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VANISHING THEOREMS, BOUNDEDNESS AND
HYPERBOLICITY OVER HIGHER-DIMENSIONAL BASES

SÁNDOR J. KOVÁCS

(Communicated by Michael Stillman)

Abstract. A vanishing theorem is proved for families over higher dimensional
bases and applied to generalize some Shafarevich type statements to that set-
ting.

Let C be a smooth projective curve of genus g over an algebraically closed field
of characteristic 0, ∆ ⊂ C a finite subset and q > 1 a positive integer. Let δ = #∆.
Shafarevich conjectured that the set of non-isotrivial families of smooth projective
curves of genus q over C \ ∆ is finite; furthermore if 2g − 2 + δ ≤ 0, then there
are no such families. This was confirmed by [Parshin68] for the case ∆ = ∅ and
by [Arakelov71] in general; cf. [Beauville81]. For a more detailed discussion see
[Bedulev-Viehweg00].

Recently there has been a flurry of new results regarding higher-dimensional
generalizations of this problem: [Migliorini95], [Kovács96], [Kovács97b],
[Bedulev-Viehweg00], [Kovács00a], [Viehweg-Zuo01a], and [Kovács00b]. All of these
articles study generalizations when the base of the family is a curve.

The main goal of the present article is to extend (some of) these results to higher-
dimensional bases, i.e., replacing the fixed curve, C, with a fixed smooth projective
variety, S, of arbitrary dimension.

An extension like that may be useful for several reasons. A consequence of
the results for curves can be phrased in the following way: An isotrivial family of
curves of genus at least 2 over P1 must have at least 3 singular fibers. In other
words the corresponding moduli space has a certain hyperbolic property. This, of
course, implies similar statements for families over a base that is covered by rational
curves, e.g., Pk, but not statements as strong as one would expect. Consider a
family that is smooth over Pk \ ∆ where ∆ is a suitable effective divisor. Then
the above statement implies that deg ∆ > 2. However, if the hyperbolic behavior
holds over higher-dimensional bases as well, then one expects that deg ∆ > k+1 or
equivalently that ωPk(∆) be ample. In particular, this would also say that certain
families defined over a plane curve cannot be extended to a family over P2.

One can go even further and conjecture that if the variation of the family f :
X → S in moduli is maximal, then ωS(∆) is big. For a more precise formulation of
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these conjectures see Conjecture 5.2.1. These are special cases of Viehweg’s more
general conjectures [Viehweg00, 6.3]. The last part of Shafarevich’s conjecture is a
special case of this, and so are the other known generalizations of that.

The proofs of the known cases center around various Kodaira type vanishing
theorems. One expects that the first step toward a proof of this conjecture would
be a new vanishing theorem.

The main result of this article is a vanishing theorem. It can be considered a
relative version of the logarithmic Kodaira-Akizuki-Nakano vanishing theorem. For
the precise statement see Theorem 2.5. The proof of this theorem occupies §§1 and
2. §3 is devoted to some positivity results for the push-forward of powers of the
relative dualizing sheaf. The proofs here closely follow ideas of Kollár and Viehweg.
As an application of the results in §§2 and 3, a boundedness result is proved for
families over higher-dimensional bases in §4. The interesting point here is more the
technique than the result itself.

Another application is presented in §5. A couple of theorems are proved for the
degeneracy locus of certain families of varieties of general type over a base that is
one of the following: An abelian variety, Pk for k ≤ 3, or a quadric hypersurface
of dimension at most three. Theorem 5.1.1 is new; it treats a slightly more general
case than what was previously known [Kovács97a, 0.1]. Theorems 5.2.2 and 5.2.4
are unfortunately not as strong as expected. In particular, they also follow from
the more general [Viehweg00, 2.6]. Furthermore, in Theorems 5.2.2 and 5.2.4,
the restrictions on the dimension of the base and fibers respectively should not be
necessary. In fact, they are not present in the vanishing theorem 2.5. The problem is
in the application part. The assumptions of the vanishing theorem hold trivially in
the cases presented here, and there is no obvious reason why they would not apply in
a more general situation. To resolve this issue will require more work, but one may
hope that this method will actually lead to a more general statement along the lines
of Conjecture 5.2.1. Note that since the writing of this article, [Viehweg-Zuo01b]
achieved stronger results in this direction with different methods.

