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Sandor Kovacs

Moduli Theory and Singularities

In this talk T will discuss recent advances in the mod-
uli theory of higher-dimensional algebraic varieties. Of
course, half of the words in that sentence merit explana-
tion, so that will be included in the talk as well. Some
of these advances concern the singularities that appear
on stable varieties and their influence on the geometry
of the corresponding moduli spaces...yet more words to
explain.

The roots of moduli theory can be traced to a short re-
mark of Bernhard Riemann in his 1857 treatise on abelian
functions (nowadays we would say compact Riemann sur-
faces). This remark suggests that the space of equivalence
classes of compact complex Riemann surfaces of genus
g > 1 can be parametrized by 3g — 3 complex parameters,
which Riemann called moduli.

Figure 1. Riemann’s 3g — 3 dimensional moduli space
of compact Riemann surfaces of genus g.

In other words, fix a compact connected orientable
(topological) surface of genus g and consider the various
ways one can equip it with a complex structure. Accord-
ing to this remark of Riemann, the possible complex
structures can be described by 3g — 3 parameters. Or, in
modern language, the space of those complex structures
is 3g — 3-dimensional. After Riemann, these spaces are
called moduli spaces.
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Lars Ahlfors, one of the 1936 Fields medalists and one
of the first to embark on the quest to make Riemann’s
remark rigorous, said in his 1962 ICM address: “Riemann’s
classical problem of moduli is not a problem with a single
aim, but rather a program to obtain maximum information
about a whole complex of questions which can be viewed
from several different angles.”

An algebraic approach to moduli spaces was pioneered
by David Mumford, a 1974 Fields Medalist. When viewed
algebraically over the complex numbers, a Riemann sur-
face is one-dimensional. Hence it is called an algebraic
curve. Taking advantage of the algebraic point of view,
Mumford extended the moduli problem to include degen-
erations of these algebraic curves, i.e., Riemann surfaces
with singularities (as in Figure 2). This is a delicate mat-
ter, as allowing arbitrary singularities would lead to an
intractable problem. In contrast, it is possible to improve
the singularities of the degenerate fibers without chang-
ing the smooth fibers of a given family of curves. For
example, consider the family of degree 5 plane curves
with equations x° — y? +t(5x3 —4x—4) = 0 (as in Figure 3),
parametrized by t. As long as t # 0, the above equation
defines a smooth algebraic curve, but for t = 0 the defined
curve, x> —y? = 0 (denoted by red in Figure 3), is singular.
However, this degeneration can be improved considerably
by making a change of variables given by y = x?z. This
will not affect the smooth members of the family, i.e., the
ones with t # 0, but will replace the singular member by
the curve defined by the equation x*(x — z%) = 0. Making
another change of variables given by x = zw leads to the
equation z°w*(z —w). The curve defined by this equation
is the union of three lines, much simpler than the original
singular degeneration.

Mumford realized that a
similar process can always
be used to improve the sin-
gularities of the degenerate
fibers. This led to the defi-
nition of stable curves, which
are algebraic curves whose
only allowable singularities
are transversal intersections
of smooth branches, such as
in the curve in Figure 4 de-
fined by the equation y? =
x?(x+1). Note that this picture
only shows the real points of
this curve. All complex points
and the true topology of this
curve are shown by the green

complex curve on the right-hand side in Figure 2.

In addition to giving an algebraic construction for the
moduli space of smooth algebraic curves, Mumford also
succeeded in constructing amoduli space for stable curves
and proving that this moduli space can be equipped with
the structure of a projective variety with the moduli space
of smooth algebraic curves as a dense open set.
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Figure 2. Mumford extended the moduli problem to include Riemann surfaces with singularities.

Ever since Mumford’s seminal work, many properties
of these moduli spaces have been studied. The various
applications discovered are so numerous and broad rang-
ing that it would be impossible to list them in a concise
manner. In fact, several disciplines grew out of the study
of moduli problems, as shown by the number of MSC
classification categories devoted to such disciplines.

Naturally, the question arises whether something sim-
ilar is possible for higher-dimensional varieties as in

Figure 3. This family of plane curves can be
reparametrized to make the components of the
singular red one smooth.

Figure 4. A stable curve, such as y> = x*>(x + 1), is
one with no singularities except for transversal self-
intersections.
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Figure 5. Constructing moduli spaces of higher
dimensional varieties leads to new challenges.

Figure 5. Interestingly, this question was not answered
satisfactorily until recently, and to some extent it is still
not answered completely. There are several reasons for
this. While the singularities of stable curves are the most
simple curve singularities—the transversal intersection
of two smooth branches—stable singularities in higher
dimensions are much more diverse and complicated. The
families considered in the moduli problem are also more
complicated. A stable family of curves is simply a family
of stable curves, but this is no longer true in higher di-
mensions. A stable family, beyond being a family of stable
objects, has further properties which reflect conditions
on the family, not only on its fibers. In this talk I will
discuss these intriguing issues along with the most recent
related results.
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Image Credits

Figure 1, courtesy of Lun-Yi Tsai, shows Lun-Yi Tsai’s Sha-
farevich’s Conjecture, Tunyitsai.com/demonstrations
/collaborations.htm.

Figures 2-5, and author photo courtesy of Sandor Kovacs.

When Sandor Kovacs is not think-
ing about algebraic geometry, he
enjoys swimming, biking, running,
and hiking. One of his current
goals is to improve his butter-
fly technique. He is also working
toward a perfect headstand.

Sandor Kovacs
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Dimitri Shlyakhtenko

A (Co)homology Theory for Subfactors and
Planar Algebras

I am very grateful to be speaking on my joint work with
S. Vaes and S. Popa [3].

I would like to start with a construction that a priori
has nothing to do with subfactors or planar algebras.
Let S? denote the two-sphere with n + 1 distinct points
P1,...,Pn+1 Temoved and let § > 2 be a fixed real number.
Let V,, be the linear space whose basis consists of isotopy
classes of zero or more closed curves drawn on S, subject
to the relation that if a curve bounds a disk that does not
include any other curves or the points p;, then the curve
can be removed up to a multiplicative factor 6. Figure 1
shows two equalities of diagrams on S3. The equalities are
due to the relation O = ¢ and the fact that the drawing
is on a sphere.

Figure 1. Removing a trivial curve is equivalent to
multiplication by 6. The second equality holds
because the drawing is on a sphere.

We define a differential complex structure on (Vy),>o.
Let o : 8% - S2_; be the map in which the point
p; is glued back into §2 and the remaining points are

renumbered (in order) as pi, ..., pn. Let eﬁ-'” Vo> Vi
be the map in which a collection of curves on S? is
redrawn on S2_; via the map (x;-”). Then 3, = 3 (—1)¥e”
satisfies 0, 0 9,41 = 0, and so we can define a sequence
of homology spaces H,, = ker d,/im 0y+1.

The next challenge is to compute these spaces. One
is tempted to do this “by hand”; indeed for n = 0,1,2
one can easily describe all arrangements of curves on S2.
Some amount of computation then shows that Hy = C and
H; = H, = 0. However, for n > 3 things get complicated,
and I am actually not aware of an easy combinatorial
computation, even of Hj.

To compute H, we need to reinterpret them by
redrawing and making apparent the connection with
Temperley-Lieb-Jones diagrams; see Figure 2.

Leaving Temperley-Lieb-Jones diagrams aside for the
moment, let us consider what happens if we permit other
types of elements x as in Figure 2. Suppose that G is a
group with a finite generating set X. For each element
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