mh) may not exist.
(3.12.3) LetB be arbitrary. Then there exists a mapηB : M smooth

h (B) → HomSchk
(B,M),

i.e., every family(f : X → B) ∈ M smooth
h (B) corresponds to a morphism

µf : B → M, which still has some useful properties. Since it is given bya
natural transformation, we have that for allb ∈ B,

µf (b) = [Xb].

Applying the functorsM smooth
h (__) andHomschk

(__,M) to µf leads to the fol-
lowing:
We have observed in (3.12.2) that there may not be a tautological family

(fh : Uh → Mh) ∈ M smooth
h (Mh)
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M smooth
h (Mh)

M smooth
h (µf ) //

��

M smooth
h (B)

��
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FIGURE 3.1.

that maps toidMh
. However, even if such a family existed, we could not con-

clude that it maps to(f : X → B) via M smooth
h (µf ), because the vertical arrows

in Figure 3.1 are not necessarily one-to-one. In other words, even if we find a
tautological family, it is not necessarily auniversal family.

(3.12.4) Finally, let(f : X → B) ∈ M smooth
h (B) be a non-trivial family all of whose

members are isomorphic. LetF denote the fiber off , i.e.,F ≃ Xb for all b ∈ B.
Then by (3.12.3)µf (b) = [F ] ∈ M for all b ∈ B. However, this does not lead to
a contradiction now (see the remark at the end of (3.12.3)).

4. HILBERT SCHEMES

We saw in the previous section that moduli functors are usually not representable. In this
section we will see an example for a representable functor.

Let g : Y → Z be a projective morphism,L a g-ample line bundle onY andF a
coherentg-flat sheaf onY . Then form ≫ 0 one has thatg∗(F ⊗ L ⊗m) is locally free
andRig∗(F ⊗ L ⊗m) = 0 for i > 0. By the Riemann-Roch theorem there exists a
polynomialhY/Z,F ,L such that

hY/Z,F ,L (m) = rk g∗(F ⊗ L
⊗m).

We will call this theHilbert polynomialof g with respect toF andL . If there is no danger
of confusion then we will use the notationhL := hY/Z,OY ,L and will callhL the Hilbert
polynomial ofL .

Let S be a scheme andX ∈ ObSchS . We define theHilbert functor,

Hilb(X/S) : SchS → Sets

as follows. For aZ ∈ ObSchS ,

Hilb(X/S)(Z) :=
{
V | V ⊆ X ×S Z flat and proper subscheme overZ

}

≃
{
F | F ≃ OX×SZ

/
I flat with proper support overZ

}
,
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and for aφ ∈ HomSchS
(Z, Y ),

Hilb(X/S)(φ) : Hilb(X/S)(Y ) → Hilb(X/S)(Z)

V 7→ V ×Y Z ⊆ (X ×S Y ) ×Y Z ≃ X ×S Z

If L is a relatively ample line bundle onX/S andp ∈ Q[z], then we define

Hilbp(X/S)(Z) :=
{
F ∈ Hilb(X/S)(Z) | hXZ/Z,F ,LZ

= p
}
.

Notice that ifZ is connected, then

Hilb(X/S)(Z) =
⋃

p

Hilbp(X/S)(Z).

Theorem 4.1 [Gro62b, Gro95] [Kol96, I.1.4]. Let X/S be a projective scheme,L a
relatively ample line bundle onX/S andp a polynomial. Then the functorHilbp(X/S) is
represented by a projectiveS-schemeHilbp(X/S), called theHilbert schemeof X/S with
respect top.

REMARK 4.2. Similarly to (3.7.2-3), one observes that by the definition of representabil-
ity, idHilbp(X/S) ∈ HomSchS

(Hilbp(X/S),Hilbp(X/S)) corresponds to auniversal ob-
ject, or universal family, Univp(X/S) ∈ Hilbp(X/S)(Hilbp(X/S)). By the definition
of Hilbp(X/S), one sees thatUnivp(X/S) ⊆ X ×S Hilbp(X/S) is flat and proper over
Hilbp(X/S) with Hilbert polynomialp.

DEFINITION 4.3. We define theHilbert schemeof X/S as follows:

Hilb(X/S) :=
∐

p

Hilbp(X/S).

5. INTRODUCTION TO THE CONSTRUCTION OF THE MODULI SPACE

5.A. Boundedness

There are several properties a moduli functor needs to satisfy in order for it to admit a
(coarse) moduli space. We will discuss some of these in more detail. The first one is
boundedness.

DEFINITION 5.1. LetF be a subfunctor ofMP . Then we say thatF is boundedif there
exists a scheme of finite typeT and a family(π : U → T,L ) ∈ MP (T ) with the
following property:

For any(σ : X → B,N ) ∈ F (B) there exists an étale cover∪Bi → B and morphisms
νi : Bi → T such that for alli,

(σ : X → B,N )
∣∣
Bi

≃ ν∗
i (π : U → T,L ).

In this case we say that(π : U → T,L ) is abounding familyfor F .
If in addition (π : U → T,L ) ∈ F (T ), then(π : U → T,L ) is called alocally versal

family for F .

REMARK 5.1.1. When using canonical polarizations, then one may restrict to open covers
in the definition. See [Vie95, 1.15] and [Kol94].

The first major general theorem about boundedness is Matsusaka’s Big Theorem. Here
we only cite a special case. For the more general statement please refer to the original
article.

Theorem 5.2 [Mat72]. Fix a polynomialh ∈ Q[t]. ThenM smooth
h is bounded.

In fact, in order to prove boundedness ofM smooth
h , it is enough to prove the following:
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Theorem 5.3. Fix h ∈ Q[t]. Then there exists an integerm > 1 such thatω⊗m
X is very

ample for allX ∈ M smooth
h (Spec k).

DEFINITION 5.4. Let the smallest integerm satisfying the condition in (5.3) be denoted
by m(h).

Assume that we know that (5.3) holds. Then by the Kodaira Vanishing Theoremω⊗m
X

has no higher cohomology for allX ∈ M smooth
h (Spec k), and so

h0(X,ω⊗m
X ) = χ(X,ω⊗m

X ) = h(m).

Let N = h(m) − 1. Then for allX ∈ M smooth
h (Spec k) them-th pluricanonical map

H0(X,ω⊗m
X ) : X →֒ PN

is an embedding. Now letT = Hilbh(PN/k), U = Univh(PN/k) and consider the two
projectionsπ1 : PN×Hilbh(PN/k) → PN andπ2 : PN×Hilbh(PN/k) → Hilbh(PN/k).
Let π = π2

∣∣
U

: U → T andL = π∗
1OPN /k(1)

∣∣
U

. Then(π : U → T,L ) gives a
bounding family forM smooth

h . Therefore (5.3) implies (5.2).

REMARK 5.5. We will see later that it is necessary to allow singular objects in our moduli
functors. This will lead to many difficulties, among them theunfortunate fact that Mat-
susaka’s Big Theorem will not be strong enough for our purposes.

5.B. Plan

The success of using the Hilbert scheme in order to obtain boundedness might make one
believe that the Hilbert scheme itself might work as a modulispace. However, unfortu-
nately this is not the case as the points ofHilbh(PN/k)(k) also parametrize subschemes
that are not in the moduli functorM smooth

h . For example, they maybe horribly singular and
the polarizing line bundle is not necessarily the canonicalbundle.