Definitions and notation. Throughout the article the groundfield will always be
C, the field of complex numbers. The dimension of the empty set is −∞.

Let f : X → S be a morphism of schemes. Then Xs denotes the fiber of f over
the point s ∈ S and fs denotes the restriction of f to Xs. Similarly, Xgen denotes
the generic fiber of f . For a coherent sheaf F , F∗ denotes its dual, Hom(F ,OX).

Let f : X → S be a surjective morphism between smooth projective varieties.
Var(f) denotes the number of effective parameters of the birational equivalence
classes of the fibers. For the rigorous definition of Var(f) the reader should consult
[Kollár87] or [Viehweg83a]. f will be called isotrivial if Var(f) = 0.

A line bundle L on X is called big if X is proper and the global sections of Lm
define a birational map for some m > 0, and it is called nef if deg(L|C) ≥ 0 for
every proper curve C ⊂ X . In particular, ample implies nef and big. L will be
called l-big if X is proper and the global sections of Lm define a rational map,
φ : X 99K Y , for some m > 0 such that dimX − dimφ(X) ≤ l. Obviously 0-big
is the same as big. Let U be an open subset of X . L is called semi-ample with
respect to U if some positive power of L is generated by global sections over U ,
i.e., the natural map H0(X,Lb) ⊗ OU → Lb|U is surjective for some b > 0. It
is called semi-ample if it is semi-ample with respect to X . Similarly L is called
l-ample with respect to U if the global sections of some positive power of L define
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a rational map, φ : X 99K Y , such that φ|U is a morphism (i.e., defined everywhere
on U), φ−1(φ(U)) = U , and dimφ−1(y) ≤ l for all y ∈ φ(U). Let X be a smooth
projective variety and U ⊆ X an open subset. Let E be a locally free sheaf on
X , π : P = P(E) → X the projective bundle associated with E and L = OP(E)(1)
the corresponding tautological line bundle. E is called semi-positive or nef (resp.
semi-ample with respect to U , resp. l-big, resp. l-ample with respect to U) if L on
P is nef (resp. semi-ample with respect to π−1(U), resp. l-big, resp. l-ample with
respect to π−1(U)).

1. A vanishing theorem for vector bundles

An important ingredient of the main vanishing theorem in §2 is in turn a gen-
eralization of the Kodaira-Akizuki-Nakano vanishing theorem. This generalization
is essentially a combination of the logarithmic version of Esnault and Viehweg and
the vector bundle version of Le Potier. In fact the proof of this combined version
does not require any new ideas.

1.1 Theorem ([Esnault-Viehweg92, 6.7], [LePotier75, Théorème 1]). Let X be a
smooth projective variety of dimension n, D an effective normal crossing divisor
and E a locally free sheaf of rank r on X. Assume that E is semi-ample (with respect
to X), and l-big and l + 1-ample with respect to X \D for some l ∈ N. Then for
p+ q ≥ n+ r + l,

Hq(X,ΩpX(logD)(−Dred)⊗ E) = 0.

Proof. The following lemma reduces the question to the line bundle case.

1.2 Le Potier’s Lemma (cf. [Shiffman-Sommese85, 5.16]). Let F be a coherent
sheaf on X, π : P = P(E) → X the projective bundle associated to E, and L =
OP(E)(1) the corresponding tautological line bundle on P . Then for all p, q ∈ N,

Hq(X,F ⊗ ΩpX(logD)⊗ E) ' Hq(P, π∗F ⊗ ΩpP (log π∗D)⊗ L).

Proof. The proof of [Shiffman-Sommese85, 5.16] works word-for-word if one replaces
ΩX and ΩP with ΩX(logD) and ΩP (log π∗D). �

Now take F = OX and use [Esnault-Viehweg92, 92, 4.11, 6.7] for L on P . �

1.3 Remark. An alternative way is to use [Esnault-Viehweg92, 2.3] and induction.

2. Vanishing theorems for families

2.1. Let f : X → S be a surjective morphism between smooth projective varieties
with connected fibers, dimX = n and dimS = k. Let ∆ ⊂ S be an effective normal
crossing divisor and assume that D = f∗∆ ⊂ X is also a normal crossing divisor.
Assume that (X,D) → (S,∆) has the following properties: X \ D → S \ ∆ is
smooth, and the sheaf Ω.X/S(logD) defined by the short exact sequence

0→ f∗ΩS(log ∆)→ ΩX(logD)→ ΩX/S(logD)→ 0,

is locally free. ΩqX/S(logD) will denote
∧q ΩX/S(logD).

