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1. INTRODUCTION

The ultimate goal of algebraic geometry is to classify afjeddraic varieties. This is
a formidable task that will not be completed in the foreséedlture, but we can (and
should) still work towards this goal.

In this paper | will sketch the main idea of the constructiomoduli spaces of higher
dimensional varieties. In order to make the length of theepa&garable and still touch on
the main issues | will make a number of restrictions that &ilerather general and hope-
fully the majority of the readership will consider them tore@asonable for the purposes of
a survey.

The idea of the title is shamelessly taken from Miles Reid iRimortalYoung person’s
guide[Rei87] is an essential read for a modern algebraic geometer edlyefcr anyone
interested in reading the present article. To some exténigta sequel to that, although
given how fundamental Miles Reid’s YPG is there are many othgics that would allow
for making that claim.

The point is that this article, just as the original YPG, wagten with an uninitiated
reader in mind. Nevertheless, as the reader progressegthtioe sections they might feel
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that more and more background is assumed. This is a necbessitght on by the above
mentioned boundaries. Hopefully the article will still éare the desired result and show
a glimpse into this exciting, active and beautiful area seaach.

The paper starts with reviewing the general philosophyadsification and how it leads
to studying moduli problems. | should note that there are#ineas of classification that
are equally exciting, active and beautiful. In fact, recesgults in the Minimal Model
Program $ho03, Sho04, HM 06, HM 07, BCHM06] have a great positive effect on the
central problems of the present article even if | will not &éalre opportunity to do justice
to them and explain their influence in detail.

There are many important results one should mention andlItwyilto list them all,
however | fear that that is an impossible goal to live up toerEfore, | sincerely apologize
for any omission | might commit.

The structure of the paper is the following: After the gehexeerview of classification
and moduli theory as part of it, moduli problems are revieweshore detail followed by
a quick look at Hilbert schemes. Then the definition and thstrimoportant properties of
moduli functors are discussed. Throughout it is kept in nitrat each observation leads
us to reconsider our objective and along the way we have tzedhat we cannot escape
working with singular varieties. Because of this, the matar type of singularities that
one needs to be able to deal with are reviewed and then firalyroduli functors of
higher dimensional canonically polarized varieties arfinge in the form that is currently
believed to be the “right” one.

Last but not least | should mention that this approach is eoessarily the only one
producing the desired moduli space. In fact, Abramovich ldadsett recently have pro-
posed a different construction. As their result has not gpeared, it is not discussed here.
However, the reader is urged to take a look at it as soon asp®ss it might shed some
new light onto the questions discussed here.

DEFINITIONS AND NOTATION 1.1. Letk be an algebraically closed field of characteristic
0. Unless otherwise stated, all objects will be assumed tebaet over:. A schemawill
refer to a scheme of finite type oveand unless stated otherwiseg@int refers to a closed
point.

For a morphismy” — S and another morphisfit’ — S, the symbolYr will denote
Y x5 T. In particular, fort € S we write X; = f~1(¢). In addition, ifT" = Spec F, then
Y7 will also be denoted by .

Let X be a scheme an& an ¢'x-module. Then!" reflexive powenf .Z is the double
dual (or reflexive hull) of then'" tensor power of7:

A line bundleon X is an invertibleZ'x-module. AQ-line bundle.Z on X is a reflexive
O'x-module of rankl one of whose reflexive power is a line bundle, i.e., theretexa
m € N, such thatZ!"] is a line bundle. The smallest sughis called thendexof .Z.

For the advanced reader: whenever we mention Weil divisssyme thak is S, and
think of aWeil divisorial sheafthat is, a ranK reflexive &’x-module which is locally free
in codimensiori. For flatness issues consi#dl08, Theorem 2].

For the novice: whenever we mention Weil divisors, assuraeXthis normal and adopt
the definition|Har 77, p.130].
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For a Weil divisorD on X, its associatetVeil divisorial sheais the' x-moduled’x (D)
defined on the open sét C X by the formula

a

(. ox(0) = {5

a,b e (U, Ox),bis not a zero divisor anywhere @h, and

D + div(a) — div(b) > 0}

and made into a sheaf by the natural restriction maps.

A Weil divisor D on X is aCartier divisor, if its associated Weil divisorial sheaf,x (D)
is a line bundle. If the associated Weil divisorial shedf; (D) is aQ-line bundle, therD
is aQ-Cartier divisor. The latter is equivalent to the property that there existsiae N
such thatnD is a Cartier divisor.

The symbol~ stands fotlinear and= for numerical equivalencef divisors.

Let Z be a line bundle on a schendé. It is said to begenerated by global sectiorifs
for every pointr € X there exists a global sectien. € H°(X,.#) such that the germ,
generates the stalle,, as and’x-module. If.# is generated by global sections, then the
global sections define a morphism

¢y X =PV =P(H(X,92)).

£ is calledsemi-amplef ™ is generated by global sections fer > 0. £ is called
ampleif it is semi-ample and) ¢~ is an embedding fom > 0. A line bundle.Z on X

is calledbig if the global sections of#™ define a rational map.¢=: X --» PV such
that X is birational tog »~ (X) for m > 0. Note that in this cas&’™ is not necessarily
generated by global sections, e is not necessarily defined everywhere. | will leave
it for the reader the make the obvious adaptation of thesenmfor the case of)-line
bundles.

The canonical divisorof a schemeX is denoted byK x and thecanonical sheabf X
is denoted by x.

A smooth projective varietX is of general typaf wx is big. It is easy to see that this
condition is invariant under birational equivalence betwemooth projective varieties. An
arbitrary projective variety is ajeneral typéf so is a desingularization of it.

A projective variety iscanonically polarizedf wx is ample. Notice that if a smooth
projective variety is canonically polarized, then it is efrgral type.

ACKNOWLEDGEMENT. | would like to thank Christopher Hacon, Max Lieblich ancbls
Patakfalvi for useful discussions and for pointing out estand misprints in an early draft
of this manuscript.

2. CLASSIFICATION
2.A. Q&A

As mentioned in the introduction, our ultimate goal is tcssify all algebraic varieties.
We will approach the classification problem through binaélbogeometry, that is, our
plan for classification can be summarized as follows.

PLAN 2.1.

(2.1.1) Choose a “nice” representative from every biralatass.

(2.1.2) Give a well-defined way of obtaining this nice repraative. (l.e., given an arbi-
trary variety, provide an algorithm to find this represenegt

(2.1.3) Classify the representatives.
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As we try to execute this plan, we will face many questions Wil guide our journey.
The plan itself raises the first question.

QUESTION2.2. What should we consider “nice”?

Before answering that, let us see how we might apprdach3j2.1.

First, one looks for discrete invariants, preferably suwdt aire invariant under deforma-
tion. For instance, dimension, degree, genus, etc.

Once many discrete invariants are found, consider a clagxigties that share the same
discrete invariants. One expects that these will be par@edtby continuous invariants,
or as Riemann called themmoduli

EXAMPLE 2.3 Plane Curves.Let X C P? be a projective plane curve. The discrete
invariant we need is the degree. Let us suppose that we firtitaive are only considering
curves of degred. It is easy to see that plane curves of degiesre parametrized by
P> The continuous parameters are the coefficients of the dgfiequation of the
curve.

Still, before answering Question 2.2, let us ask another one
QUESTION2.4. What discrete invariants should we consider?

The first one seems obvioudimension The next that comes to mind is perhajegree
but this leads to another issue: Degree depends on the emped so do many other
invariants. So the next question to answer is:

QUESTION2.5. Is there a natural way to embed our varieties?

Embeddings correspond to sets of generating global seatiorery ample line bundles,
or if we forget about automorphisms of the ambient space fiooment, then to very ample
line bundles.

This brings up another question:

QUESTION2.6. How do we find ample line bundles on a variety?

The problem is that our variety may not be given with an embegdor even if it is
given as a subvariety of a projective space, that given edibgdnay not be the natural
one (if there is such).

If a variety X, even if it is smooth, is given without additional infornmeti it is really
hard to find non-trivial ample line bundles, or for that mgtémy non-trivial line bundles.
There is practically only one that we can expect to find,daeonical line bundlt i.e.,
wx, the determinant of the cotangent bunfllg. (Of course there is also the determinant
of the tangent bundle as well, but that is simply the inverfs¢b® canonical bundle and so
doesn’t give an independent line bundle. Obviously, if wel fime line bundle, we will
have all of its powers, positive and negative included.)

So we could ask ourselves:

QUESTION2.7. Is the canonical bundle ample?

Most likely the readers know the answer to this one: No, noessarily. So perhaps the
better question is,

QUESTION2.8. How likely is it that the canonical bundle is ample?

Let us consider the case of curves. In this case, the rightem@.1.1) is very simple
(not its proof however!): In each birational class theresexexactly one smooth projective

1“The canonical bundle is not called canonical for nothingloe Harris
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curve. Itis known and well documented how one obtains thisagentative (one possibil-
ity is explained in/Har 77, §1.6]) so[(2.1.2) is also covered.

With respect to (2.1.3) and more particularly Question th&te are three different types
of behavior:
o X =Pl wx ~ Opi(—2) is anti-ample,
e X an elliptic curvewy ~ Oy is trivial.
e X any other smooth projective curvey is ample.

This suggests that we may expect that most birational daslecontain a member with
an ample canonical bundle.

Let us take a moment to examine the third case, that is, whé&na smooth projective
curve anduvx is ample. In this ca&e;@f’ is always very ample and thu§ can be embedded
by the global sections of that line bundle:

H(X,w$?): X — PN,
The obvious discrete invariant to consider now is the degféleis embedding, i.e.,
d=3degwx = 6x(X,wx).
Using Kodaira vanishing, Riemann-Roch and Serre dualitgavecomputeV:
N+1=r(X,w) = x(X,0$?) = d+ x(X, Ox) = 5x(X,wx).

