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STRONG NON-ISOTRIVIALITY AND RIGIDITY

SÁNDOR J. KOVÁCS

1. Introduction

Throughout the article the groundfield will always be C, the field of complex numbers.
A family is called isotrivial if any two general members are isomorphic. For example the

blow up of the projective plane at a single point, considered as a P
1-bundle over P

1, is an
isotrivial family since all of its members are isomorphic to the projective line. Since the
genus of a curve in a family is constant, and there is only one curve of genus zero, every
family of rational curves is isotrivial. However, for higher genus curves, or more generally,
higher dimensional varieties, one can find non-isotrivial families.

At the 1962 ICM in Stockholm, Shafarevich conjectured that there exist only finitely
many isomorphism classes of non-isotrivial families of smooth projective curves of a given
genus over a given base curve. Shafarevich further conjectured that if there is such a family,
then the base curve satisfies a certain hyperbolic condition. For definitions and a more pre-
cise formulation, see Section §1. The conjecture was confirmed by [Parshin68] for the case
of a compact base and by [Arakelov71] in general. It was recently generalized to families
of higher dimensional varieties. This generalization however, is not straightforward.

It will be advantageous to work with a compactification of the family. Considering fami-
lies over a compact base curve B naturally leads to a slightly different view on the problem.
Instead of smooth families over a non-compact base, one may work with arbitrary families
over a compact base, and consider the locus over which the family is smooth. Clearly these
are equivalent situations. An arbitrary family over a compact base gives a smooth family
over some open subset and a smooth family over an open curve can be extended to a (not
necessarily smooth) family over the projective closure of the curve.

NOTATION 1.1. For a morphism f : X → B, and a point b ∈ B, Xb will denote the
scheme theoretic fibre f−1(b).

DEFINITION 1.2. Let B be a smooth projective variety and ∆ ⊆ B a subvariety. A
surjective flat morphism with connected fibers will be called a family. A family f : X → B
is isotrivial if Xa ' Xb for general points a, b ∈ B. The family f : X → B will be called
admissible with respect to (B,∆) if it is not isotrivial and ∆ contains the discriminant
locus of f , i.e., the map f : X \ f−1(∆) → B \ ∆ is smooth.
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CONVENTIONS 1.3. Unless explicitly stated otherwise, admissible will always mean ad-
missible with respect to (B,∆). Similarly, if E and F are OB-modules, then E ⊗OB

F

will be simply denoted by E ⊗ F .

REMARK 1.4. A smooth projective family, all of whose fibers are isomorphic, is locally
trivial in the euclidean topology by the Grauert-Fischer theorem [Fischer-Grauert65]. Sim-
ilarly, an isotrivial family is generically locally trivial in the étale topology. Finally, the au-
tomorphism group of a variety of general type is finite [Kobayashi72, III.2.4]. In fact, even
the birational automorphism group is finite [Iitaka82, 11.12]. Therefore, if f : X → B is
an isotrivial family of projective varieties of general type, then there exists an étale cover
B̃ → B \ ∆ such that the family

f̃ : X̃ = (X \ f−1(∆)) ×B\∆ B̃ → B̃

is trivial.

Our starting point is the aforementioned conjecture of Shafarevich:

Shafarevich’s Conjecture 1.5. Let B be a smooth projective curve of genus g and ∆ ⊆ B
a finite subset. Further let q ∈ Z, q ≥ 2. Then

(1.5.1) there exist only finitely many isomorphism classes of admissible families of curves
of genus q, and

(1.5.2) if 2g − 2 + #∆ ≤ 0, then there exist no such families.

Shafarevich showed a special case of (1.5.2): There exist no smooth families of curves of
genus q over P

1. (1.5.1) was confirmed by [Parshin68] for ∆ = ∅ and by [Arakelov71] in
general.

The ultimate goal is to generalize this statement to higher dimensional families. In or-
der to work toward that goal, the statement has to be reformulated following Parshin and
Arakelov.

DEFINITION 1.6. A deformation (over T ) of a family g : Y → S (with the base fixed) is
a family g : Y → S × T , such that for some t0 ∈ T , (Yt0 → S × {t0}) ' (Y → S):

Y ' Yt0

g

��

// Y

g

��

S ' S × {t0} // S × T.