2.2. Let E be a locally free sheaf of finite rank on S. Then there exists a filtration

E = F0 ⊃ F1 ⊃ · · · ⊃ Fr = 0
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of E such that F i−1/F i is a locally free sheaf of rank at most k = dimS for all
i = 1, . . . , r. Choose such a filtration for each E on S and let

F(E) = {F i−1/F i|F i is the chosen filtration of E}.
These choices together will be called a choice of filtrations on S.

The following is a trivial, but important observation:

2.3 Lemma. Let f : X → S be as in subsection 2.1. If for some i ∈ N and G a
coherent sheaf on X, Hi(X,G ⊗ f∗E) 6= 0, then there exists an E ′ ∈ F(E) such that
H i(X,G ⊗ f∗E ′) 6= 0. �
2.4 Definition. Let f : X → S be as in subsection 2.1 and let A be a set of locally
free sheaves of finite rank on S. Let T0(=A) = A and

T(A) = T1(A) =
⋃

F(E ⊗ ΩqS(log ∆)⊗ ωS(∆)−1),

where the union is taken for all E ∈ A and for q = 0, . . . , k. Furthermore, for r ≥ 1,
let Tr(A) = T(Tr−1(A)).

2.5 Theorem. Let f : X → S be as in subsection 2.1. Let A be a set of locally
free sheaves of rank at most k on S, L a line bundle on X such that for a suitable
choice of filtrations on S, L(Dred) ⊗ f∗E ′ is semi-ample (with respect to X), and
big and 1-ample with respect to X \ D for all E ′ ∈ Ti(A), i = 0, . . . , n − k. Then
for all E ∈ A,

Hp(X,ΩqX/S(logD)⊗ f∗ωS(∆) ⊗ L⊗ f∗E) = 0 for p+ q ≥ n.
Proof. The statement will be proved by induction using the following lemma.

2.6 Lemma. Let p, q ∈ N such that p+ q ≥ n and assume that for every natural
number l > q and for every E ′ ∈ T(A),

Hp−1(X,ΩlX/S(logD)⊗ f∗ωS(∆)⊗ L⊗ f∗E ′) = 0.

Then for every E ∈ A, Hp(X,ΩqX/S(logD)⊗ f∗ωS(∆)⊗ L⊗ f∗E) = 0.

Proof. Let E ∈ A. The standard exact sequence of f ,

0→ f∗Ω1
S(log ∆)→ Ω1

X(logD)→ Ω1
X/S(logD)→ 0,

yields a filtration on Ωq+kX (logD) ⊗ L ⊗ f∗E which in turn induces a spectral se-
quence,

Er,s1 = Hr+s(X,Ωq+k−rX/S (logD)⊗ f∗ΩrS(log ∆)⊗ L⊗ f∗E),

Er,s1 ⇒ Hr+s(X,Ωq+kX (logD)⊗ L⊗ f∗E).

Since p + q ≥ n, Hp(X,Ωq+kX (logD)⊗ L⊗ f∗E) = 0 by Theorem 1.1. Hence
Er,p−r∞ = 0 for all r. In particular, Ek,p−k∞ = 0. Suppose now that

Ek,p−k1 = Hp(X,ΩqX/S(logD)⊗ f∗ωS(∆) ⊗ L⊗ f∗E) 6= 0.

Observe that Eu,vw = 0 for every u > k and arbitrary v, w, so Ek,p−k∞ can be zero
only if there exists a t > 0 such that Ek−t,p−1−k+t

t 6= 0. Then Ek−t,p−1−k+t
1 6= 0

for the same t, so l = q + t > q is such that

Ek−t,p−1−k+t
1 = Hp−1(X,ΩlX/S(logD)⊗ f∗Ωk−tS (log ∆)⊗ L⊗ f∗E) 6= 0, i.e.,

Hp−1(X,ΩlX/S(logD)⊗ f∗ωS(∆)⊗ L⊗ f∗(E ⊗ Ωk−tS (log ∆)⊗ ωS(∆)−1)) 6= 0.
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Therefore Hp−1(X,ΩlX/S(logD)⊗ f∗ωS(∆)⊗L⊗ f∗E ′) 6= 0, for some E ′ ∈ T(A)
by Lemma 2.3. This contradicts the hypotheses, hence the statement follows. �

Proof of Theorem 2.5 continued. Let E ∈ A and suppose that

Hp(X,ΩqX/S(logD)⊗ f∗ωS(∆)⊗ L⊗ f∗E) 6= 0

for some p, q, such that p+ q ≥ n. Then by Lemma 2.6 there exist E1 ∈ T(A) and
q1 > q such that

Hp−1(X,Ωq1X/S(logD)⊗ f∗ωS(∆)⊗ L⊗ f∗E1) 6= 0.

Now p−1+q1 ≥ p+q ≥ n, so this step can be repeated. I.e., for j = 2, . . . , n−k+1,
there exist Ej ∈ Tj(A) and qj > qj−1 such that

Hp−j(X,ΩqjX/S(logD)⊗ f∗ωS(∆)⊗ L⊗ f∗E1) 6= 0.

However, qn−k+1 > n− k, so Ωqn−k+1
X/S (logD) = 0, a contradiction. �

2.7 Remark. Note that the “extra” positivity assumption of Theorem 2.5 is asking
positivity in a horizontal direction. In other words, if L is relatively ample, then
the assumption asks that L be more positive than certain given sheaves coming
from S. Therefore the applicability of the theorem does not depend as much on the
family as it does on the base. In particular, if one studies families over a fixed base,
with fixed degeneracy locus, then the assumptions provide a fixed threshold for the
required positivity of L for all families over this base. This should be understood as
a kind of boundedness statement for families over a fixed base with fixed degeneracy
locus (or smooth families over S \∆); cf. §4.

2.8 Corollary. Let f : X → S be as in subsection 2.1. Let M be a line bundle on
X. Assume that M contains another line bundle L such that for a suitable choice
of filtrations on S, L(Dred) ⊗ f∗E is semi-ample (with respect to X), and big and
1-ample with respect to X \D for all E ∈ Ti(OS), i = 0, . . . , n− k. Then

Hn(X, f∗ωS(∆)⊗M) = 0.

Proof. Hn(X, f∗ωS(∆) ⊗ L) = 0 by Theorem 2.5. The cokernel of the embedding
L ⊆M is supported in codimension 1, so the map

Hn(X, f∗ωS(∆) ⊗ L)→ Hn(X, f∗ωS(∆)⊗M)

is surjective, while Hn(X, f∗ωS(∆)⊗ L) = 0. �

2.9 Corollary. If in addition f is smooth and S is an abelian variety, then
Hn(X,K) = 0 for every line bundle K on X that contains a big and 1-ample line
bundle. �

3. Weak positivity

3.1. Weakly positive sheaves. The following notation will be fixed for the rest
of subsection 3.1. Let S be a quasi-projective variety, and U ⊆ S an open subset.

3.1.1 Definition ([Viehweg83a]). Let F be a coherent torsion free sheaf on S and
ι : V ↪→ S the maximal open subscheme such that F|V is locally free. We define
the symmetric powers of F by Symr(F) = ι∗ Symr(F|V ).
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Let L be an ample line bundle on S. Then F is called weakly positive over U if
F|U is locally free and for all a > 0 there exists some b > 0 such that Symab(F)⊗Lb
is generated by global sections over U , i.e., the natural map

H0(S, Symab(F)⊗ Lb)⊗OU → Symab(F)⊗ Lb|U
is surjective.

3.1.2 Lemma. Let E be a coherent sheaf on S. Assume that either E is an ample
locally free sheaf or E = F ⊗ L, where F is a weakly positive sheaf over U and L
is an ample line bundle. Then there exists a λ0 > 0 such that for all λ, divisible by
λ0, and for any t1, t2 ∈ U, t1 6= t2, the natural map

ρλ : H0(S, Symλ(E))→ (Symλ(E) ⊗ k(t1))⊕ (Symλ(E)⊗ k(t2))

is surjective.

Proof. Let mi be the ideal sheaf of {ti} for i = 1, 2 and I1,2 = m1 ∩ m2 that of
{t1, t2}.