Therefore, we are interested in classifying smooth prajeaturves of degreéy in
P>X~1 wherex = x(X,wx). In this case the discrete invariant we needed, that is, in
addition todim = 1, was the degree of the third pluricanonical embedding. Hewe
in order to make this work in higher dimensions we will needrenimvariants to get a
reasonable moduli space. The right invariant will be théoeéfit polynomial ofvx, which
in the above example contains equivalent information asdttreension and the degree
combined:

hx(m) := h°(X, w}e}m) =2xym — x.
REMARK 2.9. The reader has probably noticed that | am going to gesafths to avoid
using thegenusof the curves involved. The reason behind this is that kngwire genus
is equivalent to knowingy(X,wx ), or evenhx(m), and the latter is the invariant that
generalizes well to higher dimensions. So why not startrggtised to it?

Now we can make our first attempt to decide what we would likealb“nice”:
DEFINITION 2.10. LetX beniceif X is smooth, projective andx is ample.

Issue2.11. Thisis not going to fulfill all of our requirements basa there are varieties
that are not birational to a nice variety as defined in (2.E0).instance, leK be a smooth
minimal surface of general type that contains-&)-curve (a smooth proper rational curve
with self-intersectior{—2)). Thenwx is not ample. Since is not rational or ruled, it is
the only minimal surface in its birational class and henegecéabe birational to a surface
with an ample canonical bundle.

This is however not a huge setback. It only means that theeatiefinition of “nice” is
not the right one yet.

2.B. Curves

The first invariant we want to fix is the dimension and so let tastso get more seri-
ous by considering the case d¢fim = 1 systematically. We have seen that our second
important invariant is the Hilbert polynomial afx. Fixing that is equivalent to fixing

x = x(X,wx). We have the following cases for nice varieties of dimengigef. (2.10)):
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2.12. TRICHOTOMY.
o Y<0: X~P!
e Y =0: Xisan elliptic curve,
e Y >0: Xisacurve withvy ample.

In this case, we are able to answer our previous questiores.classes withy < 0 are
reasonably understood from a classification point of view.

For x < 0 we have only one smooth projective curve, while for= 0 we have the
elliptic curves which are classified by thghinvariant. There are of course plenty of things
to still understand about elliptic curves, but those belung different study.

For x > 0 the definition of “nice” in [(2.10) works well as there is a uagnice curve
in each birational class. The moduli part of the classiftzativas first accomplished by
Mumford. There are many excellent sources on moduli of girnRerhaps the two most
frequently used ones ar®[FK 94] and [HM 098].

To study higher dimensional varieties we need some prapasat

2.C. Fano varieties

ISSUES2.13. In the cases of surfaces and higher dimensional iei@e encounter two
new issues that we will have to deal with:

(2.13.1) There will be a lot more varieties that are not biral to a “nice” variety ac-
cording to the current definition of “nice”.
(2.13.2) There are smooth projective varieties that aibmmal to each other.

EXAMPLE 2.14. As we have seen in the case of the projective line, witsslynhave that
for X = P" wx is not ample and this is true for ady’ birational tolP™.

ExXAMPLE 2.15. More generally, we have the class of smdetho varietiesi.e., smooth
projective varietiesX with wgl ample, that are not birational to nice varieties.

EXAMPLE 2.16. Finally, in this series of examples, a vari@gtyadmitting aFano fibration
i.e., a flat morphismX — T such thatX, is a Fano variety for generale T, is also not
birational to a nice variety.

ConcLusioN2.17. We will have to deal with Fano varieties differentlyowgver, they,
too, have a natural ample line bundle; namely', so all is not lost.

2.D. Kodaira dimension

In order to mirror the trichotomy of the curve case, we neadtr@duce another invariant.
This is very similar and very close tpin the curve case.
Let X be a smooth projective variety and consider the rational imdpced by a set of
generators off (X, w{™)
bm : X ——» PV,

It is relatively easy to see that for > 0, the birational class of the imagg,, (X) is
independent ofn.

DEFINITION 2.18. TheKodaira dimensiorof X is denoted by:(X) and defined as
K(X) := dim ¢,,, (X)) for m > 0.

DEFINITION 2.19. X is of general typeif x(X) = dim X. In particular, ifwy is ample,

thenX is of general type.

EXAMPLE 2.20. x(P") = dim () < 0. In fact, for any Fano varietX, x(X) < 0.

ExAMPLE 2.21. For curves we have (again) three cases:
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o £K<0: X~P! (x <0),

e x=0: Xisan elliptic curve L =0),

e x=1: Xisacurvewithux ample ¢ > 0).
EXAMPLE 2.22. LetX be a uniruled variety. TheX does not admit any global pluri-
canonical forms and henegX) < 0. It is conjectured that this characterizes uniruled
varieties.

For more on the classification of uniruled varieties de(87, §11] and/Kol96].

2.E. Fibrations

As in the case of curves Kodaira dimension gives us a powtrdillto separate varieties
into classes with differently behaving canonical claseesbitrary dimensions. In fact, we
will see that even though there are more possibilities fembssible values of the Kodaira
dimension as the actual dimension grows, there will stilbbly three important classes to
consider.

Our next step is to adopt the following principle.

PRINCIPLE 2.23. Lety : X — Y be a fibration between smooth projective varieties, i.e.,
a dominant morphism with connected fibers. Motivated by ough birational classifi-
cation point of view, we will rest once we can classifyand the general fiber @f. Of
course, this leaves many questions unanswered, but them bgaver promised to answer
all questions.

2.24. MORI FIBRATION [KM98, 82]. Let X be a smooth projective variety such that
x(X) < 0. Then it is conjectured that there exists a birational modélfor X and a
fibrationy? : X# — Y such that’? is a smooth projective variety withim Y < dim X*
andF% is a Fano variety, wherg? is the generic geometric fiber of.

This is known fordim X < 3 by [Mor88] (cf. [Mor82,/Rei83, Kaw84, K 0l84,/Sho85]).

In fact, here | am skipping the mentioning of the Minimal Mbé&eogram, which is a
beautiful and very deep theory. In particular, one couldgerhaps should?) discuss
extremal contractions and flips. However, since the focukisfarticle is on moduli theory

| will leave this topic for the reader to discover. A good m@do start is/[Kol87] and the
standard reference i&M98].

It follows that iterating[(2.24) will exhibifX to be birational to a tower of Fano fibrations
over a base that is either itself a Fano variety or has noativegKkodaira dimension. In
the latter case we appeal to (2.25) and in general applyipliz.23.

2.25. ITAKA FIBRATION §11.6], 2.4]. Let X be a smooth projective
variety with x(X) > 0. Then there exists a birational mod&P for X and a fibration
¢ : X" — Y” such thatY”® is a smooth projective variety withim Y* = x(X) and
x(F”) = 0, whereF’ is the generic geometric fiber gf . Furthermore, the birational
class ofY” is uniquely determined by these properties.

Appealing to Principlé 2.23 we conclude that we may restrictattention to three types
of varieties (cf. (2.12)) that are the building blocks of\arieties:

2.26. TRICHOTOMY.

e Fano varieties. These inclu@®. (Fordim X =1: x < 0).

e Varieties with Kodaira dimensiofl. These include Abelian and Calabi-Yau varieties.
(Fordim X =1: x = 0).

e Varieties with maximal Kodaira dimension, i.e., varieti#general type. These include
varieties with an ample canonical bundle. (Hom X = 1: y > 0).
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In this article we will concentrate on the third case: vagiebf general type. Similarly
to the case of curves, this is indeed the “general” case.

It has been a long standing conjecture and only proven rgcgait [HM 06, HM 07,
BCHMO06]) that every variety of general type is birational to a canaly polarized vari-
ety, itscanonical modeli.e., a variety with an ample canonical bundle. The onlylite
is that unfortunately this canonical model may be singular.the other hand, in order to
gain a good understanding of moduli, one needs to study éeggons as well, so we will
be forced to consider singular varieties in our moduli peoblanyway. Fortunately, the
singularities forced by the canonical model are not worae the ones we must allow in
order to have a compact moduli space.

Now we are at a point that we can form a reasonable plan thatales! for in (2.1).

PLAN 2.27. The discrete invariant we need to fix is the Hilbert polyial of the canon-
ical bundle of the canonical model. Then we plan to do thevalhg:

(2.27.1) Let “nice” be defined (for now) as in Definition 2.10e will later replace
“smooth” with something else.
(2.27.2) Starting with an arbitrary variety, perform the following procedure to obtain a
“nice” model.
e apply Nagata’'s TheorenNgg62] to get a proper closure of: X,
e apply Chow’s LemmaHiar 77, Ex.I1.4.10] to obtain a projectivization of if
necessaryX
e apply Hironaka’s TheorenHir64] to get a resolution of singularities of : X
o apply the Minimal Model Programk[M 98] and Mori fibrations[(2.24) to re-
strict to the case(X) > 0,
e apply litaka fibrationg (2.25) to restrict to the cageX) = dim X,

o form the canonical modeProj €P) H°(X,w{™) [HM06,HM07,BCHM08].

(2.27.3) Classify the canonical models.m

Now the “only” thing left is the last step, classifying thencaical models. In other words,
we need to construct a moduli space for them.

3. MODULI PROBLEMS
3.A. Representing functors
Let Sets denote the category of sets a@st an arbitrary category. Further let

F : Cat — Sets

be a contravariant functor. Recall thatis representabléf there is an object € Ob Cat
such thatf ~ Homca(__, 9). If such art exists, it is called aniversal objecbr afine
moduli spacdor F.