The next guess maybe taking the locus of Hilbert points that corresponds to such sub-
varieties ofPN that are inM smooth

h (Spec k), i.e., smooth with canonical polarization. This
is a much better guess, but still not perfect. There are two fundamental problems. First, it
is not at all clear that this locus is a subscheme ofHilbh(PN/k), or even if its support is
a subscheme, then whether there is a natural scheme structure that is compatible with the
functorM smooth

h . This actually turns out to be a difficult technical problem referred to as
local closednessand we will return to it later. The second problem is that a single object of
M smooth

h (Spec k) will appear several times inHilbh(PN/k); any subscheme ofPN appears
as a potentially different subscheme after acting with an element ofAut(PN ), but in the
moduli functor we only want a single copy of each isomorphismclass.

The way to proceed is “obvious”. Assume that we can solve the local closedness prob-
lem and indeed we can find a subscheme that consists of exactlythe points that belong to
M smooth

h (Spec k). (Actually we need to worry about more than that, but let’s not get all
gloomy just yet). Then we get a natural action ofAut(PN ) on this subscheme and taking
the quotient byAut(PN ) should yield our desired moduli space. I should mention thattak-
ing this quotient is not entirely obvious, but fortunately possible [Vie91, Kol97a, KeM97].

5.C. Local closedness

We have already observed that in order to carry out the the plan laid out in 5.B we need to
identify the set of Hilbert points corresponding to the moduli functor and find a (natural)
scheme structure on this set. The technical condition to allow doing this is the following.
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DEFINITION 5.6. A subfunctorF ⊆ MP is locally closed(resp.open, closed) if the
following condition holds: For every(f : X → B,L ) ∈ MP (B) there exists a locally
closed (resp. open, closed) subschemeι : B′ →֒ B such that ifτ : T → B is any morphism
then

(fT : XT → T,LT ) ∈ F (T ) ⇔ τ factors throughι

T
τ //

∃

���
�

� B

B′
ι

FF

.

OBSERVATION 5.7. There are two main ingredients of proving thatM smooth
h is locally

closed. Letm = m(h) as defined in (5.4). Suppose that(f : X → B,L ) ∈ MP (B).
Note that in the construction of the moduli space thisL comes fromOPN (1) where
N = h(m) − 1. Now one needs to prove that:

(5.7.1) the set{b ∈ B | Xb ∈ M smooth
h (Spec k)} is a locally closed subset ofB, and

(5.7.2) the conditionL
∣∣
Xb

≃ ωm
Xb

is locally closed onB.

At this point these conditions are not too hard to satisfy. Toprove (5.7.1) one observes
that being smooth is open, being projective is assumed. The canonical bundle,ωXb

being
ample is open, but this we actually do not even need as it will follow from (5.7.2). The
requirement on the Hilbert polynomial will also follow from(5.7.2). In turn, (5.7.2) follows
from the following lemma.

Lemma 5.8. [Vie95, 1.19]Let f : X → B be a flat projective morphism andK andL

two line bundles onX. Assume thath0(Xb,OXb
) = 1 for all b ∈ B. Then there exists a

locally closed subschemeι : B′ →֒ B such that ifτ : T → B is any morphism then

KT ∼T LT ⇔ τ factors throughι

T
τ //

∃

���
�

� B

B′
ι

FF

.

PROOF. By replacingL by L ⊗K −1 we may assume thatK ≃ OX . Observe that
if L

∣∣
Xb

is generated by a single section, then it gives an isomorphism

OXb

≃
−→ L

∣∣
Xb

.

Consider
B′′

red:=
{

b ∈ B | h0(Xb,L
∣∣
Xb

) 6= 0
}

= supp (f∗L ) .

This is closed by semi-continuity [Har77, III.12.8]. So far this is only a subset and we need
to define a (natural) scheme structure. However, that is a local problem, so we may assume
that B is affine. By cohomology-and-base-change [Mum70, §5] there exists a bounded
complex of locally free sheaves

E 0 δ0
//
E 1 δ1

// . . . δr−1
// E n

such that for any morphismτ : T → B,

Ri(fT )∗LT ≃ Hi(E •
T ).

In particular,
(fT )∗LT ≃ ker[δ0

T : E
0
T → E

1
T ].

By definition,B′′
red = supp ker δ0. Now define the ideal sheafI ⊳ OB as follows:
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• If B′′
red = Bred in a neighbourhood of a pointb ∈ B, then letI = 0 nearb.

• Otherwise writeE i = ⊕riOB nearb ∈ B. Since we are not in the previous case, we
must haver1 ≥ r0. Now letI be generated by ther0 × r0 minors of

δ0 :

r0⊕
OB →

r1⊕
OB .

Let the scheme structure onB′′
red be defined by this ideal sheaf, i.e., letB′′ the scheme with

supportB′′
red and structure sheafOB′′ := OB

/
I .

Now if τ : T → B is such thatLT ∼T OT , then(fT )∗LT is a line bundle onT and if
ker δ0

T contains a line bundle, then the image ofτ∗I in OT has to be zero. In other words,
τ factors throughB′′ →֒ B.

In the final step we constructB′ as an open subscheme ofB′′. By our previous ob-
servation we may assume thatB′′ = B, in particular,f∗L 6= 0 on a dense open set.
Let

B′′′ :=
{

b ∈ B | h0(Xb,L
∣∣
Xb

) > 1
}

.

Again, by semi-continuity,B′′′ is closed. Next letB◦ = B \ B′′′, the largest open (pos-
sibly empty) subscheme ofB with f∗L

∣∣
B◦

invertible and letZ ⊆ X be the support of
coker[f∗f∗L → L ]. Finally let

B′ := (B \ f(Z)) ∩ B◦ ⊆ B.

It is easy to check that thisB′ satisfies the required condition. �

5.D. Separatedness

Boundedness and local closedness allows us to identify a subscheme of an appropriate
Hilbert scheme consisting of the Hilbert points of the schemes in our moduli problem.
This subscheme has a group action induced by the automorphism group of the ambient
projective space. This already allows the construction of the moduli space as an algebraic
space by taking the quotient by this group action. However, in order to effectively use this
moduli space we hope that it will satisfy certain basic properties. Perhaps the most basic
one is separatedness.

DEFINITION 5.9. A subfunctorF ⊆ MP is separatedif the following condition holds.
Let R be a DVR andT = SpecR with general pointtg →֒ T and(Xi → T,Li) ∈ F (T )
two families fori = 1, 2. Then any isomorphismαg : ((X1)tg

, (L1)tg
) → ((X2)tg

, (L2)tg
)

extends to an isomorphismα : X1/T → X2/T .

Separatedness of a moduli functor is a non-trivial property. Without further restrictions
it will not hold as shown by the following examples.

EXAMPLE 5.10. LetZ = P1 × A1 with coordinates([x : y], t). Let the projections to
the factors beπ1 : Z → P1 andπ2 : Z → A1. Further letL = π∗

1OP1(1), R = k[t](t)
(a DVR) and consider the base change toT = Spec R. With the notationf = (π1)T , one
has that(f : ZT → T,LT ) ∈ MP (T ). Now letα : ZT 99K ZT be the map induced by
([x : y], t) 7→ ([tx : y], t). This is an isomorphism over the general point ofT , but is not
even dominant over the special point.