Let E be an ample locally free sheaf. Then H1(S, Symλ(E)⊗I1,2) = 0 for λ� 0.
In fact by semi-continuity there is a λ0 such that this vanishing holds for all λ ≥ λ0

and for all pairs of points on S, so the statement follows.
Let E = F ⊗L as above. Since L is ample, there exists an n > 0 such that Lbn is

very ample for all b > 0. Hence there exist sections σ1, σ2 ∈ H0(S,Lbn) such that
σi ∈ miLbn, but σi 6∈ m3−iLbn for i = 1, 2. Now let a = n + 1. Since F is weakly
positive, there exists a b0 > 0, such that Symab(F)⊗Lb is globally generated over U
for all b ≥ b0 [Viehweg83b, 3.2]. Then Symab(E) ' Symab(F)⊗Lb⊗Lbn, and using
σi one easily sees that im ρab contains (Symab(E)⊗ k(t1))⊕ 0 and 0⊕ (Symab(E)⊗
k(t2)). Therefore ρab is surjective, so the statement holds with λ0 = ab0. �
3.1.3 Lemma. Let f : X → S be a surjective morphism, M a line bundle on X,
and N a line bundle on S. Assume that Mt =M|Xt is generated by global sections
for all t ∈ U , f∗M is locally free on U , and f∗Mm is reflexive on S for all m large
and divisible enough. Assume further that for some r > 0 there exists a subsheaf
E ⊆ Symr(f∗=M ⊗N ), such that supp (Symr(f∗M⊗N )/E) ⊆ S \U , and either E
is an ample locally free sheaf or E = F ⊗L, where F is a weakly positive sheaf over
U and L is an ample line bundle on S. Then M⊗ f∗N is big and semi-ample with
respect to X \ f−1U and if m is large and divisible enough, then the global sections
of Mm ⊗ f∗Nm separate the fibers over U and on Xt induce the same map as do
the sections of Mm

t .

Proof. SinceMt is generated by global sections for t ∈ U , f∗ Symm(f∗M)→Mm

is surjective on X \ f−1U . In particular, α : f∗ Symm(f∗M) ⊗ (OXt ⊕ OXs) →
Mm

t ⊕Mm
s is surjective for t, s ∈ U . Now one has the following commutative

diagram:

H0(S, Symm(f∗M⊗N ))⊗OX
β−−−−→ f∗(Symm(f∗M)⊗ (k(t)⊕ k(s)))y '

y
H0(S, f∗Mm ⊗Nm)⊗OX f∗ Symm(f∗M)⊗ (OXt ⊕OXs)

'
y α

y
H0(X,Mm ⊗ f∗Nm)⊗OX

γ−−−−→ Mm
t ⊕Mm

s
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If m is large and divisible enough, then β is surjective by Lemma 3.1.2, hence α ◦β
is surjective, and then so is γ. This proves the statement. �

3.1.4 Corollary.
(3.1.4.1) If Mt is l-big for general t ∈ S, then M⊗ f∗N is l-big.
(3.1.4.2) If Mt is l-ample for t ∈ U , then M⊗ f∗N is l-ample with respect to

X \ f−1U .

3.2. Weak positivity of push-forwards of powers of dualizing sheaves.

3.2.1. Let f : X → S be a surjective morphism between smooth projective varieties
with connected general fiber. Let n = dimX , k = dimS, and ∆ ⊂ S denote the
subset of S such that X \ f−1∆→ S \∆ is smooth. Assume that ωXgen is nef and
big, Var(f) = dimS, and if m is large and divisible enough, then f∗ωmX/S is locally
free on S.

3.2.2 Remark. The last technical assumption is likely avoidable. The rest of the
assumptions imply that f∗ωmX/S is locally free on S \∆. A possible way to try to
avoid the extra assumption, at least for families of canonically polarized manifolds,
is to assume that the minimal model program works in dimension n and to use
the results of [Karu00] on the existence of compactified moduli. Those allow one to
find a birational model with the required property. Another possibility is to use the
weak semistable reduction of [Abramovich-Karu00] as is done in [Viehweg-Zuo01b]
and [Viehweg-Zuo01c]. For details please consult the latter articles.

3.2.3 Lemma. Let f : X → S be as in subsection 3.2.1. Then ωX/S is big and if
φ : X 99K Z is the birational map induced by ωmX/S, then φ separates the fibers of f
over an open dense subset of S and φ|Xgen is equal to the map induced by ωmXgen

for
m large and divisible enough.