3.B. Moduli functors
NOTATION 3.1. Letf : X — B be a morphism and¢” and.Z two line bundles onX.
Then

H ~p L
will mean that there exists a line bundl¢ on B such that?” ~ Z ® f*. 4.
REMARK 3.1.1. If B and X, for all b € B are integral of finite typef is flat and pro-
jective, thenz” ~p . is equivalent to the condition that/|Xb ~ $|Xb forallb € B

Har77, Ex. 111.12.6].
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DEFINITION 3.2. LetS be a scheme arfithg the category of-schemes. Let
MP : Schg — Sets

be themoduli functor of polarized proper schemes oger
(3.2.1) For an objecB € Ob Schg,

MP(B):={(f: X — B,%) | fis aflat, projective morphism and

Zis an f-ample line bundle orX } /~

where ~"is defined as follows(f, : X1 — B, %) ~ (f2 : Xo — B, %) ifand

only if there exists @-isomorphismp : X; /B = Xo/Bsuchthat?, ~p ¢*.%.
(3.2.2) For a morphism € Homsch, (4, B),

MP(a):=(_) xp a,
ie.,
MP(«) : MP(B) — MP(A)
(f: X—=B, %) — (fa:Xa— A Za).

REMARK 3.2.1. This definition has the disadvantage that it doesatafy faithfully flat
descent cf.BLR90, 6.1]. This is essentially caused by similar problems wiith haive
definition of the relative Picard functoGf 062a, 232] or BLR90, 8.1]. This problem may
be dealt with by appropriate sheafification®fP. The notion of canonical polarization
below also provides a natural solution in many cases. FaildeteeY/ie95, §1].

Considering our current aim, we leave these worries belunthé rest of the article, but
warn the reader that they should be addressed.

In any case, unfortunately, the funct®f? is too big to handle, so we need to study
some of its subfunctors that are more reasonable. In thexoot the previous section,
MP does not take into account any discrete invariants. If weviobur plan and start by
fixing certain discrete invariants, then we are led to stuatyiral subfunctors oM.

DEFINITION 3.3. Letk be an algebraically closed field of characteristiand Sch, the
category ofk-schemes. Let € Q[t] and Mo Sch;, — Sets the following functor:

(3.3.1) For an objecB € Ob Schy,
MMM B):= {f: X — B| f is a smooth projective family
such that'b € B, wx, is ample andy(X;, w§™) = h(m)} /~

where =" is defined as follows{f; : X; — B) ~ (fy : Xo — B) if and only if
there exists a@-isomorphismy : X, /B — X, /B.
(3.3.2) For a morphism € Homseh, (A, B),

M) = () xp o
REMARK 3.4. ForS = Spec k, MSM°°is a subfunctor of\/.
EXAMPLE 3.5.

M Spec k) = { X|X is a smooth projective variety
with wx ample andy(w$™) = h(m)}.

QUESTION3.6. So, what would it mean exactly th&sm°°"is representable?
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OBSERVATIONS 3.7. Suppose(!) thad/smo°Mis representable, i.e., assume (but do not
believe) that there exists & € Ob Sch; such thawv[,fmo"t“ ~ Homsch, (__, ). Then
one makes the following observations.

(3.7.1) First letB = Speck. ThenMs™°N(Spec k) ~ Homsen, (Spec k, ) = M(k),
the set ofk-points of M. In other words, the set of closed pointsf are in
one-to-one correspondence with smooth projective vagéfiwith wy ample and
(X, w$™) = h(m). For such a variety its corresponding point if0t(k) will
be denoted byX].

(3.7.2) Next letB = 9. Then one obtains that/sM°°(9) ~ Homscp, (M, M). Now
let (f : ¢ — M) € MMM be the element corresponding to the identity
idgp € Homsch, (M, 901). For a closed point : Spec k — 9t one has by functori-
ality thatx = [4l,], whereil, = { xg9y z. Therefore(f : Ll — 9) is atautological
family.

(3.7.3) Finally, letB be arbitrary. Then by the definition of representability tras that
MEMON B) ~ Homgen, (B, M), i.e., every family(f : X — B) € MmN B)
corresponds in a one-to-one manner to a morphism B — 9t. Applying the
functor MM ) ~ Homy,p, (__, 9) to 11 leads to the following:

M}fmooth(gm) MM i) agsm ooth(B )
(F: 40— ) 1 (f: X — B)
Homsen, SURY Homsen, (127,9) I/HO/mSChk (B,)
idgy 1253

By (3.3.2) this implies thatf : X — B) ~ (f xon puy : 4 xon B — B), S0
(f : & — M) is actually auniversal family

(3.7.4) Let(f : X — B) € MM B) be a non-trivial family, all of whose members
are isomorphic. For an example of such a family see (3.9wvbel®t ' denote
the variety to which the fibers of are isomorphic, i.e.f' ~ X, for all b € B.
Then by [(3.7.2)us(b) = [F] € 9 for all b € B. However, for thisf then
(f xom py = U xop B — B) ~ (B x F' — B), which is a contradiction.

CoNcLUsIoN3.8. Our original assumption led to a contradiction, so weshia conclude
that aSm°othis not representable.

EXAMPLE 3.9. LetB andC be two smoothprojective curves admitting non-trivial dieub
coversB — B ~ B/Zz andC — C ~ C/Z2. Consider the diagondl,-action on
B x C: o(b,¢):= (a(b),o(c)) for o € Z, and letX = B x 5/22 andf : X — B the
induced morphisni(b, ¢) ~ (o (b),o(c))] — [b ~ o(b)]. Itis easy to see that the fibers of
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f are all isomorphic td, but X * B X C. Similar examples may be constructed as soon
as there exists a non-trivial representatiai3) — Aut C.

3.C. Coarse moduli spaces
Since we cannot expect our moduli functors to be represkntai have to make do with
something weaker.

DEeFINITION 3.10. A functor¥ : Schy — Sets is coarsely representablié there exists
ant € ObSch, and a natural transformation

n: F — Homsgen, (__, M)
such that
(3.10.1) nspeck : F(Speck) =, Homsch, (Spec k, M) = M(k) is an isomorphism, and
(3.10.2) given an arbitrarfit € Ob Sch;, and a natural transformation
¢: F — Homsep, (__, M)
there exists a unique natural tranformation
v : Homsen, (__. ) — Homsen, (__.N)

such that
von=_¢.
If such an9)t exists, it is called @oarse moduli spackr 7.

Let us now reconsider the gquestion and observations we nmaf&6) and[(3.7) with
regard to this new definition.

QUESTION3.11. What would it mean tha/Sm°°is coarsely representable?

OBSERVATIONS 3.12. Assume that there exists 2y, € Ob Schy, satisfying the condi-
tions listed in Definition 3.10 above, i.e., assume th&"°Mis coarsely represented by
M;,. Then one makes the following observations.

(3.12.1) LetB = Speck. Then by (3.10.1) we still hava/sM°°N(Spec k) ~ My, (k),
the set ofk-points of M;,. In other words, the set of closed pointsf;, are
in one-to-one correspondence with smooth projective tras&’ with wy ample
andy(X,w§™) = h(m). For such a variet its corresponding point ioit;, (k)
will be denoted by X].

(3.12.2) LetB = My,. Then there exists a map

N, + MEMONON,) — Homscn, (M, My),

but there is no guarantee thdty, € Homsen, (95, M) is in the image ofjoy, |,
and hence a tautological famify,, : {;, — 9,) may not exist.

(3.12.3) LetB be arbitrary. Then there exists a map: MM B) — Homsen, (B, M),
i.e., every family(f : X — B) € M}fmm’“KB) corresponds to a morphism
wr © B — 9, which still has some useful properties. Since it is givenaby
natural transformation, we have that foralt B,

iy (b) = [Xo].

Applying the functorsSme°(_ ) andHomg., (__,9M) to p1 leads to the fol-
lowing:
We have observed in (3.112.2) that there may not be a tautabigimily

(fh U, — mh) € M;fmo"“bmh)
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AN, ) MmN )
- /
‘.7?%i ————————— [ > (f: X — B)
T _
[
[
[
[
[
[ H chy, (M, N H h,. (B, My,
| omsch,, (M, M) Homan (7 00) omsch,, ( h)
[
! / /
idgmh f Hr-
FIGURE 3.1.

that maps tddgy,. However, even if such a family existed, we could not con-
clude that it maps tof : X — B) via MMM, ¢), because the vertical arrows
in Figure[ 3.1 are not necessarily one-to-one. In other waeden if we find a
tautological family, it is not necessarilyumiversal family

(3.12.4) Finally, let(f : X — B) € MM B) be a non-trivial family all of whose
members are isomorphic. Létdenote the fiber of, i.e.,F ~ X, forall b € B.
Then by|((3.12.3).4(b) = [F] € M for all b € B. However, this does not lead to
a contradiction now (see the remark at the end of (3.12.3)).

4. HILBERT SCHEMES

We saw in the previous section that moduli functors are Wgnat representable. In this
section we will see an example for a representable functor.

Letg : Y — Z be a projective morphismZ a g-ample line bundle oY’ and.% a
coherentg-flat sheaf orly’. Then form >> 0 one has thay. (Z# @ .£®™) is locally free
and Rig.(Z ® £®™) = 0 fori > 0. By the Riemann-Roch theorem there exists a
polynomialhy 7 z o such that

hy)z.7,2(m) =tk g.(F @ L9M).

We will call this theHilbert polynomialof g with respect taZ# and.Z. If there is no danger
of confusion then we will use the notatidn, : = hy,z 4, » and will call 1, the Hilbert
polynomial of Z.

Let.S be a scheme andl € Ob Schg. We define thédilbert functor,

Hilb(X/S) : Schg — Sets
as follows. For & € ObSchg,

Hilb(X/S)(Z):={V |V C X xg Z flat and proper subscheme ové}
~{F | F ~ Oxxsz/ g flat with proper support over },
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and for ap € Homsch, (Z,Y),
Hilb(X/S)(p) : Hilb(X/S)Y) — Hilb(X/S)(Z)
Ve VXxy ZC (X xgY)xy Z =X x5 7
If .# is arelatively ample line bundle ak/.S andp € Q[z], then we define

Hill,(X/S)(Z):= {F € Hilb(X/S)Z) | hx,/z.7.2, = p}.
Notice that if Z is connected, then
Hilb(X/S)(Z) = | ) Hilb,(X/S)(Z).