REMARK 5.10.1. The main problem here comes from the fact thatAut P1 is not discrete.
The good news is that by a theorem of Matsusaka and Mumford [MM64] this problem can
only occur if the fiber over the closed point is ruled.

EXAMPLE 5.11. LetY be a smooth projective variety of dimension at least2, Z = Y ×A1,
π : Z → A1 the projection to the second factor andC1, C2 ⊆ Z two sections, i.e., curves
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in Z that are isomorphic toA1 via π and such thatC1 andC2 intersect in a single point,
P , transversally. Assume for simplicity thatπ(P ) = 0 ∈ A1.

Let Z1 be the variety obtained by first blowing upC1 and then the proper transform of
C2. Similarly, letZ2 be the variety obtained by first blowing upC2 and then the proper
transform ofC1.

Let U = {t ∈ A1 | t 6= 0}. Then(Z1)U and(Z2)U may be identified, but the iso-
morphism between(Z1)U and(Z2)U induced by this identification does not extend over
t = 0 ∈ A1.

To make this example more interesting, assume thatA1 admits an embedding intoAutY ,
i.e.,Y admits a one-parameter group of automorphisms. Denote these automorphisms by
αt for t ∈ A1 and assume thatα0 = idY and(C2)t = αt((C1)t). In this case the auto-
morphismsαt induce an isomorphism betweenZ1 andZ2 including the fiber overt = 0.
Observe that the restriction of this isomorphism is the identity on the fiber overt = 0, but
different from the identity over anyt ∈ U .

In this exampleZ1 andZ2 are isomorphic, but not all isomorphisms overU extend to an
isomorphism over the entireA1.

EXAMPLE 5.12. This example is based on an example of Atiyah. Letι : P1 × P1 →֒ Pn

be an arbitrary embedding andY ⊆ Pn+1 the projectivized cone overι(P1 × P1) ⊆ Pn

with vertexP . Let L ⊆ Pn+1 be a general linear subspace of codimension2. Notice that
this implies thatP 6∈ L. Consider the projection fromL to a line,Pn+1 \ L → P1. After
blowing upL this extends to a morphismπL : BlLPn+1 → P1. Let Z be the proper
transform ofY onBlLPn+1 andπ = πL

∣∣
Z

. Then one has the following diagram:

Z

π

  A
AA

AA
AA

σ

��
Y //___ P1,

whereπ is flat projective with connected fibers and smooth general fiber andσ is the
blowing up of L ∩ Y ⊆ Y , hence birational and an isomorphism nearP ∈ Y . Let
P̃ = σ−1(P ).

Next let C1 and C2 be the images viaι of two general lines corresponding to the
two different rulings ofP1 × P1 andS1 andS2 their respective preimages onY . Note
that by constructionC1 andC2 are disjoint fromL. For the rest of this example any-
where i appears, it is meant to apply for bothi = 1, 2. Let S̃i = σ−1Si ⊆ Z and
σi : Zi = BleSi

Z → Z the blow-up ofZ alongS̃i. Observe, that̃Si ⊆ Z is a divisor and

sinceZ is smooth away from̃P , this implies thatZi is isomorphic toZ away fromP̃ , in
particular(Z1)P1\{Q} ≃ (Z2)P1\{Q} whereQ = π(P̃ ) ∈ P1. On the other hand, it is easy

to check thatσ−1
i (P̃ ) ≃ P1 is equal to the whole fiber of the blow-upBlSi

Pn+1 → Pn+1.
(SinceP 6∈ L, this computation can be done onY ).

Z1

σ1

  B
BB

BB
BB

B

��

Z2

σ2

~~||
||

||
||

��

Z

π

��
P1
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Next, we wish to determine the fiberZQ = π−1(Q). Let LP = 〈L,P 〉, the linear span
of L andP . Observe thatLP ≃ Pn is a general hyperplane throughP in Pn+1. Hence
LP ∩ Y is the cone over a general hyperplane section of a smooth projective surface, i.e.,
over a smooth projective curve. We conclude thatZQ is the blow-up of this cone at its
intersection withL which consists of finitely many points that are disjoint fromP as well
as fromS1 andS2. Therefore,(Zi)Q is a further blow-up along the proper transform of
Si.

Next suppose thatι is the standard quadratic embedding ofP1 ×P1 into P3. In this case,
Si ≃ P2 are linear subspaces ofP4 contained inY , ZQ is the blow-up at finitely many
smooth points of a quadric cone and(Zi)Q is the blow-up ofZQ along one of the rays of
the quadratic cone that miss the centers of the other blow-ups. Therefore(Z1)Q ≃ (Z2)Q,
but this isomorphism does not extend to an isomorphism ofZ1 andZ2.

This leads to a moduli space that is non-separated in a quite peculiar way: the point
corresponding to the class of(Z1)Q ≃ (Z2)Q completes the curveP1 \{Q} corresponding
to the family(Z1)P1\{Q} ≃ (Z2)P1\{Q} in two different way.

The result is the following curve. LetQ ∈ P1 a point. take two copies of thisP1 and glue
them together alongP1 \ {Q}. Then glue the two copies ofQ together but by a separate
gluing. Therefore there are two separate ways to get toQ from the rest of theP1.

As we mentioned before, a result of Matsusaka and Mumford tells us that in our case
these pathologies do not occur.

Theorem 5.13 [MM64, Theorem 1].LetR be a DVR andT = SpecR with closed point
ts ∈ T . Further letX1/T be a properT -scheme andX2/T a reducedT -scheme of finite
type such that(X2)ts

is not ruled. Assume thatX1 andX2 are birational. Then so are
(X1)ts

and(X2)ts
.

We may use this result to prove separatedness ofM smooth
h , but first we need an auxiliary

theorem.

Theorem 5.14. Let S be a scheme andfi : Xi → S two properS-schemes,Li rela-
tively ample line bundles onXi/S andji : Ui →֒ Xi open immersions with complement
Zi = Xi \ Ui for i = 1, 2. Assume that

(5.14.1) there exists anS-isomorphismα : U1/S
≃
→ U2/S such thatα∗L2 ≃ L1, and

(5.14.2) depthZi
Xi ≥ 2 for i = 1, 2 (this is satisfied if for exampleXi is normal and

codim(Zi,Xi) ≥ 2).

Thenα extends toX1 to give an isomorphismX1/S ≃ X2/S.

PROOF. Onceα has an extension toX1, it is unique, so the question is local onS
and thus we may assume that it is affine. Letm be large enough thatL m

i is relatively

very ample. First observe that (5.14.2) implies that(ji)∗

(
L m

i

∣∣
Ui

)
≃ L m

i for i = 1, 2.

Therefore (
fi

∣∣
Ui

)

∗

(
L

m
i

∣∣
Ui

)
≃ (fi)∗ L

m
i

∣∣
fi(Ui)

.

This implies that
(
fi

∣∣
Ui

)

∗

(
L m

i

∣∣
Ui

)
is coherent. LetA be an ample line bundle on

S, then
(
fi

∣∣
Ui

)

∗

(
L m

i

∣∣
Ui

)
⊗ A r is generated by global sections forr ≫ 0. As L m

i is

relatively very ample, this gives a surjection

f∗
i

(
r⊕

A
−1

)
։ L

m
i ,
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which in turn induces an embeddingφi : Xi →֒ Pr−1
S .

