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Abstract. This article can be divided into two loosely connected parts.The ¢rst part is devoted to
proving a singular version of the logarithmic Kodaira^Akizuki^Nakano vanishing theorem of
Esnault and Viehweg in the style of Navarro-Aznar et al. This in turn is used to prove other
vanishing theorems. In the second part, these vanishing theorems are used to prove an
Arakelov^Parshin type boundedness result for families of canonically polarized varieties with
rational Gorenstein singularities.
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Vanishing theorems have played a central role in algebraic geometry for the last
couple of decades, especially in classi¢cation theory. Kolla¤ r [22] gives an introduc-
tion to the basic use of vanishing theorems as well as a survey of the results and
applications available at the time. For more recent results, one should consult
[8, 27, 30, 37]. Because of the availability of such surveys, here we will only recall
statements that are important to this article.

The classical Kodaira vanishing theorem has been generalized in many ways. A
very important generalization is the Kodaira^Akizuki^Nakano vanishing theorem
and even that has been further generalized, most notably in two different directions.

Esnault and Viehweg extended the theorem to sheaves of logarithmic differential
forms:

THEOREM 0.1 ([11, 6.4]). Let X be a smooth complex projective variety and L an
ample line bundle on X. Further, let D be a normal crossing divisor on X. Then

HqðX ;Op
X ðlogDÞ � LÞ ¼ 0 for pþ q > n:
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Another type of generalization was proved by Navarro-Aznar and co-workers.
They gave a generalization for singular varieties. To state their theorem, one requires
a short introduction: For any scheme, X , of ¢nite type over C, there exists a ¢ltered
complex in the derived category of OX -modules, called Du Bois’s complex, O�X , that
resembles the De Rham complex of a smooth variety in many respect (1.2). Using
the notation, Op

X :¼ Grpfilt O
�
X ½p
:

THEOREM 0.2 ([15, 32]). Let L be an ample line bundle on X. Then

Hq
ðX ;Op

X � LÞ for pþ q > dimX :

Of course, Du Bois’s complex agrees with the De Rham complex for smooth
varieties, so this theorem reduces to the Kodaira^Akizuki^Nakano theorem in
the smooth case.

One of the main goals of the present article is to prove a common generalization of
Theorems 0.1 and 0.2. For simplicity, only a weaker statement is given here. A some-
what stronger version is given in (4.1).

To state the theorem, one needs a generalization of the logarithmic De Rham
complex to the singular case. Fortunately, Du Bois’s complex has a logarithmic
version and again it resembles the smooth case very much (1.2).

MAIN THEOREM 0.3. Let X be a complex projective variety and L an ample line
bundle on X. Further, let D be a normal crossing divisor on X. Then

Hq
ðX ;Op

X ðlogDÞ � LÞ ¼ 0 for pþ q > n:

One could ask why we need such a generalization. I believe it is an interesting result
on its own. This seems to be supported by the enthusiasm that greeted Theorem 0.2
(cf. [38]). On the other hand, it could be viewed as a ‘poor man’s version’ of the
logarithmic Kodaira^Akizuki^Nakano vanishing theorem for semi-ample and
big line bundles on smooth varieties. Considering that the obvious generalization
fails, this might be the best one can hope for. As an easy corollary, we also obtain
a relative version of this vanishing theorem.

Nevertheless, my original motivation was an actual application. This theorem is
the cornerstone of the proof of an Arakelov^Parshin-type boundedness result. That
result is presented as an application of the Main Theorem, although it would merit
to be called a ‘Main Theorem’ itself.

The ¢rst interesting consequence of the Main Theorem is a vanishing theorem for
smooth varieties, (6.4). Note that in order to prove it one has to go through the
singular version. Theorem 6.4 is a generalization of [25, 1.1] and similar in nature
to [5, 2.2].