P

Theorem 4.1 [Gro62b, Gro95] [Kol96, 1.1.4]. Let X/S be a projective scheme? a
relatively ample line bundle o/'/S andp a polynomial. Then the functotilb,(X/S) is
represented by a projective-schemdlilb, (X/S5), called theHilbert schemef X /.S with
respect ta.

REMARK 4.2. Similarly to[(3.7.2-3), one observes that by the definibf representabil-
ity, idmim, (x/s) € Homsens (Hilb, (X/S), Hilb,(X/S)) corresponds to aniversal ob-
ject, or universal family Univ, (X/S) € #ilb,(X/S)(Hilb,(X/S)). By the definition
of #ilh,(X/S), one sees thafiniv,(X/S) C X xg Hilb,(X/S) is flat and proper over
Hilb, (X/S) with Hilbert polynomialp.

DEFINITION 4.3. We define thélilbert schemef X/S as follows:

Hilb(X/S): HHﬂb (X/9).

5. INTRODUCTION TO THE CONSTRUCTION OF THE MODULI SPACE

5.A. Boundedness
There are several properties a moduli functor needs tofatiorder for it to admit a
(coarse) moduli space. We will discuss some of these in metaild The first one is
boundedness
DEFINITION 5.1. Let¥ be a subfunctor of/?. Then we say tha¥ is boundedf there
exists a scheme of finite typE and a family(r : U — T,.%¥) € MP(T) with the
following property:

Forany(o : X — B,.#") € ¥(B) there exists an étale coveB; — B and morphisms
v; : B; — T such that for all,

(U:X—>B,</V)|Bi2Vf(7r:U—>T7$).

In this case we say thét : U — T,.%) is abounding familyfor .

Ifin addition(n : U — T,.%Z) € ¥(T), then(r : U — T,.%) is called docally versal
family for 7.

REMARK 5.1.1. When using canonical polarizations, then one masicest open covers
in the definition. SeeV[ie9d5, 1.15] and Kol94].

The first major general theorem about boundedness is M&®addig Theorem. Here
we only cite a special case. For the more general statemeaselrefer to the original
article.

Theorem 5.2 [Mat72]. Fix a polynomialk € Q[t]. Thena™™Mis bounded.

In fact, in order to prove boundednessfF™°™ it is enough to prove the following:
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Theorem 5.3. Fix h € Q[t]. Then there exists an integer > 1 such thato{™ is very
ample for allX € MMM Spec k).

DEFINITION 5.4. Let the smallest integen satisfying the condition in (5.3) be denoted
by m(h).

Assume that we know that (5.3) holds. Then by the Kodairadling Theoremu$™
has no higher cohomology for al € Ms™°°"{Spec k), and so

WX, wR™) = x(X,w§™) = h(m).
Let N = h(m) — 1. Then for allX € MM Spec k) them-th pluricanonical map
HY(X,w§™) : X — PN

is an embedding. Now Iéf' = Hilb, (PV /k), U = Univ,(P" /k) and consider the two
projectionsr; : PV x Hilby, (PY /k) — PV andm, : PN x Hilby, (PV /k) — Hilby, (PV /k).
Letr = m|, : U — T and.¥ = w}0pn,(1)|,. Then(r : U — T,.2) gives a
bounding family fora/sme°h Therefore/(5.3) implies (5.2).

REMARK 5.5. We will see later that it is necessary to allow singulgeots in our moduli
functors. This will lead to many difficulties, among them tn&fortunate fact that Mat-
susaka’s Big Theorem will not be strong enough for our pugpos

5.B. Plan

The success of using the Hilbert scheme in order to obtaimdedness might make one
believe that the Hilbert scheme itself might work as a modphce. However, unfortu-
nately this is not the case as the pointdiofb, (PV /k)(k) also parametrize subschemes
that are not in the moduli functdr/[}fmf"’“‘. For example, they maybe horribly singular and
the polarizing line bundle is not necessarily the canoriicaldle.

The next guess maybe taking the locus of Hilbert points tbatesponds to such sub-
varieties ofP" that are indSm°°"(Spec k), i.e., smooth with canonical polarization. This
is a much better guess, but still not perfect. There are twddmental problems. First, it
is not at all clear that this locus is a subscheméldb,, (PV /k), or even if its support is
a subscheme, then whether there is a natural scheme sérticttiis compatible with the
functor a/5M°° This actually turns out to be a difficult technical problesfierred to as
local closednesand we will return to it later. The second problem is that gl&iobject of
MMM Spec k) will appear several times iHilby, (P /k); any subscheme & appears
as a potentially different subscheme after acting with @ameht ofAut(P?), but in the
moduli functor we only want a single copy of each isomorphidass.

The way to proceed is “obvious”. Assume that we can solvedballclosedness prob-
lem and indeed we can find a subscheme that consists of eXaethoints that belong to
MEMOM Spec k). (Actually we need to worry about more than that, but let's get all
gloomy just yet). Then we get a natural actionfoft(P™V) on this subscheme and taking
the quotient byAut(PV) should yield our desired moduli space. | should mentionttiat
ing this quotient is not entirely obvious, but fortunatetspible Vie91, Kol97a, KeM 97].

5.C. Local closedness

We have already observed that in order to carry out the thelaid out in 5.B we need to
identify the set of Hilbert points corresponding to the midoflunctor and find a (natural)
scheme structure on this set. The technical condition tavadloing this is the following.
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DEFINITION 5.6. A subfunctorf C M is locally closed(resp.open, closejlif the
following condition holds: For everyf : X — B,.¥) € M%P(B) there exists a locally
closed (resp. open, closed) subschem®&’ — B such thatifr : T — B is any morphism
then

T——B
|
(fr:Xr—T,%r)c F(T') < 7factorsthrough s /

g
OBSERVATION 5.7. There are two main ingredients of proving tiifm°°" is locally
closed. Letn = m(h) as defined in' (5.4). Suppose thgt: X — B,.) € MP(B).
Note that in the construction of the moduli space tlfscomes from&pn (1) where
N = h(m) — 1. Now one needs to prove that:
(5.7.1) the sefb € B | X}, € MMM Spec k)} is a locally closed subset &, and
(5.7.2) the conditioM]Xb ~ w¥, is locally closed onb.

At this point these conditions are not too hard to satisfypfiave [(5.7.1) one observes

that being smooth is open, being projective is assumed. @herical bundleypx, being
ample is open, but this we actually do not even need as it wlibd from (5.7.2). The

requirement on the Hilbert polynomial will also follow fro8.7.2). In turn,[(5.17.2) follows
from the following lemma.

Lemma5.8. [Vied5, 1.19]Let f : X — B be a flat projective morphism an#” and .
two line bundles orX. Assume thak®(X;, Ox,) = 1 for all b € B. Then there exists a
locally closed subscheme B’ — B such that ifr : T'— B is any morphism then

T47—>B

\
Jdr ~r %y << 7factors through 3 /

y
B/
PROOF. By replacing? by ¥ .7 —! we may assume tha¥” ~ ¢'x. Observe that
if .i”]Xb is generated by a single section, then it gives an isomarphis

Ox, — 2|y,

Consider
k= {b € BIR(X), 2| y,) #0} = supp (f..2).

This is closed by semi-continuityfar 77, 111.12.8]. So far this is only a subset and we need
to define a (natural) scheme structure. However, that isa fwoblem, so we may assume
that B is affine. By cohomology-and-base-chani#um?70, §5] there exists a bounded
complex of locally free sheaves

@@0 8° @@1 L . ot &

such that for any morphism: T — B,
Ri(fr)+Zp ~ H'(&p).

In particular,
(fr)«Lr ~ ker[6%. : &2 — &F].
By definition, B/,, = supp ker §°. Now define the ideal sheaf < &' as follows:



16 SANDOR J. KOVACS

o If Bl¢y = Breqin a neighbourhood of a pointe B, then let.# = 0 nearb.
e Otherwise write” = @" 0’z nearb € B. Since we are not in the previous case, we
must have; > ro. Now let.# be generated by thg x ry minors of

To 1
3" P os— P os.
Let the scheme structure @, be defined by this ideal sheaf, i.e., Bt the scheme with
supportB/., and structure sheafz. : = ﬁB/y.

Now if 7 : T'— B is such that?, ~¢ O, then(fr).%r is aline bundle o and if
ker 6% contains a line bundle, then the imagerét? in & has to be zero. In other words,
7 factors throughB” — B.

In the final step we construd®’ as an open subscheme Bf'. By our previous ob-
servation we may assume thBt' = B, in particular, f,.¢ # 0 on a dense open set.
Let

B":= {b €B 10Xy, 2Z,,) > 1}.

Again, by semi-continuityB’” is closed. Next leB° = B\ B’”, the largest open (pos-
sibly empty) subscheme d# with f..| ;. invertible and letZ C X be the support of
coker[f* f..¥ — Z]. Finally let

B':=(B\ f(Z))nB° C B.

It is easy to check that thiB’ satisfies the required condition. |

5.D. Separatedness

Boundedness and local closedness allows us to identify schalme of an appropriate
Hilbert scheme consisting of the Hilbert points of the scherm our moduli problem.
This subscheme has a group action induced by the automorgrisup of the ambient
projective space. This already allows the constructiomefrhoduli space as an algebraic
space by taking the quotient by this group action. Howeweoyder to effectively use this
moduli space we hope that it will satisfy certain basic prips. Perhaps the most basic
one is separatedness.

DEFINITION 5.9. A subfunctorf C MP is separatedf the following condition holds.
Let R be a DVR andl" = Spec R with general point, — T and(X; — T,.%;) € F(T)
two families fori = 1,2. Then any isomorphism, : ((X1),, (Z1):,) — ((X2)t,, (ZL2)¢,)
extends to an isomorphism: X, /T — X, /T.