As the isomorphismα in (5.14.1) gives an isomorphism between the sheaves
(
f1

∣∣
U1

)

∗

(
L

m
1

∣∣
U1

)
≃
(
f2

∣∣
U2

)

∗

(
L

m
2

∣∣
U2

)
,

we may choose the generators defining theφi to be compatible with this isomorphism and
conclude thatφ1

∣∣
U1

= φ2

∣∣
U2

◦ α.
SinceUi is dense inXi, we obtain thatφi(Xi) is the Zariski closure ofφi(Ui) and hence

we have

X1
≃

φ1

// φ1(X1) = φ1(U1) = φ2(U2) = φ2(X2) X2.
≃

φ2

oo

Clearly, this isomorphism restricted toU1 coincides withα and so the statement is proved.
�

Corollary 5.15. M smooth
h is separated.

PROOF. Let R be a DVR andT = SpecR with general pointtg →֒ T . Further let
(Xi → T,Li) ∈ M smooth

h (T ) two families fori = 1, 2 and assume that there exists an
isomorphismαg : ((X1)tg

, (L1)tg
) → ((X2)tg

, (L2)tg
).

Let Ui ⊆ Xi be the largest open sets fori = 1, 2 such that there exists an extension of
αg that gives an isomorphismα : U1 → U2.

Now observe that asαg induces a birational equivalence betweenX1 andX2, by (5.13)
it extends to a birational equivalence between(X1)ts

and(X2)ts
and hence these contain

isomorphic open sets, which are then contained inU1 andU2 respectively. Therefore the
conditions of (5.14) are satisfied and soα extends to an isomorphismX1/T ≃ X2/T . �

With this we have covered the most important properties of moduli functors, bounded-
ness, local closedness, and separatedness. These properties, along with weak positivity and
weak stability (see [Vie95, 7.16] for details), allows one to prove the following:

Theorem 5.16. [Kol90] [Vie95, 1.11]There exists a quasi-projective coarse moduli scheme
for M smooth

h .

For more precise statements see [Kol90] and [Vie95, §1.2]. Other relevant sources are
[Kol85, KSB88, Vie89, Vie90a, Vie90b, Vie06].

At first sight it may seem that with the construction of this moduli scheme we have
accomplished the plan laid down in (2.27). However, it is notentirely so. We should defi-
nitely consider this an answer if we only care about smooth canonically polarized varieties.
After all, the moduli space does “classify” these objects. On the other hand, a canonical
model produced by Plan 2.27 may not be smooth. So if we care about those cases, too, we
have to work with singular varieties as well.

6. SINGULARITIES

In this section we will see that in order to accomplish our goal of classifying all canonical
models (cf. (2.27)), we will have to allow our objects to havesingularities.

There is another reason to do this. Even if we were only interested in smooth objects
their degenerations provide important information. In other words, it is always useful
to find complete moduli problems, i.e., extend our moduli functor so it would admit a
complete (and preferably projective) coarse moduli space.This also leads to having to
consider singular varieties.
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However, we will have to be careful to limit the kind of singularities that we allow in
order to be able to handle them. In other words, we have to revisit our definition of “nice”
and we will change its definition according to our findings.

6.A. Canonical singularities

For an excellent introduction to this topic the reader is urged to take a thorough look at
Miles Reid’s original young person’s guide [Rei87]. Here I will only touch on the subject.

LetX be a minimal surface of general type that contains a(−2)-curve (a smooth rational
curve with self-intersection−2). For an example of such a surface consider the following.

EXAMPLE 6.1. X̃ = (x5 + y5 + z5 +w5 = 0) ⊆ P3 with theZ2-action that interchanges
x ↔ y andz ↔ w. This action has five fixed points,[1 : 1 : −εi : −εi] for i = 1, . . . , 5

whereε is a primitive5th root of unity. Consequently the quotient̃X
/

Z2
has five singular

points, each a simple double point of typeA1. Let X → X̃
/

Z2
be the minimal resolu-

tion of singularities. ThenX contains five(−2)-curves, the exceptional divisors over the
singularities.

Let us return to the general case, that is,X is a minimal surface of general type that
contains a(−2)-curve,C ⊆ X. As C ≃ P1, andX is smooth, the adjunction formula
gives us thatKX · C = 0. ThereforeKX is not ample.

On the other hand, sinceX is a minimal surface of general type, it follows thatKX is
semi-ample, that is, some multiple of it is base-point free.In other words, there exists a
morphism,

|mKX | : X → Xcan⊆ P(H0(X,OX(mKX))).

This follows from various results, for example Bombieri’s classification of pluri-canonical
maps, but perhaps the simplest proof is provided by Miles Reid [Rei97, E.3].

It is then relatively easy to see that this morphism onto its image is independent ofm.
This constant image is called thecanonical modelof X, let us denote it byXcan.

The good news is that the canonical divisor ofXcan is indeed ample, but the trouble with
it is that it is singular. However, the singularity is not toobad, so we still have a good
chance to do this. In fact, the singularities that can occur on the canonical model of a
surface of general type belong to a much studied class. This class goes by several names;
they are calleddu Val singularities, or rational double points, or Gorenstein, canonical
singularities. For more on these singularities, refer to [Dur79], [Rei87].

6.B. Normal crossings

These singularities already appear in the construction of the moduli space of stable curves
(or if the reader prefers, the construction of a compactificaton of the moduli space of
smooth projective curves). As we want to understand degenerations of our preferred fami-
lies, we have to allow normal crossings.

A normal crossingsingularity is one that is locally analytically (or formally) isomorphic
to the intersection of coordinate hyperplanes in a linear space. In other words, it is a
singularity locally analytically defined as(x1x2 · · ·xr = 0) ⊆ An for somer ≤ n.
In particular, as opposed to the curve case, for surfaces it allows for triple intersections.
However, triple intersections may be “resolved”: LetX = (xyz = 0) ⊆ A3. Blow up the
origin O ∈ A3, σ : BlOA3 → A3 and consider the proper transform ofX, σ : X̃ → X.
Observe that̃X has only double normal crossings.
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Another important point to remember about normal crossingsis that they arenotnormal.
In particular they do not belong to the previous category. For some interesting and perhaps
surprising examples of surfaces with normal crossings see [Kol07].

6.C. Pinch points

Another non-normal singularity that can occur as the limit of smooth varieties is the pinch
point. It is locally analytically defined as(x2

1 = x2x
2
3) ⊆ An. This singularity is a double

normal crossing away from the pinch point. Its normalization is smooth, but blowing up
the pinch point does not make it any better. (Try it for yourself!)

6.D. Cones

Let C ⊆ P2 be a curve of degreed andX ⊆ P3 the projectivized cone overC. As X is a
degreed hypersurface, it admits a smoothing.

EXAMPLE 6.2. LetΞ = (xd + yd + zd + twd = 0) ⊆ P3
x:y:z:w × A1

t . The special fiber
Ξ0 is a cone over a smooth plane curve of degreed and the general fiberΞt, for t 6= 0, is a
smooth surface of degreed in P3.

This, again, suggests that we should deal with some singularities. The question is,
whether we can limit the type of singularities we must deal with. More particularly to
this case, can we limit the type of cones we need to deal with?

First we need an auxiliary computation.