Next, let us take a brief tour of some related problems, and let us start by recalling
that a family of projective curves is called isotrivial if all but ¢nitely many members
of the family are isomorphic to a ¢xed curve.
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0.4. Fix C, a smooth projective curve of genus g over an algebraically closed ¢eld of
characteristic 0, D � C a ¢nite subset and q > 1 positive integer. Let d ¼ #D.

Shafarevich conjectured at the 1962 ICM in Stockholm that the set, S, of
nonisotrivial families of smooth projective curves of genus q over C n D is ¢nite.
and that if 2q 2þ dW 0 then no such families exist.

This was con¢rmed by Parshin [34] for the case D ¼ ; and by Arakelov [3] in
general. Their method was to divide the problem into the following parts:

(1) ‘Boundedness’: There are only ¢nitely many deformation types of families in S.
(2) ‘Rigidity’: There are no nontrivial deformations within S.
(3) ‘Hyperbolicity’: If 2g 2þ dW 0, then S ¼ ;.

The basic question now is whether (an appropriate variant of) Shafarevich’s con-
jecture holds in higher dimensions. It seems natural to try to work with these parts
individually as they may generalize in different ways.

0.5. It is actually more convenient to work with a compacti¢cation of the family,
understanding that later we are free to alter it over D. LetS be the set of nonisotrivial
families of projective curves of genus q over C that are smooth over C n D and have a
smooth total space.

The ¢rst important observation is that ‘boundedness’ follows from the existence of
moduli spaces of curves and from

(10) ‘Weak boundedness’: There exist a function dðg; d; q;mÞ, and a natural number
m0, such that for any family f :X ! C in S, degð f�om

X=CÞW dðg; d; q;mÞ for all
mXm0.

0.6. Considering families over a compact base curve leads to a slightly different view
on the hyperbolicity problem. One could ask what can be said about the singular
¢bers of the family. On the simplest level, how many are there? In fact Szpiro
did ask this: Is there a lower bound on the number of singular ¢bers if C ’ P1?

Beauville [4] gave the following answer: there are always at least 3 singular ¢bers
and there are families with exactly 3. In fact, Beauville’s proof also shows that there
is at least 1 singular ¢ber if the base curve is elliptic. In short 2g 2þ d > 0, i.e.,
‘hyperbolicity’ holds.

Note that Kodaira surfaces show that there are families over high genus curves
without any singular ¢bers.

More recently, Catanese and Schneider [6] asked if the same is true with higher-
dimensional ¢bers, and the conjecture of Shokurov [36] translates to the same:
Is it true that for a familily of varieties of general type, dX 3 if g ¼ 0 and dX 1
if g ¼ 1, or, equivalently, Is 2g 2þ d > 0? This is again simply asking if
‘hyperbolicity’ also holds in higher dimensions.

It is interesting to note the wide range of applications this question relates to.
Catanese and Schneider [6] wanted to use this to obtain good estimates for the size
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of the automorphism group of a variety of general type, while Shokurov [36] needed
it for proving quasi-projectivity of certain moduli spaces.

0.7. The following is a select list of results related to these questions.
Faltings [12] studied the Shafarevich problem for families of Abelian varieties and

proved that boundedness holds, while rigidity fails in general.
Migliorini [31] showed that for families of minimal surfaces dX 1 if gW 1.
Kova¤ cs [26] showed the same for families of minimal varieties of arbitrary

dimension, [27] settled the question for families of minimal surfaces, and [28] for
families of canonically polarized varieties: In all cases 2g 2þ d > 0.

OguisoandViehweg [33]proved the same for families of elliptic surfaces.Theirwork
completes the case of families ofminimal varieties of nonnegativeKodaira dimension.

Bedulev and Viehweg [5] proved that boundedness holds for families of surfaces of
general type and that weak boundedness (and in some cases boundedness) holds for
families of canonically polarized varieties. As a byproduct of their proof they also
obtained that 2g 2þ d > 0 in these cases.

In this article we obtain results regarding boundedness and hyperbolicity. In fact a
simple observation yields that these questions are strongly related.