Separatedness of a moduli functor is a non-trivial propeftithout further restrictions
it will not hold as shown by the following examples.

EXAMPLE 5.10. LetZ = P! x A! with coordinateg[x : y],t). Let the projections to
the factors ber; : Z — P andm, : Z — A'. Further let? = 7} 0pi (1), R = k[t](s)
(a DVR) and consider the base chang&'te- Spec R. With the notationf = (71 )7, one
hasthat f : Zr — T, %r) € MP(T). Now leta : Zr --+ Zp be the map induced by
([x : y],t) — ([tx : y],t). This is an isomorphism over the general poinffofbut is not
even dominant over the special point.

REMARK 5.10.1. The main problem here comes from the fact #hatP! is not discrete.
The good news is that by a theorem of Matsusaka and Munifkéid $4] this problem can
only occur if the fiber over the closed point is ruled.

EXAMPLE 5.11. LetY be a smooth projective variety of dimension atl@ast = Y xA!,
7 : Z — A' the projection to the second factor afig, C, C Z two sections, i.e., curves
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in Z that are isomorphic té\! via = and such tha€; andC; intersect in a single point,
P, transversally. Assume for simplicity thatP) = 0 € A

Let Z; be the variety obtained by first blowing upy and then the proper transform of
Cs. Similarly, let Z, be the variety obtained by first blowing uf» and then the proper
transform ofC; .

LetU = {t € A' | t # 0}. Then(Z;)y and(Z,)y may be identified, but the iso-
morphism betweellZ; )y and(Z:)y induced by this identification does not extend over
t=0¢cAl

To make this example more interesting, assumeAhadmits an embedding intdut Y,
i.e.,Y admits a one-parameter group of automorphisms. Denote théemorphisms by
ay for t € A! and assume thaty = idy and(Cs); = a;((C1)¢). In this case the auto-
morphismsy, induce an isomorphism betweefs and 7, including the fiber ovet = 0.
Observe that the restriction of this isomorphism is the itigon the fiber over = 0, but
different from the identity over anye U.

In this exampleZ; andZ, are isomorphic, but not all isomorphisms ovéextend to an
isomorphism over the entiug’.

EXAMPLE 5.12. This example is based on an example of Atiyah..:é' x P! — P
be an arbitrary embedding and C P! the projectivized cone ove(P! x P') C P
with vertex P. Let L C P"*! be a general linear subspace of codimengioNotice that
this implies that? ¢ L. Consider the projection from to a line,P"*1 \ L — P!. After
blowing up L this extends to a morphismy, : BiyP""! — P!, Let Z be the proper
transform ofY” on Bl P*t! andr = wL[Z. Then one has the following diagram:

Z
Yy - — =P,

wherer is flat projective with connected fibers and smooth general fando is the
blowing up of L N Y C Y, hence birational and an isomorphism néare Y. Let
P=oc"1(P).

Next let C;, and C; be the images via of two general lines corresponding to the
two different rulings ofP* x P! andS; and S, their respective preimages dn Note
that by constructiorC; and Cs are disjoint fromL. For the rest of this example any-
wherei appears, it is meant to apply for both= 1,2. Let S, = ¢718; C Z and

0;: Z; = Blg, Z — Z the blow-up ofZ along.S;. Observe, thas; C Z is a divisor and
sinceZ is smooth away fronP, this implies thatZLis isomorphic toZ away fromP, in

particular(Z1)p1\ (g} ~ (Z2)p1\ (g} WhereQ = m(P) € P'. On the other hand, it is easy

to check that; ! (P) ~ P! is equal to the whole fiber of the blow-ulg, P" 1 — P+,
(SinceP ¢ L, this computation can be done &M).
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Next, we wish to determine the fibel, = 7=1(Q). Let Lp = (L, P), the linear span
of L and P. Observe thal p ~ P" is a general hyperplane throughin P"*!. Hence
Lp NY isthe cone over a general hyperplane section of a smootlqtia surface, i.e.,
over a smooth projective curve. We conclude that is the blow-up of this cone at its
intersection withZ, which consists of finitely many points that are disjoint frétras well
as fromS; andS;. Therefore(Z;)q is a further blow-up along the proper transform of
Si.

Next suppose thatis the standard quadratic embeddingPdfx P! into 3. In this case,
S; ~ P? are linear subspaces Bf contained inY, Z, is the blow-up at finitely many
smooth points of a quadric cone af; ) is the blow-up ofZ, along one of the rays of
the quadratic cone that miss the centers of the other blav-Tipereford Z;)g ~ (Z2)q,
but this isomorphism does not extend to an isomorphistcdnd 7.

This leads to a moduli space that is non-separated in a qedelipr way: the point
corresponding to the class 01 ) ~ (Z2)q completes the cun@! \ {Q} corresponding
to the family(Z1)p1\ (g1 =~ (Z2)p1\{qy in two different way.

The result is the following curve. L&) € P! a point. take two copies of thi! and glue
them together alon§! \ {Q}. Then glue the two copies @} together but by a separate
gluing. Therefore there are two separate ways to gé timm the rest of théP!.

As we mentioned before, a result of Matsusaka and Mumfols tesl that in our case
these pathologies do not occur.
Theorem 5.13 Theorem 1].Let R be a DVR andl’ = Spec R with closed point
ts € T. Further letX, /T be a properl’-scheme and(y /T a reducedl-scheme of finite
type such thatXs),, is not ruled. Assume that; and X, are birational. Then so are
(Xl)ts and (XQ)tS-

We may use this result to prove separatednesg$f°°", but first we need an auxiliary
theorem.
Theorem 5.14. Let S be a scheme and;, : X; — S two properS-schemes,?; rela-
tively ample line bundles oX; /S and j; : U; — X, open immersions with complement
Z; = X; \ U; fori =1,2. Assume that

(5.14.1) there exists afi-isomorphismu : Uy /S 5 Us /S such thatw* %, ~ %, and

(5.14.2) depth,. X; > 2 fori = 1,2 (this is satisfied if for exampl&; is normal and
COdiI’Il(ZZ‘7 Xz) > 2)

Thena extends toX; to give an isomorphisnX; /S ~ X5 /S.

PROOFE Oncea has an extension td, it is unique, so the question is local ¢h
and thus we may assume that it is affine. betbe large enough tha¥™ is relatively

very ample. First observe that (5114.2) implies thai. (.,2”;"’][]‘) ~ Zmfori =1,2.
Therefore

(£lv,) (2m1,) = ) 2m
This implies that(f,»|Ui>* (.,2”[”|U> is coherent. LetZ be an ample line bundle on

S, then (fi|U-> (.54’”|U_> ® </ is generated by global sections fors> 0. As ™ is
relatively very ample, this gives a surjection

fi* (éa ﬂ_1> _ agi’rn’

Ji(Us)”
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which in turn induces an embedding : X; — P§ '
As the isomorphisna in (5.14.1) gives an isomorphism between the sheaves

(9le). (A7) = (o) (471).

we may choose the generators definingdhé be compatible with this isomorphism and
conclude thatz>1]U1 = qbQ\Uz oa.

Sincel; is dense inX;, we obtain that; (X;) is the Zariski closure ob;(U;) and hence
we have

X1 %’ $1(X1) = ¢1(Ur) = ¢2(U2) = ¢2(X2) <;T Xo.

Clearly, this isomorphism restricted t§ coincides withn and so the statement is proved.
O

Corollary 5.15. MsM°°is separated.

PROOF. Let R be a DVR andl’ = Spec R with general point, — T'. Further let

(X; — T,%) € M T) two families fori = 1,2 and assume that there exists an
isomorphismuy = ((X1),, (Z1)e,) — (X2)t,, (ZL2)¢,)-

Let U; C X; be the largest open sets foe= 1,2 such that there exists an extension of
o that gives an isomorphism : Uy — Us.

Now observe that as, induces a birational equivalence betwe€nand X5, by (5.13)
it extends to a birational equivalence betwééh ). and(X2);, and hence these contain
isomorphic open sets, which are then containetljirand U respectively. Therefore the

conditions of((5.14) are satisfied and@extends to an isomorphisi, /T ~ X, /T. O

With this we have covered the most important properties adufidunctors, bounded-
ness, local closedness, and separatedness. These ge@ddng with weak positivity and
weak stability (seeV[ie95, 7.16] for details), allows one to prove the following:

Theorem 5.16. [Kol90] [Vie95, 1.11]There exists a quasi-projective coarse moduli scheme
for gsmooth

For more precise statements s&®I0] and [Vied5, §1.2]. Other relevant sources are
[Kol85,/K SB88, Vie89, Vied0a, Vied0b, Viels.

At first sight it may seem that with the construction of thisdab scheme we have
accomplished the plan laid down in (2]27). However, it isewtirely so. We should defi-
nitely consider this an answer if we only care about smootiooially polarized varieties.
After all, the moduli space does “classify” these objects te other hand, a canonical
model produced by Plan 2.27 may not be smooth. So if we canat #hose cases, too, we
have to work with singular varieties as well.

6. SINGULARITIES

In this section we will see that in order to accomplish our gbalassifying all canonical
models (cf.[(2.27)), we will have to allow our objects to hauegularities.

There is another reason to do this. Even if we were only isteckin smooth objects
their degenerations provide important information. Inestivords, it is always useful
to find complete moduli problems, i.e., extend our modulicton so it would admit a
complete (and preferably projective) coarse moduli spaid@s also leads to having to
consider singular varieties.
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However, we will have to be careful to limit the kind of singtities that we allow in
order to be able to handle them. In other words, we have tgitexir definition of “nice”
and we will change its definition according to our findings.

6.A. Canonical singularities

For an excellent introduction to this topic the reader isedr¢p take a thorough look at

Miles Reid’s original young person’s guidRi87]. Here | will only touch on the subject.
Let X be a minimal surface of general type that contaifis &)-curve (a smooth rational

curve with self-intersectior-2). For an example of such a surface consider the following.