For simplicity, S × {t} will be denoted by St. Two families Y1 → S and Y2 → S are
said to have the same deformation type if they can be deformed into each other, i.e., if
there exists a connected T and a deformation of families, Y → S × T such that for some
t1, t2 ∈ T , (Yti

→ Sti
) ' (Yi → S × T ) for i = 1, 2.

Next consider deformations of admissible families over the base B \∆. Doing so poten-
tially allows more deformations than over the original base B: it can easily happen that a
deformation over B \ ∆, that is, a family X → (B \ ∆) × T , cannot be compactified to a
(flat) family over B×T , because the compactification may contain fibers of dimension that
are higher than expected. This however, will not cause any problems because of the nature
of the present inquiry. One wants to argue the opposite way. If one can prove rigidity for a
family over B \ ∆, than it will automatically apply to any family over B as well.

With regard to the Shafarevich conjecture, Parshin made the following observation. In
order to prove that there are only finitely many admissible families, one can try to proceed
the following way. Instead of aiming for the general statement immediately, first try to
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prove that there are only finitely many deformation types. This is expected to be somewhat
easier, because there are ways to parametrize deformations, and the fact that there are only
finitely many types translates to the parameter space being of finite type. The next step
then is to prove that admissible families are rigid, that is, they do not admit non-trivial
deformations. Notice that if one proves these statements for families over B \∆, then they
also follow for families over B. Now, if every deformation type contains only one family,
and there are only finitely many deformation types, the original statement follows.

The following is the reformulation of the Shafarevich conjecture according to the princi-
ple just outlined. This was already used by Parshin and Arakelov.

REFORMULATION 1.7. Let B be a smooth projective curve of genus g and ∆ ⊆ B a finite
subset. Further let q ∈ Z, q ≥ 2. Recall the convention from (1.3).

(1.7.1) Boundedness: There exist only finitely many deformation types of admissible
families, i.e., admissible families of curves of genus q are parametrized by T, a
scheme of finite type.

(1.7.2) Rigidity: There exist no non-trivial deformations of any admissible family of
curves of genus q, in particular, dim T = 0.

(1.7.3) Hyperbolicity: There do not exist admissible families of curves of genus q if
2g − 2 + #∆ ≤ 0, i.e., T 6= ∅ ⇒ 2g − 2 + #∆ > 0.

Notice that the notion of rigidity here is somewhat different from the one commonly used.
A family will be called rigid if its deformation space is zero-dimensional. This intention
is made precise below.

DEFINITION 1.8. A deformation, g : Y → S×T , is called essentially trivial if there exists
an open neighborhood T0 of t0 ∈ T such that for all t ∈ T0, (Yt → St) ' (Y → S). It is
called trivial if Y = Y ×S (S × T ) and g = g × πS . Notice that if T = SpecR where R
is a local ring, then an essentially trivial family is also trivial.

Arakelov-Parshin rigidity is said to hold for a family g : Y → S if it does not admit a non-
trivial deformation over T = SpecR where R is a DVR. By a slight abuse of terminology,
in this case g will be also called simply rigid.

The following notion will also be needed.

DEFINITION 1.9. Let g : Y → S be a family of projective varieties of general type. By
[Kollár87, 2.5] there exists an open subset S0 ⊆ S and a morphism νS : S0 → Z such that
Ys and Yt ,for s, t ∈ S0, are birational if and only if νS(s) = νS(t). Then the variation
of g in moduli, denoted by Var g, is defined as the dimension of the image of νS , that is,
Var g : = dim νS(S). Obviously 0 ≤ Var g ≤ dim S.

REMARK 1.10. Let g : Y → S be a family of varieties of general type. Then using
Kollár’s birational moduli map, νS , it is easy to see that a deformation g : Y → S × T of
g is essentially trivial if and only if Var g = Var g. In particular, if dim T = 1 and g has
maximal variation in moduli, i.e., Var g = dim S, then g is essentially trivial if and only if
Var g < dim(S × T ).

This implies that a family g : Y → S with Var g = dim S is rigid if and only if there
does not exist a deformation g : Y → S × T of g with Var g = dim(S × T ).

Next an equivalent criterion for a family to be rigid will be given.