THEOREM 0.8. ‘Weak boundedness’ implies ‘hyperbolicity’.

A more precise and somewhat more general formulation is the following:

THEOREM 0.9. Let F be a collection of smooth varieties of general type, C a smooth
projective curve and D � C a ¢nite subset of C. Let

FamðC;D;FÞ ¼

f :X
�

! C j X is smooth, f is flat and f 1ðtÞ 2 F; for all t 2 C n D
�
:

Assume that there exist M;m 2N such that for all ð f :X ! CÞ 2 FamðC;D;FÞ,

degð f�om
X=CÞWM;

and that FamðC;D;FÞ contains nonisotrivial families. Then 2g 2þ d > 0.
Proof. Assume the contrary, i.e., either g ¼ 0 and dW 2 or g ¼ 1 and d ¼ 0. This

allows us to assume that f :X ! C is semi-stable and nonisotrivial. Also, in both
cases there exists a ¢nite endomorphism, t:C ! C, of degree > 1 such that t is
smooth over C n D and completely rami¢ed over D.

Let p: ~XXt! Xt be a resolution of singularities that is an isomorphism over C n D,
and ~fft ¼ ft � p. Then ð ~fft: ~XXt! CtÞ 2 FamðC;D;FÞ. In particular Ct ’ C and ft
is smooth over Ct n Dt ’ C n D with ¢bers in F.

Therefore, by assumption, deg t � degð f �o
m
X=CÞ ¼ degð ft�o

m
Xt=Ct
ÞWM as well. By

iterating this process, deg t can grow arbitrary large and since degð f�om
X=CÞ > 0

by [22], degð ft�o
m
Xt=Ct
Þ cannot be bounded. &
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The main result of the second part of the article is the following. It is in a
non-explicit form. For more precise statements, see Lemma 7.8, Corollaries 7.10,
7.11 and Theorem 7.13.

THEOREM 0.10. Fix C, D � C. Then weak boundedness holds for families of
canonically polarized varieties with rational Gorenstein singularities over C n D with
¢xed Hilbert polynomial admitting a simultaneous resolution of singularities. In par-
ticular 2g 2þ d > 0 for these families by Theorem 0.9.

As a corollary, one obtains weak boundedness for nonbirationally isotrivial fam-
ilies of minimal varieties of general type.

A few days before the completion of this article I learnt that Viehweg and Zuo [42]
proved that 2g 2þ d > 0 holds for nonbirationally isotrivial smooth families of
minimal varieties. As a byproduct of their proof they also obtain weak boundedness
for these families.

DEFINITIONS AND NOTATIONS. Throughout the article, the ground¢eld will
always be C, the ¢eld of complex numbers. A complex scheme (resp. complex
variety) will mean a separated scheme (resp. variety) of ¢nite type over C.

A divisorD is calledQ-Cartier ifmD is Cartier for somem > 0.D is called big if X
is proper and jmDj gives a birational map for some m > 0 and it is called nef if
D:CX 0 for every proper curve C � X . In particular ample implies nef and big.
If A and B are effective divisors, then A [ B will denote suppðAþ BÞ.

Let U be an open subset of X . A line bundle L on X is called semi-ample with
respect to U if some positive power of L is generated by global sections over U .
It is called semi-ample if it is semi-ample with respect to X . Similarly L is called
ample with respect to U if the global sections of some positive power of L de¢ne
a rational map, that is an embedding on U .

A locally free sheaf E on a scheme X is called semi-positive (resp. ample) if for
every smooth complete curve C and every map g:C ! X , any quotient bundle
of g�E has nonnegative (resp. positive) degree.

Let f :X ! S be a morphism of schemes. Then Xs denotes the ¢bre of f over the
point s 2 S and fs denotes the restriction of f to Xs. More generally, for a morphism
s:Z! S, let fZ:XZ ¼ X �S Z! Z. If f is composed with another morphism
g:S! T , then for a t 2 T , Xt denotes the ¢bre of g � f over the point t, i.e.,
Xt ¼ XSt . fZ and XZ may also be denoted by fs and Xs, respectively.