EXAMPLE 6.1. X = (25 + 4 + 2% + w® = 0) C IP3 with theZ,-action that interchanges
x « yandz < w. This action has five fixed point§l, : 1 : —¢* : —¢f]fori =1,...,5

wheree is a primitive5™ root of unity. Consequently the quotie?ﬁ/z2 has five singular

points, each a simple double point of tyde. Let X — )N(/ZQ be the minimal resolu-

tion of singularities. TherX contains five(—2)-curves, the exceptional divisors over the
singularities.

Let us return to the general case, thatis,s a minimal surface of general type that
contains a—2)-curve,C C X. As C' ~ P!, and X is smooth, the adjunction formula
gives us that<x - C = 0. ThereforeK x is not ample.

On the other hand, sinc¥ is a minimal surface of general type, it follows thits is
semi-ample, that is, some multiple of it is base-point freeother words, there exists a
morphism,

ImKx|: X — Xean C P(H°(X, Ox (mKx))).

This follows from various results, for example Bombieritagsification of pluri-canonical
maps, but perhaps the simplest proof is provided by Miles [fe& 97, E.3].

It is then relatively easy to see that this morphism ontonitage is independent of.
This constant image is called thanonical modebf X, let us denote it byX¢can.

The good news is that the canonical divisotaf, is indeed ample, but the trouble with
it is that it is singular. However, the singularity is not tbad, so we still have a good
chance to do this. In fact, the singularities that can oceuth® canonical model of a
surface of general type belong to a much studied class. Tdss goes by several names;
they are calleddu Val singularities or rational double pointsor Gorenstein, canonical
singularities For more on these singularities, refer Buf 79], [Rei87].

6.B. Normal crossings

These singularities already appear in the constructioheftoduli space of stable curves
(or if the reader prefers, the construction of a compactiicaof the moduli space of
smooth projective curves). As we want to understand degéoas of our preferred fami-
lies, we have to allow normal crossings.

A normal crossingsingularity is one that is locally analytically (or formgllisomorphic
to the intersection of coordinate hyperplanes in a lineacsp In other words, it is a
singularity locally analytically defined a1z -- -2, = 0) C A" for somer < n.
In particular, as opposed to the curve case, for surfacditsfor triple intersections.
However, triple intersections may be “resolved”: Lét= (zyz = 0) C A3. Blow up the
origin O € A3, o : BloA® — A3 and consider the proper transformX®f o : X — X.
Observe thafl has only double normal crossings.
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Another important point to remember about normal crossisisat they ar@otnormal.
In particular they do not belong to the previous category.déme interesting and perhaps
surprising examples of surfaces with normal crossingsisety).

6.C. Pinch points

Another non-normal singularity that can occur as the lifigrmooth varieties is the pinch
point. Itis locally analytically defined ag? = z223) C A"™. This singularity is a double
normal crossing away from the pinch point. Its normalizati® smooth, but blowing up
the pinch point does not make it any better. (Try it for yolftse

6.D. Cones

Let C C P? be a curve of degre¢and X C P2 the projectivized cone ove&r. As X is a
degreed hypersurface, it admits a smoothing.

EXAMPLE 6.2. LetZ = (2 4y + 2% + tw? = 0) C P3, .., x A}. The special fiber
= is a cone over a smooth plane curve of degtead the general fibét,, fort # 0, is a
smooth surface of degrekin P3.

This, again, suggests that we should deal with some sirijesar The question is,
whether we can limit the type of singularities we must deghwiMore particularly to
this case, can we limit the type of cones we need to deal with?

First we need an auxiliary computation.

EXAMPLE 6.3. LetlW be a smooth variety anfl = X; U X, C W such thatX; and X,
are Cartier divisors i¥”. Then by the adjunction formula we have

Kx = (Kw + X)|
Kx, = (Kw +X1)|X1
Kx, = (Kw JrX2)|X2
Therefore
(6.3.1) KX|X1_ = Kx, + X3—i’xi

fori =1, 2, so we have that

(6.3.2) Kxisample & Kx|, =Kx, +Xs_|, isamplefori=1,2.

x,

Next, letX be a normal projective surface wiltix ample and an isolated singular point
P € Sing X. Assume thafX is isomorphic to a congy C P? as in Example 62 locally
analytically near”. Further assume tha is the special fiber of a smoothing famithat
itself is smooth. We would like to see whether we may resdheesingular point? € X
and still stay within our moduli problem, i.e., thatwould remain ample. For this purpose
we may assume tha is the only singular point oX.

Let T — = be the blowing up of? € = and letX denote the proper transform &f.
ThenT, = X U E whereE ~ P? is the exceptional divisor of the blow up. Clearly,
o : X — X is the blow up ofP on X, so it is a smooth surface addl N E is isomorphic
to the degred curve over whichX is locally amalytically a cone.

We would like to determine the condition ahthat ensures that the canonical divisor
of Yy is still ample. According td (6.3]2) this means that we neeat K + X]E and
K + E| ; be ample.

AsE ~P? wp ~ Op:(—3),500p(Kg + )?|E) ~ Op2(d — 3). This is ample if and
only if d > 3.



22 SANDOR J. KOVACS

As this computation is local neaP the only relevant issue about the ampleness of
K + E| ; is whether it is ample in a neighbourhoodek : = E| ;. By the next claim
this is equivalent to asking wheil ¢ + Ex ) - Ex is positive.

Claim. Let Z be a smooth projective surface with non-negative Kodainaedision and

I' ¢ Z an effective divisor. If(Kz +T') - C' > 0 for every proper curv&’ C Z, then

K, +T'isample.

Proof. By the assumption on the Kodaira dimension there exists an(0 such thatn K »

is effective, hence so is.(Kz +I'). Then by the assumption on the intersection number,
(Kz +T)? > 0, so the statement follows by the Nakai-Moishezon criterium O

Now, observe that by the adjunction formdli ; + Ex) - Ex = deg Kg, = d(d —3)
asFEx is isomorphic to a plane curve of degréeAgain, we obtain the same condition as
above and thus conclude thit-, maybe ample only ifl > 3.

For our moduli funtor this means that we have to allow congudarities over curves
of degreed < 3. The singularity we obtain foi = 2 is a rational double point, but the
singularity ford = 3 is not even rational. This does not fit any of the earlier dasse
discussed.

6.E. Log canonical singularities
Let us investigate the previous situation under more géassumptions.
COMPUTATION 6.4. LetD = Y7 \;D; be a divisor with only normal crossing singu-

larities (in some ambient variety) such that = 1. Using the adjunction formula shows
that in this situation (6.3/1) remains true even if fhgare not hypersurfaces

(6.4.1) Kp|,, = Kp,+ > \Di .
=1

Let f : = — B a projective family withdim B = 1, = smooth andk’=z, ample for all
b € B. Further letX = Z;,, for someb, € B a singular fiber and let : T — = be an
embedded resolution of C =. Finally letY = o*X = X + /_, \;F; whereX is the
proper transform ofX’ and F; are exceptional divisors far. We are interested in finding
conditions that are necessary fig- to remain ample.

LetE;: = Fl|§ be the exceptional divisors far : X — X and for the simplicity of
computation, assume that tti& are irreducible. Fo¥(y- to be ample we need thﬁyb?
as well asky |F¢ for all 7 are all ample. Clearly, the important one of these for ouppses

is Ky | ¢ for which by (6.4.1) we have that

Ky|gs =Ky +Z/\iEi.

i=1

As usual, we may writd{ ; = 0" Kx + Z;‘:l a; F;, so we are looking for conditions to
guarantee that* K x + > (a; + A\;) E; be ample. In particular, its restriction to any of the
E; has to be ample. To further simplify our computation let usuase thatlim X = 2.
Then the condition that we want satisfied is that forjall

i=1
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Let
E, = Z |ai + )\1|El, and
a;+X;>0
E_ = Z |ai + A7|E7, SO
a;+X;<0

T
> (ai+N\)E;=E, — E_.
i=1

Choose g such thate; C supp E4. ThenE_ - E; > 0 sinceE; ¢ E_ and (6.4.2)
implies that(E, — E_) - E; > 0. These together imply thaf, - E; > 0 and then
that £2 > 0. However, theE; are exceptional divisors of a birational morphism, so their
intersection matrix(E; - E;) is negative definite.

The only way this can happen is B, = 0. In other wordsa; + \; < 0 for all i.
However, the\; are positive integers, so this implies thid{- may remain ample only if
a; < —1foralli=1,... r.

The definition of dog canonical singularityis the exact opposite of this condition. It
requires thatX be normal and admit a resolution of singularities, $ay~ X, such that
all thea; > —1. This means that the above argument shows that we may staglatiadi
chance if we resolve singularities that aversethan log canonical, but have no hope to
do so with log canonical singularities. In other words, tkianother class of singularities
that we have to allow. Actually, the class of singularities @btained for the cones in the
previous subsection belong to this class. In fact, all thenab singularities that we have
considered so far belong to this class.

The good news is that by now we have covered pretty much aléys that something
can go wrong and found the class of singularities we mustvalince we have already
found that we have to deal with some non-normal singulariied in fact in this example
we have not really needed th&t be normal, we conclude that we will have to allow the
non-normal cousins of log canonical singularities. Thesecalledsemi-log canonical
singularitiesand the reader can find their definition in the next subsection

6.F. Semi-log canonical singularities

As a warm-up, let us first define the normal and more traditisirgularities that are
relevant in the Minimal Model Program.

DEFINITION 6.5. A normal varietyX is calledQ-Gorensteinif Ky is Q-Cartier, i.e.,
some integer multiple of x is a Cartier divisor. LetX be aQ-Gorenstein variety and
f: X — X agood resolution of singularities with exceptional divigd= UE;. Express
the canonical divisor oX in terms of Kx and the exceptional divisors:

Kg=fKx+Y aF

wherea; € Q. Then

terminal a; > 0.
canonical . e . a; > 0.
X has - singularities if for allz, ' =
log terminal a; > —1.
log canonical a; > —1.