Lemma 1.11. Let g : Y → S be a family of varieties of general type with Var g = dim S.
Let T be a smooth curve. Then g is rigid if and only if all of its deformations over T are
essentially trivial. Equivalently, g is rigid if and only if for any deformation g over T ,
Var g < dim(S × T ).
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PROOF. Let g : Y → S × T be a deformation of g over T . Let t ∈ T and R = OT,t.
Clearly, g is essentially trivial if and only if its pull-back to SpecR is trivial. The latter is
equivalent to g being rigid. �

REMARK 1.12. As discussed above, (1.7.1) and (1.7.2) together imply (1.5.1) and (1.7.3)
is clearly equivalent to (1.5.2).

Recently there has been a flurry of activity regarding higher dimensional generaliza-
tions of (1.7.1) and (1.7.3), cf. [Migliorini95], [Zhang97], [Bedulev-Viehweg00], [Oguiso-
Viehweg01], [Viehweg-Zuo01,02,03], [Kovács96,97abc,00,02,03ab]. For detailed surveys
one can turn to [Viehweg00] and [Kovács03c].

The focus of this note is (1.7.2): Rigidity. It should also be noted, that some of the
results here have been independently obtained by [Viehweg-Zuo04], although their main
emphasis is somewhat different.

Unfortunately rigidity, as stated, fails for higher dimensional families as the following
simple example shows.

EXAMPLE 1.13. Let Y → B be an arbitrary non-isotrivial family of curves of genus ≥ 2,
and C a smooth projective curve of genus ≥ 2. Then f : X = Y ×C → B is an admissible
family, and a deformation of C gives a deformation of f . Therefore (1.7.2) fails as stated.

However, this example gives the feeling of cheating. The family defined here is indeed a
non-isotrivial family, but only in one direction. It contains, as a term of a fibered product,
an isotrivial family, and that’s what makes rigidity fail. The goal of this article is to give a
definition of a stronger non-isotriviality notion, that does not allow this to happen and prove
that for that notion, rigidity holds. The main result is the following. For the definition of
strong non-isotriviality, see (4.7).

Theorem 1.14. Let f be an admissible family of projective varieties of general type. If f
is strongly non-isotrivial over B, then Arakelov-Parshin rigidity holds for f .

ACKNOWLEDGEMENT. I would like to thank the referee for a very careful reading of this
article and pointing out many little details that could improve the presentation.

2. Setup

Let f : X → B be a projective family where X and B are smooth varieties. Then the
short exact sequence,

0 → TX/B → TX → f∗TB → 0,

induces an OB-homomorphism,

ρf : TB → R1f∗TX/B ,

the Kodaira-Spencer map of f . It is well-known that f is isotrivial if and only if ρf is
injective.

GOALS AND EXPECTATIONS 2.1. One would like to find a condition, call it strong non-
isotriviality, that strengthens the notion of “non-isotriviality” so that rigidity holds for every
strongly non-isotrivial family. Naturally, the desired condition should be reasonably weak
but still have this property.

As in the case of non-isotriviality, one expects that strong non-isotriviality will only de-
pend on the general behavior of the family. For f : X → B, and a non-empty open subset
B0 ⊆ B, let f0 : X0 = f−1(B0) → B0. Then one expects that f is strongly non-isotrivial
if and only if so is f0. Notice that if rigidity holds for f0, then it also holds for f .
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REMARK 2.2. The expectation that strong non-isotriviality should be invariant under re-
striction to a smaller base and the resulting guiding philosophy means that one is seeking a
criterion for rigidity in a local sense. It is also worth studying rigidity with the base fixed,
but that will not be addressed here.

3. Case study: Rigidity for products

EXAMPLE 3.1. Let B be a smooth projective curve, and let g : Y → B and h : Z → B be
two families of smooth projective curves of genus at least two. Finally, let X = Y ×B Z.

X
hY

~~~~
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~

f
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gZ

  @
@@

@@
@@

Y

g
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@@
@@

@@
Z

h
~~~~

~~
~~

~

B

Observe that if either g or h is isotrivial, then after an étale base change it becomes trivial
and hence rigidity fails for the pull-back of f . Because of this, f should not be called
strongly non-isotrivial if either g or h is isotrivial.

CLAIM 3.2. Using the notation from (3.1),

H1(X,TX/B) ' H1(Y, TY/B) ⊕ H1(Z, TZ/B).

PROOF. TX/B ' h∗
Y TY/B ⊕ g∗ZTZ/B implies that

H1(X,TX/B) ' H1(X,h∗
Y TY/B) ⊕ H1(X, g∗ZTZ/B).