A singularity is called Gorenstein if its local ring is a Gorenstein ring. A variety is
Gorenstein if it admits only Gorenstein singularities. Let X be a normal variety
and f :Y ! X a resolution of singularities. X is said to have rational singularities
if Rif�OY ¼ 0 for all i > 0.

LetX be a complex scheme of dimension n.DfiltðX Þ denotes the derived category of
¢ltered complexes of OX -modules with differentials of order W 1 and Dfilt;cohðX Þ the
subcategory of DfiltðX Þ of complexes K �, such that for all i, the cohomology sheaves
of GrifiltK

� are coherent (cf. [7, 15]). DðX Þ and DcohðX Þ denotes the derived categories
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with the same de¢nition except that the complexes are assumed to have the trivial
¢ltration. The superscripts þ;; b carry the usual meaning (bounded below,
bounded above, bounded). CðX Þ is the category of complexes of OX -modules with
differentials of order W 1 and for u 2MorðCðX ÞÞ, MðuÞ 2 ObðCðX ÞÞ denotes the
mapping cone of u (cf. [16]). Isomorphism in these categories is denoted by ’qis.
If K � is a complex in any of the above de¢ned categories, then hiðK �Þ denotes
the ith cohomolgy sheaf of K �. In particular, every sheaf is naturally a complex with
hi ¼ 0 for i 6¼ 0.

The right derived functor of an additive functor F , if exists, is denoted by RF and
RiF stands for hi � RF . In particular, Hi denotes RiG and Hi

Z denotes RiGZ and
Hi

Z denotes RiHZ where G is the functor of global sections and GZ is the functor
of global sections with support in the closed subset Z and HZ is the functor of local
sections with support in the closed subset Z. Note that according to this terminology
if f:Y ! X is a morphism andF is a coherent sheaf onY , thenRf�F is the complex
whose cohomology sheaves give the usual higher direct images of F . The derived
functor of � is denoted by �L.

The dimension of the empty set is 1.

1. De Rham-Du Bois Complexes

In order to state our generalized version of the Kodaira^Akizuki^Nakano vanishing
theorem, we need Du Bois’s generalized De Rham complex.

The original construction of Du Bois’s complex, O�X ðlogDÞ, is based on simplicial
resolutions. The reader interested in the details is referred to the original article [7].
Note also that a simpli¢ed construction was later obtained in [15] via the general
theory of cubic resolutions. An easily accessible introduction can be found in [38].

The word ‘hyperresolution’ will refer to either simplicial or cubic resolution. For-
mally the construction of O�X ðlogDÞ is the same regardless which resolution is used
and no speci¢c aspects of either resolution will be used.

DEFINITION. Let X be a complex scheme and D a closed subscheme whose comp-
lement is dense in X . Then ðX�;D�Þ ! ðX ;DÞ is a good hyperresolution if X� ! X is a
hyperresolution, and ifU� ¼ X� �X ðX nDÞ andD� ¼ X� nU . thenDi is a divisor with
normal crossings on Xi for all i.

THEOREM 1.2 [7, 6.3, 6.5]. Let X be a proper complex scheme of ¢nite type and D a
closed subscheme whose complement is dense in X. Then there exists a unique
O�X ðlogDÞ 2 ObðDfiltðX ÞÞ with the following properties, using the notation:

Op
X ðDÞ :¼ Grpfilt O

�
X ðlogDÞ½p
:

(1.2.1) Let j:X nD! X be the inclusion map. Then

O�X ðlogDÞ ’qis Rj�CXnD:
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(1.2.2) It is functorial, i.e., if f:Y ! X is a morphism of proper complex schemes of
¢nite type, then there exists a natural map f� of ¢ltered complexes

f�:O�X ðlogDÞ ! Rf�O
�
Y ðlogf

�DÞ:

Furthermore, O�X ðlogDÞ 2 ObðDb
filt;cohðX ÞÞ and if f is proper, then f� is a

morphism in Db
filt;cohðX Þ.