The corresponding definitions for non-normal varietiessmraewhat more cumbersome.
| include them here for completeness, but the reader sheddffee to skip them and
assume that for instance “semi-log canonical” means sangethat can be reasonably
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considered a non-normal version of log canonical. Thesaitiefis will not be used in
this article.

DEFINITION 6.6. LetX be a scheme of dimensienandz € X a closed point.

(6.6.1) z € X is adouble normal crossing it is locally analytically (or formally) iso-
morphic to the singularity

{0 € (zoz1 =0)} C {0€ A"},

(6.6.2) = € X is apinch pointif it is locally analytically (or formally) isomorphic to &

singularity
{0€ (zf=z123)} C{0€ A"},

(6.6.3) X is semi-smootfif all closed points ofX are either smooth, or a double normal
crossing, or a pinch point. In this case, unléSés smooth,Dx : = Sing X C X
is a smootHn — 1)-fold. If v : X — X is its normalization, theiX is smooth and
f?X:: v~Y(Dx) — Dx is a double cover ramified along the pinch locus.

(6.6.4) A morphismyf : Y — X is asemi-resolutionif
e fis proper,

e Y is semi-smooth,
e no component oDy is f-exceptional, and
e there exists a closed subseiC X, with codim(Z, X') > 2 such that

is an isomorphism.
Let E denote the exceptional divisor (i.e., the codimension 1 phthe excep-
tional set, not necessarily the whole exceptional sef).cfhenf is agood semi-
resolutionif £ U Dy is a divisor with global normal crossings an

(6.6.5) X hassemi-log canonicafresp.semi-log terminglsingularities if
(@) X isreduced,

(b) X is Sy,

(c) Kx is Q-Cartier, and B

(d) there exist a good semi-resolution of singularifiesX — X with exceptional
divisor £ = UE;, and we writeK ¢ = f*Kx + ) a;E; with a; € Q, then
a; > —1 (resp.a; > —1) for all .

REMARK 6.6.6. Note that a semi-smooth scheme has at worst hypacswsingularities,

soin particular it is Gorenstein. This implies that a seog-tanonical variety is Gorenstein

in codimensiori.

REMARK 6.6.7. In the definition of a semi-resolution, one could d®to require that

the exceptional set be a divisor. This leads to slightlyedéht notions and at the time of
the writing of this article it has not been settled whethéhesi of the definitions and the
notions of singularities they lead to are unnecassary. Foeran singularities related to
semi-resolutions se&[SB88] and [Kol92].

We are now ready to update our definition of “nice” to its firadrh cf. (2.10).

DEFINITION 6.7. LetX beniceif X is semi-log canonical, projective and; is an ample
Q-line bundle.

7. FAMILIES AND MODULI FUNCTORS

A very important issue in considering higher dimensionadmobproblems is that, as
opposed to the case of curves, when studying families ofanighmensional varieties one
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must put conditions on the admissible families that retstinie kind of families and not only
the kind of fibers that are allowed. This is perhaps betteetsidod through an example
of bad behaviour.

7.A. An important example
SETUP:

e Let R C P* be a quartic rational normal curve, i.e., the image of theesding ofP!
into P* by the global sections afp: (4). For example take

R={[u*:vdv:u*? w0 € P* | [u:v] € P'}.

e LetT C PP° be a quartic rational scroll, i.e., the image of the embegldi?! x P! into
IP° by the global sections afp1 1 (1,2). Letf; andf, denote the divisor classes of the
two rulings onT'. For example take

T ={[xz%:wat: at® 1 yz? gzt yt?] € PO | ([x: y],[2: t]) € P* x P},
e Let Cr C P° be the projectivized cone ovét in P> andCr C PS the projectivized

cone ovefT in P%. For the above choices, these are represented by

Cr = {[u" : vv: u®v? w0t w?) € PP | [u:v:w] € P?}, and

Or = {[xz? s azt at? : y2® cyzt - yt? :pd®] € PO | ([w:y:p),[2:t:q]) € P? x P?}.
e Let V C P° be a Veronese surface, i.e., the image of the Veronese einigedte

embedding of*? into P° by the global sections af- (2). For example take

V=A{[u?:vw:uww:uw:v?w?] | [u:v:w] € PP
Another possible parametrization is obtained when then&se embedding is combined
with the 4-to-1 endomorphism &, [u : v : w] — [u? : v? : w?]:
V= {[u*: v*w? : v*0? wPw? ot w?] | [uv s w] € PP

e Let W C P> x P! be the following quasi-projective threefold:

W = {([u* : W®v + A(v*w? — u®v) s u?0? 1 uv® + A(WPw? — w?) t ot L w?, A
[lu:v:w] e P>, A€ A} CP° x Al
OBSERVATIONS:

e V is a smoothing of”». Indeed, the second projection Bf x P! exhibits W as a
family of surfaces? — P!. Both Cr andV appear as members of this family. For
A=0,1€ A Wy ~CgrandW; ~ V.

e R is a hyperplane section &f. Indeed letd C P° be a general hyperplane. Then
C':= HNT is asmooth curve such th@t~ f; + 2f,. Then by the adjunction formula
29(C) — 2 = (=2f; — 2f, + C) - C = =2, henceC ~ P. Furthermore, thet? = 4,
s00r(1,2)|, =~ Oc(4). ThereforeC' is a quartic rational curve il ~ P*, and thus it
may be identified withR.

e T is also a smoothing of ;. Indeed, botil” andC'r are hyperplane sections 6fr.
The latter statement follows from the previous observation

ANALYSIS:

e |t is relatively easy, and thus left to the reader, to comphbét Cr has log terminal
singularities. In particular, this type of singularity isiang those we have to be able to
handle.



26 SANDOR J. KOVACS

e The problem this example points to is that if we allow arlsitframilies, then we may
get unwanted results. For example, using the families dérivom Cr and W would
mean thafl’ ~ P! x P! andV ~ P? should be considered to have the same deformation
type. However, there are obviously no smooth families they both belong to, they are
topologically very different. For instanc&? = 8 while K3 = 9.

e The crux of the matter is thaf'; is not Q-Gorenstein and consequently the family
obtained from it is not &-Gorensteirfamily. This is actually an important point: the
members of the family ar@-Gorenstein surfaces, but the relative canonical bundle of
the family is notQ-Cartier. In particular, the canonical divisors of the memshof the
family are not consistent.

e The family obtained fromi is Q-Gorenstein and consequently ensures that the canoni-
cal divisors of the members of the family are similar to soxtest. Among other things
this implies thatKéR = 9. One may also use the parametrizatiorCgf given above
to verify this fact independently. It is interesting to nthat K ,, is Q-Cartier, but not
Cartier even though its self-intersection number is argieite

7.B. Q-Gorenstein families

We have seen that we have to extend the definition of the mdaluitor (seef (3.3)) to
allow (some) singular varieties.

WARNING. Here we are entering a somewhat uncharted territory. Sdntteeaotions
and conditions are still evolving. It has not crystallizezt what are the “right” or optimal
conditions to assume. Accordingly, on occasion, we mayraesiwo much or too little.
This section is intended to give a peak into the forefronhefriesearch that is conducted
in this area.

The previous example shows that it is not enough to reshieckind of members of the
families we allow but we have to restrict the kind of familigs allow as well.

DEFINITION 7.1. Letk be an algebraically closed field of characteristiand Sch, the
category ofk-schemes. We defin@/"s' : Sch, — Sets, the moduli functor of weakly
stable canonically polarize@-Gorenstein varietieghe following way.

(7.1.1) Amorphismf : X — B is called awveakly stable familyf the following hold:
(a) fis flat and projective with connected fibers,
(b) wx,p is arelatively amplé)-line bundle, and
(c) forallb € B, X, has only semi-log canonical singularities.

(7.1.2) For an objecB € Ob Schy,

M™(B):= {f: X — B| fisaweakly stable famil}//,_v

where =" is defined as ih 3.3.
(7.1.3) For a morphism € Homseh, (A4, B),

MY a):= () xpa.

REMARK 7.1.1. Note thatitis not obvious from the definition thastisiindeed a functor.
However, this functor (if it is a functor) is actually not yibe one we are interested in. We
will use this to define others. The fact that those othersradedd functors follows from
Lemma 7.3.

As mentioned above, this functor is not yet the right one. rétee two additional
conditions to which we have to pay attention. The first is tegkérack of the Hilbert
polynomials of the polarizations. This is straightforwaaithough somewhat different
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from the smooth case in that now we have to also keep track af pdwer of theQ-line
bundle we consider giving the polarization. This is donecdisws.

DEFINITION 7.2. Letk be an algebraically closed field of characterigtiGchy, the cate-
gory of k-schemes and&/ € N. We defineM stV : Sch;, — Sets, themoduli functor of
weakly stable canonically polarize@-Gorenstein varieties of indeX, as the subfunctor
of Mt with the additional condition tha&;\% is a line bundle:
MINI(B): = {(f L X — B) € M"(B) | W) isaline bundle} .
Now leth € Q[t]. Then
>N B = { (£ X = B) € a = N(B) | x(X, W) = h(m) }

In order to use the polarization given by the appropriatexefé power of the canonical
sheaves of the fibers we need to know that the powers of thé/eet@nonical sheaf com-
mute with base change. The following shows that for objetta/i*st[V](B), this holds
for multiples of the index.