Since X = Y ×B Z, R1(hY )∗OX ' H1(Z,OZ) ⊗ OY , hence

H0(Y,R1(hY )∗OX ⊗ TY/B) ' H1(Z,OZ) ⊗ H0(Y, ω−1
Y/B) = 0.

Then by the Leray spectral sequence, H1(Y, TY/B) ' H1(X,h∗
Y TY/B), and similarly

H1(Z, TZ/B) ' H1(X, g∗ZTZ/B). �

Proposition 3.3. Still using the notation from (3.1), if g and h are both non-isotrivial, then
H1(X,TX/B) = 0. In particular rigidity holds for f .

PROOF. If g is non-isotrivial, then ωY/B is ample by [Kovács96, 2.16], cf. [Kovács03,
11.15]. Then by Kodaira vanishing

H1(Y, TY/B) = H1(Y, ω−1
Y/B) = 0.

Similarly H1(Z, TZ/B) = 0, and hence by (3.2) H1(X,TX/B) = 0. �

CONCLUSION 3.4. For a fibered product of smooth projective families of curves the prod-
uct family, f = g ×B h will be called strongly non-isotrivial if both g and h are non-
isotrivial. It follows that for such an f rigidity holds. Thus one should define ’strong
non-isotriviality’ in such a way that for a product it coincides with this definition.
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4. Iterated Kodaira-Spencer maps

Start with the previous situation, that is, g : Y → B and h : Z → B are families of curves
of genus at least two and f = g ×B h : X = Y ×B Z → B their fibered product.

Consider the Kodaira-Spencer maps associated with g and h: ρg : TB → R1g∗TY/B ,
ρh : TB → R1h∗TZ/B , and their tensor product:

ρg ⊗ ρh : T⊗2
B → R1g∗TY/B ⊗ R1h∗TZ/B .

From (3.3) one obtains the following.

Corollary 4.1. If ρg ⊗ ρh 6= 0 then rigidity holds for f .

4.2 Iterated Kodaira-Spencer maps: products. Let ∧mTX be denoted by T m
X , and

∧mTX/B by Tm
X/B . Since g∗TY/B = 0 and h∗TZ/B = 0 the Künneth formula implies

that
R1g∗TY/B ⊗ R1h∗TZ/B ' R2f∗T

2
X/B .

Consider the short exact sequence

0 → TX/B → TX → f∗TB → 0.

As above this induces the Kodaira-Spencer map of f : ρf : TB → R1f∗TX/B . Let us
define

ρ
(1)
f = ρf ⊗ idTB

: T⊗2
B → R1f∗TX/B ⊗ TB .

By taking exterior powers one obtains the short exact sequence,

0 → T 2
X/B → T 2

X → TX/B ⊗ f∗TB → 0,

which in turn induces the map

ρ
(2)
f : R1f∗TX/B ⊗ TB → R2f∗T

2
X/B .

Notice that one can compose ρ
(1)
f and ρ

(2)
f to obtain a map,

ρ
(2)
f ◦ ρ

(1)
f : T⊗2

B → R2f∗T
2
X/B .

Observation 4.3. ρ
(2)
f ◦ ρ

(1)
f = ρg ⊗ ρh.

This statement is not too hard to prove, but unfortunately I do not know a short proof. By
writing out explicitly what each side means one can conclude that they are indeed the same.
It did not seem practical to include a cumbersome proof of a fact that is only included for
motivation, so checking this equality is regretfully left to the reader.

Corollary 4.4. If ρ
(2)
f ◦ ρ

(1)
f 6= 0, then rigidity holds for f .

REMARK 4.5. Notice that this statement no longer makes reference to the product struc-
ture. This fact will be important in dealing with more general families.

4.6 Iterated Kodaira-Spencer maps: one-dimensional base. Let f : X → B be a
smooth projective family of varieties of general type of dimension n, B a smooth (not
necessarily projective) curve and keep using the notation T m

X for ∧mTX and Tm
X/B for

∧mTX/B .
Let 1 ≤ p ≤ n and consider the short exact sequence,

0 → T p
X/B ⊗ f∗T

⊗(n−p)
B → T p

X ⊗ f∗T
⊗(n−p)
B → T p−1

X/B ⊗ f∗T
⊗(n−p+1)
B → 0.