Proof. Let l > 0 be divisible enough and such that ωlXgen
is generated by global

sections. Then by [Viehweg83b, Thm. II] there exists an ample locally free sheaf A
on S and an injective morphism α : A → Symr(f∗ωlX/S) for some r > 0, such that
α is an isomorphism over a dense open subvariety, U ⊆ S. The statement follows
by applying Lemma 3.1.3 with M = ωlXgen

. �

3.2.4 Definition ([Esnault-Viehweg90]). Let F be a normal Gorenstein variety
with rational singularities, L a line bundle on F and Γ an effective divisor such
that L = OF (Γ). Let C(Γ, N) = coker(τ∗ωF̃ (−[ Γ̃

N ]) → ωF ), where τ : F̃ → F is a
resolution of singularities such that Γ̃ = τ∗Γ is a normal crossing divisor, e(Γ) =
min{N ∈ N+| C(Γ, N) = 0}, and e(L) = sup{e(Γ)| ∃λ ∈ H0(F,L) such that Γ =
(λ = 0)}. e(L) will be called the Esnault-Viehweg threshold of L. For properties of
e(L) the reader should consult [Viehweg95, §5.3-4].

Using the notation of subsection 2.1, r(m) will denote the rank of f∗ωmX/S . This is
equal to the mth plurigenus of the general fiber of f , Pm(Xgen). e(m) will denote the
Esnault-Viehweg threshold of ωmXgen

. If ωXgen is ample, then e(m) ≤ mnKn
Xgen

+ 1
for m� 0 by [Viehweg95, 5.12].

The following statement gives an effective measure of the positivity of f∗ωmX/S .
The main ideas of the proof originate in the works of Kawamata, Kollár and
Viehweg. However, there are some essential differences compared to the many
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variations that have appeared in the literature so far. Since the base is higher
dimensional the statement is somewhat weaker than in the case when the base is
a curve. It turns out that for the applications here this statement is sufficient.
Another difference is a trivial, but crucial improvement: It is not necessary to start
the proof by passing to a finite cover as has been customary.

3.2.5 Proposition. Let f : X → S be as in subsection 3.2.1, and m sufficiently
large and divisible. Then there exists a sheaf F weakly positive over S \∆ and an
embedding

ι : F ↪→ Syme(m)r(m)(f∗ωmX/S)⊗ (det f∗ωmX/S)−1

such that ι is an isomorphism on S \∆.

Proof. Let D = det f∗ωmX/S , q = e(m)r(m), π : Z → Xq = X ×S X ×S · · · ×S
X be a resolution of singularities, ρ = f q ◦ π : Z → S, and M = π∗ωXq/S =
π∗
(⊗

pr∗iωX/S
)
. By the assumptions ρ∗Mm is locally free on S, hence M is big

by Lemma 3.2.3. f q is a Gorenstein morphism and the fibers over S \ ∆ have
rational singularities, so there are natural injective maps:

De(m) ↪→ (f∗ωmX/S)⊗q ' f q∗ωmXq/S ,(3.2.5.1)

f q∗ω
m
Xq/S ↪→ ρ∗Mm,(3.2.5.2) (

ρ∗
(
Mm−1 ⊗ ωZ/S

))∗∗
↪→ f q∗ω

m
Xq/S(3.2.5.3)

where (3.2.5.2) and (3.2.5.3) are isomorphisms over S \ ∆. The composition of
(3.2.5.1) and (3.2.5.2) gives an injective map ρ∗De(m) → ρ∗ρ∗Mm → Mm and
hence a section σ ∈ H0(Z,Mm ⊗ ρ∗D−e(m)). Let A = (σ = 0). Since π was an
arbitrary resolution of singularities, one may replace it by further blow-ups. In
particular, one may assume that A is a normal crossing divisor.

Let J ⊆ OZ be the ideal sheaf defined as im[ρ∗f q∗ωmXq/S → Mm] = Mm ⊗ J .
Note that suppOX/J ⊆ supp f−1∆. By blowing up J one can assume that it is
a line bundle, trivial over X \ f−1∆. By [Viehweg89, II, 2.7(ii)] f∗ωmX/S is weakly
positive over S \∆, soMm⊗J is weakly positive over X \f−1∆. Since J is trivial
over X \ f−1∆, one obtains that M itself is weakly positive over X \ f−1∆.