EXAMPLE 6.3. LetW be a smooth variety andX = X1 ∪X2 ⊆ W such thatX1 andX2

are Cartier divisors inW . Then by the adjunction formula we have

KX = (KW + X)
∣∣
X

KX1
= (KW + X1)

∣∣
X1

KX2
= (KW + X2)

∣∣
X2

Therefore

(6.3.1) KX

∣∣
Xi

= KXi
+ X3−i

∣∣
Xi

for i = 1, 2, so we have that

(6.3.2) KX is ample ⇔ KX

∣∣
Xi

= KXi
+ X3−i

∣∣
Xi

is ample fori = 1, 2.

Next, letX be a normal projective surface withKX ample and an isolated singular point
P ∈ Sing X. Assume thatX is isomorphic to a coneΞ0 ⊆ P3 as in Example 6.2 locally
analytically nearP . Further assume thatX is the special fiber of a smoothing familyΞ that
itself is smooth. We would like to see whether we may resolve the singular pointP ∈ X
and still stay within our moduli problem, i.e., thatK would remain ample. For this purpose
we may assume thatP is the only singular point ofX.

Let Υ → Ξ be the blowing up ofP ∈ Ξ and letX̃ denote the proper transform ofX.
ThenΥ0 = X̃ ∪ E whereE ≃ P2 is the exceptional divisor of the blow up. Clearly,
σ : X̃ → X is the blow up ofP onX, so it is a smooth surface and̃X ∩ E is isomorphic
to the degreed curve over whichX is locally amalytically a cone.

We would like to determine the condition ond that ensures that the canonical divisor
of Υ0 is still ample. According to (6.3.2) this means that we need that KE + X̃

∣∣
E

and
K eX + E

∣∣
eX

be ample.

As E ≃ P2, ωE ≃ OP2(−3), soOE(KE + X̃
∣∣
E

) ≃ OP2(d − 3). This is ample if and
only if d > 3.
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As this computation is local nearP the only relevant issue about the ampleness of
K eX + E

∣∣
eX

is whether it is ample in a neighbourhood ofEX : = E
∣∣

eX
. By the next claim

this is equivalent to asking when(K eX + EX) · EX is positive.

Claim. Let Z be a smooth projective surface with non-negative Kodaira dimension and
Γ ⊂ Z an effective divisor. If(KZ + Γ) · C > 0 for every proper curveC ⊂ Z, then
KZ + Γ is ample.

Proof. By the assumption on the Kodaira dimension there exists anm > 0 such thatmKZ

is effective, hence so ism(KZ + Γ). Then by the assumption on the intersection number,
(KZ + Γ)2 > 0, so the statement follows by the Nakai-Moishezon criterium. �

Now, observe that by the adjunction formula(K eX + EX) ·EX = deg KEX
= d(d− 3)

asEX is isomorphic to a plane curve of degreed. Again, we obtain the same condition as
above and thus conclude thatKΥ0

maybe ample only ifd > 3.
For our moduli funtor this means that we have to allow cone singularities over curves

of degreed ≤ 3. The singularity we obtain ford = 2 is a rational double point, but the
singularity ford = 3 is not even rational. This does not fit any of the earlier classes we
discussed.

6.E. Log canonical singularities

Let us investigate the previous situation under more general assumptions.

COMPUTATION 6.4. LetD =
∑r

i=0 λiDi be a divisor with only normal crossing singu-
larities (in some ambient variety) such thatλ0 = 1. Using the adjunction formula shows
that in this situation (6.3.1) remains true even if theDi are not hypersurfaces inPn:

(6.4.1) KD

∣∣
D0

= KD0
+

r∑

i=1

λiDi

∣∣
D0

Let f : Ξ → B a projective family withdim B = 1, Ξ smooth andKΞb
ample for all

b ∈ B. Further letX = Ξb0 for someb0 ∈ B a singular fiber and letσ : Υ → Ξ be an
embedded resolution ofX ⊆ Ξ. Finally letY = σ∗X = X̃ +

∑r
i=1 λiFi whereX̃ is the

proper transform ofX andFi are exceptional divisors forσ. We are interested in finding
conditions that are necessary forKY to remain ample.

Let Ei : = Fi

∣∣
eX

be the exceptional divisors forσ : X̃ → X and for the simplicity of
computation, assume that theEi are irreducible. ForKY to be ample we need thatKY

∣∣
eX

as well asKY

∣∣
Fi

for all i are all ample. Clearly, the important one of these for our purposes

is KY

∣∣
eX

for which by (6.4.1) we have that

KY

∣∣
eX

= K eX +
r∑

i=1

λiEi.

As usual, we may writeK eX = σ∗KX +
∑r

i=1 aiEi, so we are looking for conditions to
guarantee thatσ∗KX +

∑
(ai + λi)Ei be ample. In particular, its restriction to any of the

Ei has to be ample. To further simplify our computation let us assume thatdim X = 2.
Then the condition that we want satisfied is that for allj,

(6.4.2)

(
r∑

i=1

(ai + λi)Ei

)
· Ej > 0.
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Let

E+ =
∑

ai+λi≥0

|ai + λi|Ei, and

E− =
∑

ai+λi<0

|ai + λi|Ei, so

r∑

i=1

(ai + λi)Ei = E+ − E−.

Choose aj such thatEj ⊆ suppE+. ThenE− · Ej ≥ 0 sinceEj 6⊆ E− and (6.4.2)
implies that(E+ − E−) · Ej > 0. These together imply thatE+ · Ej > 0 and then
thatE2

+ > 0. However, theEi are exceptional divisors of a birational morphism, so their
intersection matrix,(Ei · Ej) is negative definite.

The only way this can happen is ifE+ = 0. In other words,ai + λi < 0 for all i.
However, theλi are positive integers, so this implies thatKY may remain ample only if
ai < −1 for all i = 1, . . . , r.

The definition of alog canonical singularityis the exact opposite of this condition. It
requires thatX be normal and admit a resolution of singularities, sayY → X, such that
all theai ≥ −1. This means that the above argument shows that we may stand a fighting
chance if we resolve singularities that areworsethan log canonical, but have no hope to
do so with log canonical singularities. In other words, thisis another class of singularities
that we have to allow. Actually, the class of singularities we obtained for the cones in the
previous subsection belong to this class. In fact, all the normal singularities that we have
considered so far belong to this class.

The good news is that by now we have covered pretty much all theways that something
can go wrong and found the class of singularities we must allow. Since we have already
found that we have to deal with some non-normal singularities and in fact in this example
we have not really needed thatX be normal, we conclude that we will have to allow the
non-normal cousins of log canonical singularities. These are calledsemi-log canonical
singularitiesand the reader can find their definition in the next subsection.

6.F. Semi-log canonical singularities

As a warm-up, let us first define the normal and more traditional singularities that are
relevant in the Minimal Model Program.

DEFINITION 6.5. A normal varietyX is calledQ-Gorensteinif KX is Q-Cartier, i.e.,
some integer multiple ofKX is a Cartier divisor. LetX be aQ-Gorenstein variety and
f : X̃ → X a good resolution of singularities with exceptional divisor E = ∪Ei. Express
the canonical divisor of̃X in terms ofKX and the exceptional divisors:

K eX ≡ f∗KX +
∑

aiEi

whereai ∈ Q. Then

X has

terminal
canonical

log terminal
log canonical

singularities if for alli,

ai > 0.
ai ≥ 0.

ai > −1.
ai ≥ −1.