(1.2.3) Let U � X be an open subscheme of X. Then

O�X ðlogDÞjU ’qis O
�
U ðlogDjU Þ:

(1.2.4) There exists a spectral sequence degenerating at E1 and abutting to the singular
cohomology of X nD:

Epq
1 ¼Hq

ðX ;Op
X ðlogDÞÞ ) HpþqðX nD;CÞ:

(1.2.5) If E�: ðX�;D�Þ ! ðX ;DÞ is a good hyperresolution, then

O�X ðlogDÞ ’qis RE��O
�
X� ðlogD�Þ:

In particular hiðOp
X ðlogDÞÞ ¼ 0 for i < 0.

(1.2.6) There exists a natural map, OX ! O0
X ðlogDÞ, compatible with (1.2.2).

(1.2.7) If X is smooth and D is a normal crossing divisor, then

O�X ðlogDÞ ’qis O
�
X ðlogDÞ:

In particular

Op
X ðlogDÞ ’qis O

p
X ðlogDÞ:

(1.2.8) If f:Y ! X is a resolution of singularities, then

Odim X
X ðlogDÞ ’qis Rf�oY ðf

�DÞ:

2. A Short Exact Sequence

The following notation and assumptions will be used throughout this and the next
section.

2.1. Let X be a projective variety and D � X an effective divisor on X and
e�: ðX�;D�Þ ! ðX ;DÞ a good hyperresolution. Let M be a semi-ample line bundle
on X . Assume that M is ample with respect to X nD. Let L ¼MN for some
N  0, s 2 H0ðX ;LÞ a general section, and L ¼ ðs ¼ 0Þ. Note that L is generated
by global sections and the morphism given by its global sections is an embedding
on X nD. In particular L is transversal to e�: ðX�;D�Þ ! ðX ;DÞ. Finally let
DL ¼ D jL, ML ¼MjL, and LL ¼ LjL.
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Now l� ¼ e�jL� : ðL�;D
L�
� Þ ! ðL;D

LÞ is a good hyperresolution, where L� ¼ X� �X L.
Furthermore, by (1.2.5),

O�X ðlogDÞ ¼ Re��O�X� ðlogD�Þ;

O�LðlogD
LÞ ¼ Rl��O�L� ðlogD

L�
� Þ:

ð2:1:1Þ

LEMMA 2.2 One has the following distinguished triangle:

Op1
L ðlogD

LÞ ! Op
X ðlogDÞ �

L LL ! Op
LðlogD

LÞ � LL !
þ1

: ð2:2:1Þ

Proof.First assume that X is smooth andD is an effective normal crossing divisor.
Then one has the following commutative diagram, [11, 2.3]:

L is transversal toD, so b is an isomorphism, hence so is a. Taking exterior powers
one obtains that for all p:

0 ! Op1
L ðlogD

LÞ � L
1
L ! Op

X ðlogDÞjL !Op
LðlogD

LÞ ! 0: ð2:2:2Þ

Next consider the general case. Let e�: ðX�;D�Þ ! ðX ;DÞ be a good
hyperresolution. By (2.2.2) one has the following short exact sequence for all i:

0 ! Op1
Li
ðlogDLi

i Þ ! Op
Xi
ðlogDiÞ � LLi ! Op

Li
ðlogDLi

i Þ � LLi! 0:

Since Li is the pull-back of L for all i these maps are compatible with l�, and then
applying Rl�� gives the required distinguished triangle. &

3. Trace Map, Gysin Morphism, etc.

The ¢rst subsection of this section is an adaptation of some parts of [17, II.2^3] to the
logarithmic setting.
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3.1. THE TRACE MAP

3.1.1. In addition to the notation and assumptions of (2.1), X and L will be assumed
to be smooth and D an effective normal crossing divisor throughout this subsection.
Consider the following short exact sequence,