This induces an edge map,

ρ
(p)
f : Rp−1f∗T

p−1
X/B ⊗ T

⊗(n−p+1)
B → Rpf∗T

p
X/B ⊗ T

⊗(n−p)
B .
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DEFINITION 4.7. Let ρf := ρ
(n)
f ◦ ρ

(n−1)
f ◦ · · · ◦ ρ

(1)
f : T⊗n

B −→ Rnf∗T
n
X/B and call f

strongly non-isotrivial if ρf 6= 0.

EXAMPLE 4.8. Let Yi → B be non-isotrivial families of smooth projective curves for
i = 1, . . . , r. Then X = Y1 ×B · · · ×B Yr → B is strongly non-isotrivial.

REMARK 4.9. Since TB is a line bundle and Rnf∗T
n
X/B is locally free, ρf 6= 0 if and

only if it is injective.

4.10 Iterated Kodaira-Spencer maps: higher-dimensional base. Let f : X → B be
a smooth projective family of varieties of general type of dimension n, B a smooth (not
necessarily projective) variety.

For an integer p, 1 ≤ p ≤ n, there exists a filtration

T p
X = F

0 ⊇ F
1 ⊇ · · · ⊇ F

p ⊇ F
p+1 = 0,

such that
F i

/

F i+1 ' T i
X/B ⊗ f∗T p−i

B .

In particular,
F

p ' T p
X/B

and
F

p−1/F p ' T p−1
X/B ⊗ f∗TB .

Therefore

0 → T p
X/B ⊗ f∗T

⊗(n−p)
B → F

p−1 ⊗ f∗T
⊗(n−p)
B → T p−1

X/B ⊗ f∗T
⊗(n−p+1)
B → 0

induces a map

ρ
(p)
f : Rp−1f∗T

p−1
X/B ⊗ T

⊗(n−p+1)
B → Rpf∗T

p
X/B ⊗ T

⊗(n−p)
B .

DEFINITION 4.11. Let ρf := ρ
(n)
f ◦ ρ

(n−1)
f ◦ · · · ◦ ρ

(1)
f : T⊗n

B −→ Rnf∗T
n
X/B and call f

strongly non-isotrivial over B if ρf is injective.

EXAMPLE 4.12. Let Yi → B be non-isotrivial families of smooth projective curves for
i = 1, . . . , r. Then X = Y1 ×B · · · ×B Yr → B is strongly non-isotrivial over B.

REMARK 4.13. One could consider various refinements:

• Consider maps for which the composition of fewer ρ(p)’s is injective or non-
zero. This is important in particular to study moduli spaces of varieties that are
products with one rigid term.

• Combine this condition with Var f , the variation of f in moduli.

Theorem 4.14. Let f : X → B be a smooth projective family of varieties of general type,
B a smooth variety. If f is strongly non-isotrivial over B, then rigidity holds for f .

PROOF. Let f : X → B × T be a deformation of f , and t0 ∈ T such that ft0 : Xt0 → Bt0

is isomorphic to f : X → B. Here Bt0 = B ×{t0}. Notice that without loss of generality
one may assume that dim T = 1

Using Grothendieck-Serre duality it is easy to see that ρf : T⊗n
B → Rnf∗T

n
X/B being

injective implies that f∗ω
⊗2
X/B → Ω⊗n

B is generically surjective. From that and Nakayama’s
lemma one obtains that

(4.14.1) f∗ω
⊗2
X/B×T → Ω⊗n

B×T/T

is generically surjective in a neighborhood of Bt0 .
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By (1.11), rigidity fails for f if and only if there exists an f such that Var f = dim(B×T ).
Assume that Var f = dim(B × T ) and try to derive a contradiction.

By [Kollár87, Theorem p.363] and [Esnault-Viehweg91, 0.1] f∗ω
⊗2
X/B×T is big and then

by (4.14.1) so is Ω⊗n
B×T/T . However, Ω⊗n

B×T/T = π∗
BΩ⊗n

B , which means that it cannot be
big. This is a contradiction, so the statement is proven. �

Corollary 4.15. Theorem 1.14 follows.

PROOF. If f : X → B is admissible with respect to (B,∆), then let B◦ : = B \ ∆,
X◦ : = f−1(B◦), and f◦ : = f |

X◦
. Next apply (4.14) for f◦ : X◦ → B◦. Finally, notice

that if f◦ is rigid, then so is f . �
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