The corresponding definitions for non-normal varieties aresomewhat more cumbersome.
I include them here for completeness, but the reader should feel free to skip them and
assume that for instance “semi-log canonical” means something that can be reasonably
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considered a non-normal version of log canonical. These definitions will not be used in
this article.

DEFINITION 6.6. LetX be a scheme of dimensionn andx ∈ X a closed point.

(6.6.1) x ∈ X is a double normal crossingif it is locally analytically (or formally) iso-
morphic to the singularity

{0 ∈ (x0x1 = 0)} ⊆
{
0 ∈ An+1

}
.

(6.6.2) x ∈ X is apinch pointif it is locally analytically (or formally) isomorphic to the
singularity {

0 ∈ (x2
0 = x1x

2
2)
}
⊆
{
0 ∈ An+1

}
.

(6.6.3) X is semi-smoothif all closed points ofX are either smooth, or a double normal
crossing, or a pinch point. In this case, unlessX is smooth,DX : = Sing X ⊆ X

is a smooth(n− 1)-fold. If ν : X̃ → X is its normalization, theñX is smooth and
D̃X := ν−1(DX) → DX is a double cover ramified along the pinch locus.

(6.6.4) A morphism,f : Y → X is asemi-resolutionif
• f is proper,
• Y is semi-smooth,
• no component ofDY is f -exceptional, and
• there exists a closed subsetZ ⊆ X, with codim(Z,X) ≥ 2 such that

f
∣∣
f−1(X\Z)

: f−1(X \ Z)
≃
→ X \ Z

is an isomorphism.
Let E denote the exceptional divisor (i.e., the codimension 1 part of the excep-
tional set, not necessarily the whole exceptional set) off . Thenf is agood semi-
resolutionif E ∪ DY is a divisor with global normal crossings onY .

(6.6.5) X hassemi-log canonical(resp.semi-log terminal) singularities if
(a) X is reduced,
(b) X is S2,
(c) KX is Q-Cartier, and
(d) there exist a good semi-resolution of singularitiesf : X̃ → X with exceptional

divisor E = ∪Ei, and we writeK eX ≡ f∗KX +
∑

aiEi with ai ∈ Q, then
ai ≥ −1 (resp.ai > −1) for all i.

REMARK 6.6.6. Note that a semi-smooth scheme has at worst hypersurface singularities,
so in particular it is Gorenstein. This implies that a semi-log canonical variety is Gorenstein
in codimension1.

REMARK 6.6.7. In the definition of a semi-resolution, one could choose to require that
the exceptional set be a divisor. This leads to slightly different notions and at the time of
the writing of this article it has not been settled whether either of the definitions and the
notions of singularities they lead to are unnecassary. For more on singularities related to
semi-resolutions see [KSB88] and [Kol92].

We are now ready to update our definition of “nice” to its final form cf. (2.10).

DEFINITION 6.7. LetX beniceif X is semi-log canonical, projective andωX is an ample
Q-line bundle.

7. FAMILIES AND MODULI FUNCTORS

A very important issue in considering higher dimensional moduli problems is that, as
opposed to the case of curves, when studying families of higher dimensional varieties one
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must put conditions on the admissible families that restrict the kind of families and not only
the kind of fibers that are allowed. This is perhaps better understood through an example
of bad behaviour.

7.A. An important example

SETUP:

• Let R ⊆ P4 be a quartic rational normal curve, i.e., the image of the embedding ofP1

into P4 by the global sections ofOP1(4). For example take

R = {[u4 : u3v : u2v2 : uv3 : v4] ∈ P4 | [u : v] ∈ P1}.

• Let T ⊆ P5 be a quartic rational scroll, i.e., the image of the embedding of P1 ×P1 into
P5 by the global sections ofOP1×P1(1, 2). Let f1 andf2 denote the divisor classes of the
two rulings onT . For example take

T = {[xz2 : xzt : xt2 : yz2 : yzt : yt2] ∈ P5 | ([x : y], [z : t]) ∈ P1 × P1}.

• Let CR ⊆ P5 be the projectivized cone overR in P5 andCT ⊆ P6 the projectivized
cone overT in P6. For the above choices, these are represented by

CR = {[u4 : u3v : u2v2 : uv3 : v4 : w4] ∈ P5 | [u : v : w] ∈ P2}, and

CT = {[xz2 : xzt : xt2 : yz2 : yzt : yt2 : pq2] ∈ P6 | ([x : y : p], [z : t : q]) ∈ P2 × P2}.

• Let V ⊆ P5 be a Veronese surface, i.e., the image of the Veronese embedding; the
embedding ofP2 into P5 by the global sections ofOP2(2). For example take

V = {[u2 : vw : uv : uw : v2 : w2] | [u : v : w] ∈ P2}.

Another possible parametrization is obtained when the Veronese embedding is combined
with the 4-to-1 endomorphism ofP2, [u : v : w] 7→ [u2 : v2 : w2]:

V = {[u4 : v2w2 : u2v2 : u2w2 : v4 : w4] | [u : v : w] ∈ P2}.

• Let W ⊆ P5 × P1 be the following quasi-projective threefold:

W =
{(

[u4 : u3v + λ(v2w2 − u3v) : u2v2 : uv3 + λ(u2w2 − uv3) : v4 : w4], λ
)∣∣

∣∣[u : v : w] ∈ P2, λ ∈ A1
}
⊆ P5 × A1.

OBSERVATIONS:

• V is a smoothing ofCR. Indeed, the second projection ofP5 × P1 exhibitsW as a
family of surfacesW → P1. Both CR andV appear as members of this family. For
λ = 0, 1 ∈ A1; W0 ≃ CR andW1 ≃ V .

• R is a hyperplane section ofT . Indeed letH ⊆ P5 be a general hyperplane. Then
C := H ∩T is a smooth curve such thatC ∼T f1 +2f2. Then by the adjunction formula
2g(C) − 2 = (−2f1 − 2f2 + C) · C = −2, henceC ≃ P1. Furthermore, thenC2 = 4,
soOT (1, 2)

∣∣
C
≃ OC(4). ThereforeC is a quartic rational curve inH ≃ P4, and thus it

may be identified withR.
• T is also a smoothing ofCR. Indeed, bothT andCR are hyperplane sections ofCT .

The latter statement follows from the previous observation.

ANALYSIS:

• It is relatively easy, and thus left to the reader, to computethat CR has log terminal
singularities. In particular, this type of singularity is among those we have to be able to
handle.
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• The problem this example points to is that if we allow arbitrary families, then we may
get unwanted results. For example, using the families derived fromCT andW would
mean thatT ≃ P1×P1 andV ≃ P2 should be considered to have the same deformation
type. However, there are obviously no smooth families that they both belong to, they are
topologically very different. For instance,K2

T = 8 while K2
V = 9.

• The crux of the matter is thatCT is not Q-Gorenstein and consequently the family
obtained from it is not aQ-Gorensteinfamily. This is actually an important point: the
members of the family areQ-Gorenstein surfaces, but the relative canonical bundle of
the family is notQ-Cartier. In particular, the canonical divisors of the members of the
family are not consistent.

• The family obtained fromW is Q-Gorenstein and consequently ensures that the canoni-
cal divisors of the members of the family are similar to some extent. Among other things
this implies thatK2

CR
= 9. One may also use the parametrization ofCR given above

to verify this fact independently. It is interesting to notethatKCR
is Q-Cartier, but not

Cartier even though its self-intersection number is an integer.