0 ! L1L ! O1
X ðlogDÞjL ! O1

LðlogD
LÞ ! 0;

and the induced natural map,

Op
LðlogD

LÞ ! Opþ1
X ðlogDÞjL � oL=X ; ð3:1:1:1Þ

where oL=X ’ LL as in [17].
Through the rest of this section all morphisms between sheaves and complexes are

meant to be in DðX Þ even if only sheaves are involved. Let i:L! X be the
embedding of L into X . The de¢nition of i! for a ¢nite morphism [16, VI 3.1,
p. 311, p. 165] together with the fundamental local isomorphism [16, III 7.2] shows
that

i!Op
X ðlogDÞ ’qis O

p
X ðlogDÞjL � oL=X ½1
;

and then the trace map for residual complexes gives

Tri:Ri�ðO
p
X ðlogDÞjL � oL=X Þ½1
 ! Op

X ðlogDÞ: ð3:1:1:2Þ

Combining (3.1.1.1) and (3.1.1.2) one has:

Ri�O
p
LðlogD

LÞ½1
 ! Opþ1
X ðlogDÞ:

Note, that the left-hand side is supported on L, so the map factors through
RHLO

pþ2
X ðlogDÞ. Also, by the proof of [17, II.2.2] this map is compatible with

the differential of the de Rham complex, so by taking the above for all p one
has a trace map:

TrL:Ri�O�LðlogD
LÞ½2
 ! RHLO

�
X ðlogDÞ: ð3:1:1:3Þ

LEMMA 3.1.2 [17, II.3.1]. TrL in (3.1.1.3) is a quasi-isomorphism.

Remark 3.1.2. The proof of this lemma is taken from [17, II.3.1] with some small
modi¢cations and repeating it for logarithmic differentials instead of ordinary ones.
It is included for the bene¢t of the reader as this constitutes an important step in the
entire proof.

Proof. Since L is of codimension one and Op
X ðlogDÞ is locally free for all p, there is

only one nonzero local cohomology sheaf, namely H1
LO

p
X ðlogDÞ. Furthermore,

H1
LO

p
X ðlogDÞ can be identi¢ed with Op

X ðlogDÞjXnL=O
p
X ðlogDÞ, locally isomorphic

to Op
X ðlogDÞ½ f

1
=Op
X ðlogDÞ where f is a local equation of L in X . Therefore,

RHLO
�
X ðlogDÞ ’qis H

1
LO
�
X ðlogDÞ½1
; ð3:1:2:1Þ
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where H1
LO
�
X ðlogDÞ denotes the complex whose pth term is H1

LO
p
X ðlogDÞ and whose

differential is the one induced from the differential of the de Rham complex.
Using the local isomorphism H1

LO
p
X ðlogDÞ ’ Op

X ðlogDÞ½ f
1
=Op

X ðlogDÞ one sees
easily that TrL is induced by the map

Op
LðlogD

LÞ½1
 ! H1
LO

p
X ðlogDÞ; ð3:1:2:2Þ

given by Z 7!Z ^ f 1df , where Z 2 Op
LðlogD

LÞ.
Next assume that L ¼ Spec A andX ¼ Spec B are af¢ne. Let f 2 B be an equation

of L in X , so A ’ B=ð f Þ. It is enough to prove the desired quasi-isomorphism after
passing to the completion with respect to the f -adic topology (cf. [17, p.38]), so
we may assume, that B ’ A½½ f 

 by [17, II.1.2].