Lemma 7.3. [HK 04, 2.6] Given a weakly stable family of canonically polariz@eiGor-
enstein varieties of indeX, f : X — B, and a morphisna : 7" — B, we have

(V] (V]

oz}wX/B ~ Wy e
PROOF LetU C X be the largest open subgétof X such thatuy, is a line bundle

for all b € B or equivalently the largest open subgebf X such thatuX/B|U ~ wy/Bis

aline bundle. Then |,y =~ wi), 5 and hence

X/B
o] ~atwN o~ N ~ oV
X¥X/Blajz'v — ©"X*U/B — ¥ lu/r T VX /Tla' U

Now codim(Uy, X3) > 2 for all b € B (cf. (6.6.6)), sccodim((a ' U)y, (X7)¢) > 2 for

all t € T and henceodim(ay'U, X7) > 2. Finally a}w[)?;]B andw[)?;]/T are reflexive,

so since they are isomorphic m}lU, they are isomorphic oX 7. (]

However, this may not be enough to encode the main topologiioperties of the fibers.
As a solution, Kollar suggests to require more.

DEFINITION 7.4 : KOLLAR'S CONDITION. We say thaKollar's condition holds for a
family (f : X — B) € M"Y(B), if forall £ € Z and for allb € B,
W4 ~ Wl
X/BIXx, — “Xp"

The important difference between this condition and theasibn in the previous lemma
is that this condition requires that the restrictiorahfreflexive powers commute with base
change, not only those that are line bundles.

It is relatively easy to see using the same argument as innba pf (7.3) that this
condition is equivalent to the requirement that the resstricof all reflexive powers to the
fibers be reflexive themselves.

Now we are ready to define the “right” moduli functor.

DEFINITION 7.5. Letk be an algebraically closed field of characteristiand Sch, the
category ofk-schemes. We defing/ = M5 : Sch, — Sets, the moduli functor of
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stable canonically polarize@-Gorenstein varietigsas the subfunctor oSt with the
additional condition that a familyf : X — B) € M"Y B) satisfy Kollar's condition:

M(B):= {(f;X_>B) € M™SY(B) |Vl € Z,b € B,wp . _wg‘;]b}

Finally, leth € Q[t] andN € N. Then we define¥"’ as the subfunctor ab/ [V with the
additional condition that for a familyf : X — B) € MN(B), the Hilbert polynomial
of the fibers agree with:

MN(B):={(/: X — B) e N(B) WbeBX(Xb, Ny = nm) }

The difference between the moduli functabg"*" N and Mh is very subtle. They
parametrize the same objects and as long as one restrictseo$dein varieties, they allow
the same families. This means that if one is only interestgtie compactification of the
coarse moduli space afs™°°" then the difference between these two moduli functors
does not matter as they lead to the same reduced scheme. flEnerdie may only show
up in their scheme structure. However, the usefulness ofdulngpace is closely related
to its “right” scheme structure, so it is important to findttha

A somewhat troubling point is that we do not actually know #&ofact that these two
moduli functors are really different in Characteris(]icln other words, we do not know an
example of a family that belongs M‘”SL , but not toﬂ\/[,gN]. The following example of
Kollar shows that these functoase dlfferent in characteristip > 0, but there is no similar
example known in characteristic

EXAMPLE 7.6 : KOLLAR'S EXAMPLE (UNPUBLISHED). Note that the first part of the

discussion (7.6.1) works in arbitrary characteristichihss that a family with the required

properties belongs tMWS" , but not tth[/N]. In the second part (7.6.2) it is shown
that in characteristip > 0 a family satisfying another set of properties also has theson
required in (7.6.1). Finally, it is easy to see that the exanip 8§87.A admits these later
properties, so we do indeed have an explicit example forlgviour.

(7.6.1) Suppose that: Y — B is a family of canonically polarize@-Gorenstein varieties
(with only semi-log canonical singularities) and assunat Bh= Spec R with R = (R, m)

a DVR. LetB,, = Spec R,, whereR,, : = R/mn and consider the restriction of the family
goverB,, g, :Y, =Y xp B, — B,. Finally assume thaty, ,5, is Q-Cartier of index
r, for all n butr,, — oo asn — oo (recall that the index means the smallest integer
such that then!™ reflexive power is a line bundle). Note that by Lemma 7.3 thiplies
thatwy, g cannot beQ-Cartier.

We claim thaty,, is a weakly stable family of canonically polariz€dGorenstein vari-
eties of index-,, (Definition[7.1), but it does not satisfy Kollar's conditi¢befinition[7.4)
for all but possibly a finite number of.

The first part of the claim is obvious from the assumptions.tke second part consider
the following argument. |, satisfied Kollar’'s condition, then for any. < n the re-

striction ofw!™™ . to Y, (hence taY) would be a line bundle implying, via Nakayama'’s
Y, /Bn

lemma, thawgﬁm/]B itself is a line bundle. That however would further implyttha < r,,,,
but sincer,, — oo asn — oo, this can only happen for a finite number:o$.

(7.6.2) Next we will show (following Kollar) that a family sh as in (7.6.1) does exist
in characteristicp > 0. It is currently not known whether such an example exists in
characteristic).
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As above, letg : Y — B be a family of canonically polarize@-Gorenstein vari-
eties with only log canonical singularities, such ttfat= Spec R with R = (R, m) a
DVR. Assume thay, Y, and B are defined above a field of characteristipp > 0. Let
B,, = Spec R,, whereR,,: = R/mn and consider the restriction of the famijyover B,,,
gn : Y, =Y xp B, — B,. For a concrete example one may consider the smoothing of
Cr to T via Cr (reduced ovek|z](,)) from the example in §87.A.

Claim. wy, /p, is Q-Cartier.

Proof. The question is local o, so we may assume thi}, is a local scheme. In partic-
ular, we will assume that all line bundles &mn are trivial. Let

b 2 Up = (Yn \ Slng Kl) — Y.

By assumptiony,, is normal (; andS-) for all n, so
w[y”':]/Bn = (Ln)*w[@]@:r}Bn
for all m.
Next, consider the restriction maps to the special fiber effémily from all the infini-
tesimal thickenings:
oy : PicU,, — PicUj.

The key observation is the following: the kernel of this ma@ip-power) torsion group
(cf. [Har 77, Ex.I11.4.6]). In other words, any line bundle @A, whose restriction td/; is
trivial extends to &)-Cartier divisor ony,,.

Recall that by assumptiony, /g, = wy, is Q-Cartier (of indexr;), in particularw
is trivial. Therefore,

[r1]
Yl/Bl

~ L, OT1

®r1 _,,®r
) U, — wUl/Bl

QH(WU"/B" =Yy,/B,

is also trivial. Consequently,

r1
Wy, 1B, € ker g,,.

®my
Recall that this a torsion group, so there existsrgne N such that(wﬁr}B ) is
trivial. That however, implies that then so is

) 2 (1)) = (1) O, = O,

We conclude thaby. /g, is indeedQ-Cartier. O

It is left for the reader to prove thatdify, 5 is notQ-Cartier, then the index aby, /g,
has to tend to infinity. It is easy to check that this happerkercase of®r considered as
a non{)-Gorenstein smoothing @'y as above.

REMARK 7.7. The previous example also shows an important aspediyKwilar's con-
dition is useful. LetZ be a canonically polarize@-Gorenstein variety of index: with
only semi-log canonical singularities. If we want to find aduab space whereZ ap-
pears, we may choose the moduli funm){m’[“'m] for anya € N (whereh is the Hilbert
polynomial ofw[Z“'m]). The previous example shows that the scheme structure cfitne-
sponding moduli space will depend on whickve choose. Ag grows, the moduli scheme
gets thicker. Consequently, there is not a unigue moduérsehwhereZ would naturally
belong to. This does not happen for the funcmi"'m] because Kollar’s condition makes
sure that the choice af makes no difference.
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7.C. Projective moduli schemes

With the definition ofM,EN] we have reached the moduli functor that should be the right
one. This functor accounts for all canonical models, eveittla bit more, as well as all
degenerations of smooth canonical models.

The natural next step would be to state the equivalent of forad ™. How-
ever, we can't quite do that exactly.

Boundednessas proven for moduli of surfaces (i.deg h = 2) in [Ale94] (cf. [AM 04])
A more general result was obtained iKdr00] assuming that certain conjectures from
the Minimal Model Program were true. Fortunately these ecijres have been recently
proven in HM 07, BCHM 06], so this piece of the puzzle is in place.

Separatednessllows from [K SB88] and [K aw05].

Projectivityfollows from [Kol90].

Local closednesfor M,ZVSI’[N I'was proven inlHK 04]. Hacking obtained partial results

toward the local closedness .‘M,EN Vin [Hac04]. Local closedness OM}EN Vin general has
been proved by Abramovich and Hassett, but this result haappeared in any form yet
at the time of this writing. Even more recently a generaldlaitig result that implies the
local closedness aM,EN] has been proved by KollaK[ol08]. Kollar's result essentially
closes the question of local closedness for good.

So, the conclusion is that all the pieces are in place, eveugth the statement of the
existence of a projective coarse moduli schem@\f&ﬁy I'has not yet appeared in print and
thus | will not formulate it as a theorem here.

7.D. Moduli of pairs and other generalizations

As it has become clear in higher dimensional geometry inmegears, the “right” formu-
lation of (higher dimensional) problems deals with pains|ogy varieties (cf. Kol97b]).
Accordingly, one would like to have a moduli theory of log ieties. In fact, one would
like to go through this entire article and replace all olgewith log varieties, canonical
models with log canonical models, etc.

However, this is not as straightforward as it may appearesfitst sight and the formula-
tion of the moduli functor itself is not entirely obvious. Netheless, work is being done in
this area and perhaps by the time these words appear intheng, will be concrete results
to speak of about log varieties.

There are many related results | did not have the chance ttiondan detail. Here is a
somewhat random sample of those results: Valery Alexeewbbas particularly prolific
and the interested reader should take a look at his resugdsoe chunk of which is joint
work with Michel Brion: [Ale96, Ale02, Ale0l,/ABO4a, ABO4b, AB05]. Paul Hacking
solved the long standing problem of compactifying the mbdpéce of plane curves in
a geometrically meaningful wayHac04]. Hacking jointly with Keel and Tevelev has
done the same for the moduli space of hyperplane arrangsiit&i<fT 06] and Del Pezzo
surfacesiHKTO07].
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