7.B. Q-Gorenstein families

We have seen that we have to extend the definition of the modulifunctor (see (3.3)) to
allow (some) singular varieties.

WARNING. Here we are entering a somewhat uncharted territory. Some of the notions
and conditions are still evolving. It has not crystallized yet what are the “right” or optimal
conditions to assume. Accordingly, on occasion, we may assume too much or too little.
This section is intended to give a peak into the forefront of the research that is conducted
in this area.

The previous example shows that it is not enough to restrict the kind of members of the
families we allow but we have to restrict the kind of familieswe allow as well.

DEFINITION 7.1. Letk be an algebraically closed field of characteristic0 andSchk the
category ofk-schemes. We defineM wst : Schk → Sets, the moduli functor of weakly
stable canonically polarizedQ-Gorenstein varieties, the following way.

(7.1.1) A morphismf : X → B is called aweakly stable familyif the following hold:
(a) f is flat and projective with connected fibers,
(b) ωX/B is a relatively ampleQ-line bundle, and
(c) for all b ∈ B, Xb has only semi-log canonical singularities.

(7.1.2) For an objectB ∈ ObSchk,

M wst(B) := {f : X → B | f is a weakly stable family}
/
≃

where “≃” is defined as in 3.3.
(7.1.3) For a morphismα ∈ HomSchk

(A,B),

M wst(α) := (__) ×B α.

REMARK 7.1.1. Note that it is not obvious from the definition that this is indeed a functor.
However, this functor (if it is a functor) is actually not yetthe one we are interested in. We
will use this to define others. The fact that those others are indeed functors follows from
Lemma 7.3.

As mentioned above, this functor is not yet the right one. There are two additional
conditions to which we have to pay attention. The first is to keep track of the Hilbert
polynomials of the polarizations. This is straightforward, although somewhat different
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from the smooth case in that now we have to also keep track of what power of theQ-line
bundle we consider giving the polarization. This is done as follows.

DEFINITION 7.2. Letk be an algebraically closed field of characteristic0, Schk the cate-
gory ofk-schemes andN ∈ N. We defineM wst,[N ] : Schk → Sets, themoduli functor of
weakly stable canonically polarizedQ-Gorenstein varieties of indexN , as the subfunctor
of M wst with the additional condition thatω[N ]

X/B is a line bundle:

M wst,[N ](B) :=
{

(f : X → B) ∈ M wst(B)
∣∣ ω[N ]

X/B is a line bundle.
}

.

Now leth ∈ Q[t]. Then

M
wst,[N ]
h (B) :=

{
(f : X → B) ∈ M wst,[N ](B)

∣∣ χ(Xb, ω
[mN ]
Xb

) = h(m)
}

.

In order to use the polarization given by the appropriate reflexive power of the canonical
sheaves of the fibers we need to know that the powers of the relative canonical sheaf com-
mute with base change. The following shows that for objects in M wst,[N ](B), this holds
for multiples of the index.

Lemma 7.3. [HK04, 2.6] Given a weakly stable family of canonically polarizedQ-Gor-
enstein varieties of indexN , f : X → B, and a morphismα : T → B, we have

α∗
Xω

[N ]
X/B ≃ ω

[N ]
XT /T .

PROOF. Let U ⊂ X be the largest open subsetU of X such thatωUb
is a line bundle

for all b ∈ B or equivalently the largest open subsetU of X such thatωX/B

∣∣
U
≃ ωU/B is

a line bundle. Thenω[N ]
X/B

∣∣
U
≃ ωN

U/B and hence

α∗
Xω

[N ]
X/B

∣∣
α−1

X
U
≃ α∗

XωN
U/B ≃ ωN

α−1
X

U/T
≃ ω

[N ]
XT /T

∣∣
α−1

X
U

.

Now codim(Ub,Xb) ≥ 2 for all b ∈ B (cf. (6.6.6)), socodim((α−1
X U)t, (XT )t) ≥ 2 for

all t ∈ T and hencecodim(α−1
X U,XT ) ≥ 2. Finally α∗

Xω
[N ]
X/B andω

[N ]
XT /T are reflexive,

so since they are isomorphic onα−1
X U , they are isomorphic onXT . �

However, this may not be enough to encode the main topological properties of the fibers.
As a solution, Kollár suggests to require more.

DEFINITION 7.4 : KOLLÁR ’ S CONDITION. We say thatKollár’s condition holds for a
family (f : X → B) ∈ M wst(B), if for all ℓ ∈ Z and for allb ∈ B,

ω
[ℓ]
X/B

∣∣
Xb

≃ ω
[ℓ]
Xb

.

The important difference between this condition and the situation in the previous lemma
is that this condition requires that the restriction ofall reflexive powers commute with base
change, not only those that are line bundles.

It is relatively easy to see using the same argument as in the proof of (7.3) that this
condition is equivalent to the requirement that the restriction of all reflexive powers to the
fibers be reflexive themselves.

Now we are ready to define the “right” moduli functor.

DEFINITION 7.5. Letk be an algebraically closed field of characteristic0 andSchk the
category ofk-schemes. We defineM = M st : Schk → Sets, the moduli functor of
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stable canonically polarizedQ-Gorenstein varieties, as the subfunctor ofM wst with the
additional condition that a family(f : X → B) ∈ M wst(B) satisfy Kollár’s condition:

M (B) :=
{

(f : X → B) ∈ M wst(B)
∣∣ ∀ℓ ∈ Z, b ∈ B,ω

[ℓ]
X/B

∣∣
Xb

≃ ω
[ℓ]
Xb

}
.

Finally, leth ∈ Q[t] andN ∈ N. Then we defineM [N ]
h as the subfunctor ofM [N ] with the

additional condition that for a family(f : X → B) ∈ M [N ](B), the Hilbert polynomial
of the fibers agree withh:

M
[N ]
h (B) :=

{
(f : X → B) ∈ M [N ](B)

∣∣ ∀b ∈ B,χ(Xb, ω
[mN ]
Xb

) = h(m)
}

.

The difference between the moduli functorsM wst,[N ]
h andM [N ]

h is very subtle. They
parametrize the same objects and as long as one restricts to Gorenstein varieties, they allow
the same families. This means that if one is only interested in the compactification of the
coarse moduli space ofM smooth

h , then the difference between these two moduli functors
does not matter as they lead to the same reduced scheme. The difference may only show
up in their scheme structure. However, the usefulness of a moduli space is closely related
to its “right” scheme structure, so it is important to find that.

A somewhat troubling point is that we do not actually know fora fact that these two
moduli functors are really different in characteristic0. In other words, we do not know an
example of a family that belongs toM wst,[N ]

h , but not toM [N ]
h . The following example of

Kollár shows that these functorsaredifferent in characteristicp > 0, but there is no similar
example known in characteristic0.

EXAMPLE 7.6 : KOLLÁR ’ S EXAMPLE (UNPUBLISHED). Note that the first part of the
discussion (7.6.1) works in arbitrary characteristic. It shows that a family with the required
properties belongs toM wst,[N ]

h , but not toM [N ]
h . In the second part (7.6.2) it is shown

that in characteristicp > 0 a family satisfying another set of properties also has the ones
required in (7.6.1). Finally, it is easy to see that the example in §§7.A admits these later
properties, so we do indeed have an explicit example for thisbehaviour.