Based on the above discussion, it will be suf¢cient to show that the map,

t:O�AðlogD
LÞ½1
 ! O�BðlogDÞ½ f

1
=O�BðlogDÞ;

given by Z 7!Z ^ f 1df for Z 2 Op
LðlogD

LÞ is a quasi-isomorphism of complexes.
Let g 2 Opþ1

B ðlogDÞ½ f
1
=Opþ1

B ðlogDÞ. Then g can be written as g ¼ g1 þ g2 ^ df ,
where g1 2 Opþ1

B ðlogDÞ½ f
1
 and g2 2 Op

BðlogDÞ½ f
1
, such that gi ¼

Pk
j¼0 gij f

j

for i ¼ 1; 2 and a suitable k 2N with gij 2 Opþ2i
B ðlogDÞ. Furthermore, using the

fact that B ’ A½½ f 

, gij ¼
P1

n¼0 gijn f
n, where gijn 2 Opþ2i

A ðlogDLÞ. Hence,

g ¼
Xk
j¼0

X1
n¼0

g1jn þ g2jn ^ df
� �

f nj:

Notice that all but a ¢nite number of terms of this expression will be in Opþ1
B ðlogDÞ,

so one obtains that g can be written uniquely in the form

g ¼
XN
s¼1

ðas þ bs ^ df Þ f s ð3:1:2:3Þ

for a suitable N 2N and as 2 Opþ1
A ðlogD

LÞ and bs 2 Op
AðlogD

LÞ.
Now dg ¼ 0 if and only if

das ¼ 0; s ¼ 1; . . . ;N;

db1 ¼ 0;

dbsþ1 ¼ ð1Þ
pþ1sas; s ¼ 1; . . . ;N:

Let

y ¼ ð1Þpþ1
XN
s¼2

1
s 1

bs f
sþ1 2 Op

AðlogD
LÞ:

Then g ¼ dyþ b1 ^ f 1d f where db1 ¼ 0. Hence, hiðtÞ is surjective for all i.
Finally if b1 ^ f 1df ¼ dg0 for some g0 2 Op

BðlogDÞ½ f
1
=Op

BðlogDÞ, then a similar
expression for g0 as the one for g in (3.1.2.3) shows that then there exists a
r 2 Op1

A ðlogD
LÞ such that g0 ¼ r ^ f 1df . Therefore, hiðtÞ is also injective for all i.&
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3.2. STRONG AMPLENESS

In this subsection the extra assumptions made in the previous subsection are
dropped, in particular X is not necessarily smooth, but (2.1) is still in effect.

DEFINITION 3.2.1. Let K be a semi-ample line bundle on X . Then K is called
strongly ample with respect to X nD if it is ample with respect to X nD and there
exists a proper birational morphism, a: ~XX ! X , such that for ~DD ¼ a�D,
a ~XXn ~DD:

~XX n ~DD! X nD is an isomorphism and there exists an effective divisor ~BB
on ~XX such that supp ~BB ¼ supp ~DD and a�Ka

ð ~BBÞ is an ample line bundle for some a > 0.
In particular, if t 2 H0ðX ;Kam

Þ: is a general section for some m 0 and
K ¼ ðt ¼ 0Þ, then a�K þm ~BB is an effective ample Cartier divisor supported on
~DD [ a�K , hence ~XX n ð ~DD [ a�KÞ ’ X n ðD [ KÞ is af¢ne.

3.2.2. Note that if D ¼ ;, then K is strongly ample if and only if it is ample. It is also
clear that if K is strongly ample then it is also big. On the other hand, let p:X ! Pn

be the blow up of Pn at a single point for nX 2. Let D be the exceptional divisor
of p. Then p�OX ð1Þ is semi-ample and big, but not strongly ample with respect
to X nD.

It will be very important in Section 4 that this property is inherited by restrictions
to L:

LEMMA 3.2.3. IfK is strongly ample with respect to X nD, thenKL ¼ KjL is strongly
ample with respect to L nDL.

Proof. K is ample with respect to X nD, so KL is ample with respect to
ðX nDÞ \ L ¼ L nDL. Let a: ~XX ! X be a proper birational morphism, ~DD ¼ a�D,
and ~BB an effective divisor on ~XX such that supp ~BB ¼ supp ~DD and a�Ka

ð ~BBÞ is ample
for some a > 0.