Let L be an ample line bundle on X and K = Mm−1 ⊗ ρ∗D−1. Since N =
Ke(m)(−A) =Me(m)(m−1)−m is big, there exists an a > 0 such that N a ⊗ L−1 '
OX(B) for an effective divisor B and by further blowing up Z we may assume
that A + B is a normal crossing divisor. Since N is weakly positive over
X \ f−1∆, NN (−B) = NN−a ⊗ L is semi-ample with respect to X \ f−1∆
for all N > a. For N � 0,

[
N ·A+B
N ·e(m)

]
=
[

A
e(m)

]
, so by [Viehweg89, II, 4.3

and III, 2.6] ρ∗
(
K ⊗ ωZ/S (− [A/qe(m)])

)
is weakly positive over S \ ∆ and by

[Viehweg95, 5.14, 5.21], ρ∗
(
K ⊗ ωZ/S (− [A/e(m)])

)
↪→ ρ∗(K ⊗ ωZ/S) is an iso-

morphism on S \ ∆. Then using the fact that (ρ∗(K ⊗ ωZ/S))∗∗ is isomorphic to
(ρ∗(Mm−1 ⊗ ωZ/S))∗∗ ⊗ D−1, one concludes that ρ∗

(
K ⊗ ωZ/S (− [A/e(m)])

)
is a

subsheaf of (f∗ωmX/S)⊗q ⊗D−1 such that they are isomorphic on S \∆ by (3.2.5.3).
Let η : (f∗ωmX/S)⊗q ⊗ D−1 → Symq(f∗ωmX/S)⊗D−1 be the natural map. Then the
sheaf F = η

(
ρ∗
(
K ⊗ ωZ/S (− [A/e(m)])

))
has all the desired properties. �

3.2.6 Corollary. Using the notation and assumptions of Proposition 3.2.5, let N
be a line bundle on S such that det f∗ωmX/S ⊗ Nme(m)r(m) is ample. Assume that
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ωXt is big and 1-ample for t ∈ S \∆. Then ωX/S ⊗ f∗N is big and 1-ample with
respect to X \ f−1∆.

Proof. By Proposition 3.2.5, Syme(m)r(m)(f∗ωmX/S⊗Nm) contains a weakly positive
sheaf that is equal to it on S \∆. Then by Lemma 3.1.3 ωmX/S ⊗ f∗Nm is big and
1-ample with respect to X \ f−1∆. �

4. Boundedness

4.1 Theorem. Let f : X → S be a smooth morphism of smooth projective varieties.
Assume that Var(f) = dimS and Xgen is either a minimal surface of general type or
a canonically polarized variety. Then for every ample line bundle K on S there exists
a constant ν = ν(n, S,K) depending only on n, S, and K such that det f∗ωmX/S ⊗
L−me(m)r(m) is not ample for any line bundle L that contains Kν . In particular,
det f∗ωmX/S ⊗K−νme(m)r(m) is not ample.

Proof. Let n = dimX . For a line bundle L on S such that det f∗ωmX/S⊗L−me(m)r(m)

is ample, ωX/S ⊗ f∗L−1 is big and 1-ample by Corollary 3.2.6. Let K be an ample
line bundle on S and let ν = ν(n, S,K) be such that Kν ⊗ E is ample for all
E ∈ Ti(OS), i = 0, . . . , n − k. Finally let Lν = ωX/S ⊗ f∗(L−1 ⊗ Kν). Then
Lν ⊗ f∗E is big and 1-ample for all E ∈ Ti(OS), i = 0, . . . , n− k. Now if Kν ⊆ L,
then Lν ⊆ ωX/S so Hn(X,ωX) = Hn(X, f∗ωS ⊗M) = 0 follows by Corollary 2.8.
Since Hn(X,ωX) 6= 0, this finishes the proof. �

4.2 Corollary. If in addition ρ(S) = 1, then there exists a constant ν(n, S) such
that

deg f∗ωmX/S ≤ ν(n, S)me(m)r(m).

5. Hyperbolicity

The vanishing theorems obtained in §2 put restrictive constraints on the positiv-
ity of ωX if ωS(∆)−1 is nef. In particular, if S has non-positive Kodaira dimension,
then one expects that there will be no semi-stable families with small ∆. A more
precise formulation of this follows.