(7.6.1) Suppose thatg : Y → B is a family of canonically polarizedQ-Gorenstein varieties
(with only semi-log canonical singularities) and assume thatB = SpecR with R = (R,m)
a DVR. LetBn = SpecRn whereRn := R

/
mn and consider the restriction of the family

g overBn, gn : Yn = Y ×B Bn → Bn. Finally assume thatωYn/Bn
is Q-Cartier of index

rn for all n but rn → ∞ asn → ∞ (recall that the index means the smallest integerm
such that themth reflexive power is a line bundle). Note that by Lemma 7.3 this implies
thatωY/B cannot beQ-Cartier.

We claim thatgn is a weakly stable family of canonically polarizedQ-Gorenstein vari-
eties of indexrn (Definition 7.1), but it does not satisfy Kollár’s condition(Definition 7.4)
for all but possibly a finite number ofn.

The first part of the claim is obvious from the assumptions. For the second part consider
the following argument. Ifgn satisfied Kollár’s condition, then for anym < n the re-
striction ofω[rm]

Yn/Bn
to Ym (hence toY1) would be a line bundle implying, via Nakayama’s

lemma, thatω[rm]
Yn/Bn

itself is a line bundle. That however would further imply that rn ≤ rm,
but sincern → ∞ asn → ∞, this can only happen for a finite number ofn’s.

(7.6.2) Next we will show (following Kollár) that a family such as in (7.6.1) does exist
in characteristicp > 0. It is currently not known whether such an example exists in
characteristic0.
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As above, letg : Y → B be a family of canonically polarizedQ-Gorenstein vari-
eties with only log canonical singularities, such thatB = SpecR with R = (R,m) a
DVR. Assume thatg, Y , andB are defined above a fieldk of characteristicp > 0. Let
Bn = Spec Rn whereRn := R

/
mn and consider the restriction of the familyg overBn,

gn : Yn = Y ×B Bn → Bn. For a concrete example one may consider the smoothing of
CR to T via CT (reduced overk[x](x)) from the example in §§7.A.

Claim. ωYn/Bn
is Q-Cartier.

Proof. The question is local onY , so we may assume thatYn is a local scheme. In partic-
ular, we will assume that all line bundles onY1 are trivial. Let

ιn : Un = (Yn \ Sing Yn) →֒ Yn.

By assumption,Yn is normal (R1 andS2) for all n, so

ω
[m]
Yn/Bn

≃ (ιn)∗ω
⊗m
Un/Bn

for all m.
Next, consider the restriction maps to the special fiber of the family from all the infini-

tesimal thickenings:

̺n : Pic Un → Pic U1.

The key observation is the following: the kernel of this map is a (p-power) torsion group
(cf. [Har77, Ex.III.4.6]). In other words, any line bundle onUn whose restriction toU1 is
trivial extends to aQ-Cartier divisor onYn.

Recall that by assumption,ωY1/B1
= ωY1

is Q-Cartier (of indexr1), in particularω[r1]
Y1/B1

is trivial. Therefore,

̺n(ω⊗r1

Un/Bn
) = ω⊗r1

Un/Bn

∣∣
U1

≃ ω⊗r1

U1/B1

is also trivial. Consequently,

ω⊗r1

Un/Bn
∈ ker ̺n.

Recall that this a torsion group, so there exists anmn ∈ N such that
(
ω⊗r1

Un/Bn

)⊗mn

is

trivial. That however, implies that then so is

ω
[r1·mn]
Yn/Bn

≃ (ιn)∗ω
⊗(r1·mn)
Un/Bn

≃ (ιn)∗OUn
≃ OYn

.

We conclude thatωYn/Bn
is indeedQ-Cartier. �

It is left for the reader to prove that ifωY/B is notQ-Cartier, then the index ofωYn/Bn

has to tend to infinity. It is easy to check that this happens inthe case ofCT considered as
a non-Q-Gorenstein smoothing ofCR as above.

REMARK 7.7. The previous example also shows an important aspect of why Kollár’s con-
dition is useful. LetZ be a canonically polarizedQ-Gorenstein variety of indexm with
only semi-log canonical singularities. If we want to find a moduli space whereZ ap-
pears, we may choose the moduli functorM

wst,[a·m]
h for anya ∈ N (whereh is the Hilbert

polynomial ofω[a·m]
Z ). The previous example shows that the scheme structure of the corre-

sponding moduli space will depend on whicha we choose. Asa grows, the moduli scheme
gets thicker. Consequently, there is not a unique moduli scheme whereZ would naturally
belong to. This does not happen for the functorM

[a·m]
h because Kollár’s condition makes

sure that the choice ofa makes no difference.
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7.C. Projective moduli schemes

With the definition ofM [N ]
h we have reached the moduli functor that should be the right

one. This functor accounts for all canonical models, even a little bit more, as well as all
degenerations of smooth canonical models.

The natural next step would be to state the equivalent of Theorem 5.16 forM [N ]
h . How-

ever, we can’t quite do that exactly.
Boundednesswas proven for moduli of surfaces (i.e.,deg h = 2) in [Ale94] (cf. [AM04])

A more general result was obtained in [Kar00] assuming that certain conjectures from
the Minimal Model Program were true. Fortunately these conjectures have been recently
proven in [HM07, BCHM06], so this piece of the puzzle is in place.

Separatednessfollows from [KSB88] and [Kaw05].
Projectivityfollows from [Kol90].
Local closednessfor M wst,[N ]

h was proven in [HK04]. Hacking obtained partial results

toward the local closedness ofM [N ]
h in [Hac04]. Local closedness ofM [N ]

h in general has
been proved by Abramovich and Hassett, but this result has not appeared in any form yet
at the time of this writing. Even more recently a general flattening result that implies the
local closedness ofM [N ]

h has been proved by Kollár [Kol08]. Kollár’s result essentially
closes the question of local closedness for good.

So, the conclusion is that all the pieces are in place, even though the statement of the
existence of a projective coarse moduli scheme forM

[N ]
h has not yet appeared in print and

thus I will not formulate it as a theorem here.

7.D. Moduli of pairs and other generalizations

As it has become clear in higher dimensional geometry in recent years, the “right” formu-
lation of (higher dimensional) problems deals with pairs, or log varieties (cf. [Kol97b]).
Accordingly, one would like to have a moduli theory of log varieties. In fact, one would
like to go through this entire article and replace all objects with log varieties, canonical
models with log canonical models, etc.

However, this is not as straightforward as it may appear at the first sight and the formula-
tion of the moduli functor itself is not entirely obvious. Nonetheless, work is being done in
this area and perhaps by the time these words appear in print,there will be concrete results
to speak of about log varieties.

There are many related results I did not have the chance to mention in detail. Here is a
somewhat random sample of those results: Valery Alexeev hasbeen particularly prolific
and the interested reader should take a look at his results, agood chunk of which is joint
work with Michel Brion: [Ale96, Ale02, Ale01, AB04a, AB04b, AB05]. Paul Hacking
solved the long standing problem of compactifying the moduli space of plane curves in
a geometrically meaningful way [Hac04]. Hacking jointly with Keel and Tevelev has
done the same for the moduli space of hyperplane arrangements [HKT06] and Del Pezzo
surfaces [HKT07].
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