5.1. S is an abelian variety. This case was already studied in [Kovács97a]. A
slight generalization of the results of that article is presented here.

5.1.1 Theorem. Let A be an abelian variety and f : X → A a smooth morphism.
Assume that for all t ∈ A, Xt is either a minimal surface of general type or a
canonically polarized variety. Then Var(f) < dimA.

Proof. Suppose that Var(f) = dimA. Then ωX is big and 1-ample by Lemma 3.2.3.
Since A is an abelian variety, there exists a choice of filtrations on A, such that
Ti(OA) = {OA}. Then by Corollary 2.9, Hn(X,ωX) = 0, a contradiction. �

From this, using the technique of [Kovács97a, §2], one can easily derive the
following:

5.1.2 Corollary. Let A be an abelian variety and f : X → A a smooth morphism.
Assume that for all t ∈ A, Xt is either a minimal surface of general type or a
canonically polarized variety. Then f is isotrivial.
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5.2. S is a projective space or a quadric.

5.2.1 Conjecture. (i) Let f : X → Pk be a family of varieties of general type and
∆ ⊂ Pk an effective divisor such that X \ f∗∆ → Pk \∆ is smooth. Assume that
Var(f) = k. Then deg ∆ > k + 1. Or more generally,

(ii) Let f : X → S be a family of varieties of general type and ∆ ⊂ S an effective
divisor such that X \ f∗∆ =→ S \∆ is smooth. Assume that Var(f) = dimS (and
perhaps that ρ(S) = 1 if needed). Then ωS(∆) is big.

Conjecture 5.2.1(i) holds for k = 1 by [Beauville81], [Migliorini95], [Kovács96],
[Kovács97b], [Bedulev-Viehweg00], [Kovács00a], [Kovács00b], [Viehweg-Zuo01a].
Here we prove this conjecture for semi-stable families of curves and k ≤ 3; cf.
[Viehweg00, 2.6].

5.2.2 Theorem. Let f : X → Pk be a semi-stable family of curves of genus at
least 2 and ∆ ⊂ Pk a normal crossing divisor such that X \ f∗∆ → Pk \ ∆ is
smooth. Assume that k ≤ 3 and that there exists an effective divisor E on X such
that ωX(−E) is ample. Then deg ∆ > k + 1.

Proof. Suppose that deg ∆ ≤ k+ 1. Then ωPk(∆)−1 is nef, so M = f∗ωPk(∆)−1 ⊗
ωX contains an ample line bundle, L = f∗ωPk(∆)−1 ⊗ ωX(−E). It is easy to see
that ΩqPk(log ∆) ⊗ ω−1

Pk is semipositive for q = 0, . . . , k. Since k ≤ 3, all of these
sheaves have rank at most k, so if one chooses the trivial filtration for all locally
free sheaves on S, then L(f∗∆) ⊗ f∗E is ample for all E ∈ Ti(OS), i = 0, 1. Then
by Corollary 2.8, Hn(X,ωX) = 0, a contradiction. �

5.2.3 Remark. The reason for the restriction k ≤ 3 is that this way ΩqPk(log ∆)⊗ω−1
Pk

has at most rank k for any q. If one finds a filtration of these sheaves such that the
associated quotients are semi-positive, then this assumption can be removed. The
restriction to families of curves is for the same reason. To allow higher-dimensional
fibers one has to find suitable filtrations of tensor products of the sheaves of loga-
rithmic forms.

An argument, similar to the above, proves Conjecture 5.2.1(ii) for a smooth
quadric hypersurface of dimension at most three.

5.2.4 Theorem. Let Q ⊂ Pk+1 be a smooth quadric hypersurface, f : X → Q
a semi-stable family of curves of genus at least 2 and ∆ ⊂ Q a normal crossing
divisor such that X \ f∗∆ → Q \∆ is smooth. Assume that k ≤ 3 and that there
exists an effective divisor E supported on supp f∗∆ such that ωX(−E) is ample.
Then ωQ(∆) is ample, i.e., degPk+1 ∆ > 2k.

Proof. If ωQ(∆)−1 is nef or has a non-zero global section, then M = f∗ωQ(∆)−1

⊗ ωX contains an ample line bundle, L = f∗ωQ(∆)−1 ⊗ ωX(−E). The rest of the
proof works the same way as above. �
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