Let ~LL be the proper transform of L on ~XX , aL ¼ aj ~LL and ~BBL ¼ ~BBjL. It is easy to see
that KL and aL: ~LL! L satis¢es the requirements of De¢nition 3.2.1. &

The following lemma gives important examples for strongly ample line bundles.

LEMMA 3.2.4. Assume that there is an effective Q-Cartier divisor B, such that
supp B ¼ supp D and, in addition to (2.1), one of the following holds:

(3.2.4.1) L is ample, or

(3.2.4.2) B is nef.

Then M is strongly ample with respect to X nD.
Proof. It is enough to prove that L ¼MN is strongly ample with respect to X nD.
If L is ample and B is Q-Cartier, then La

ðbBÞ is ample for some a; b > 0.
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In the case of (3.2.4.2), let f:X ! Z be the morphism given by the global sections
of L and A an ample line bundle on Z, such that L ¼ f�A. Further let a: ~XX ! X be
the blowing up of X along the exceptional set of f and ~DD ¼ a�D. Note that the
exceptional set of ~ff ¼ f � a is a Cartier divisor with support contained in
supp ~DD ¼ supp a�B. Now there exists a ~ff-exceptional divisor E on ~XX , such that
~ff�Aa

ðEÞ ¼ a�La
ðEÞ is ample for some a > 0. Since E is ~ff-exceptional,

supp E � supp ~DD ¼ supp a�B, so for some b > 0, ~BB ¼ ba�B  E is effective and
supp ~BB ¼ supp ~DD. Finally, a�La

ð ~BBÞ is ample, since B is nef. &

3.3. GYSIN MORPHISM

3.3.1. Using the notation and assumptions of (2.1) further assume thatM is strongly
ample with respect to X nD.

3.3.2. Again, e�: ðX�;D�Þ ! ðX ;DÞ denotes a good hyperresolution. Applying (3.1.2)
for ii:Li,!Xi one obtains the following natural quasi-isomorphism

Rii�O
�
Li
ðlogDLi

i Þ½2
 !
’qis

RHLi
O�Xi
ðlogDiÞ:

By (2.1.1), this implies that there exists a quasi-isomorphism

Ri�O�LðlogD
LÞ½2
 !

’qis

RHLO
�
X ðlogDÞ: ð3:3:2:1Þ

Let j:X nD! X and jL:L nDL! L! X be the inclusion maps. Then by (1.2.1)
(3.3.2.1) gives a quasi-isomorphism

RjL�CLnDL ½2
 !
’qis

RHLRj�CXnD ’qis RHLnDLCXnD:

Applying RG to both sides one obtains a quasi-isomorphism

RGCLnDL ½2
 !
’qis

RGLnDLCXnD:

In particular

Hi2ðL nDL;CÞ !
’

Hi
LnDL ðX nD;CÞ ð3:3:2:2Þ

is an isomorphism for all i. On the other hand,

RGLnDLCXnD!RGCXnD!RGCXnðD[LÞ !
þ1

forms a distinguished triangle. By (3.2.1) X n ðD [ LÞ is af¢ne, so
HjðX n ðD [ LÞ;CÞ ¼ 0 for j > dimX cf. [17, II.4.6], [13], [15, III.3.1(i)]. Hence,

Hi
LnDLðX nD;CÞ ! HiðX nD;CÞ

is an isomorphism for i > dimX þ 1 and surjective for i ¼ dimX þ 1. Combining
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this with (3.3.2.2) one obtains that

Hi2ðL nDL;CÞ!HiðX nD;CÞ

is an isomorphism for i > dimX þ 1 and surjective for i ¼ dimX þ 1. Furthermore,
by the construction of these maps it is clear that they respect the Hodge
decomposition (1.2.4). Therefore,

G:Hq1
ðL;Op1

L ðlogD
LÞÞ!Hq

ðX ;Op
X ðlogDÞÞ ð3:3:2:3Þ

is an isomorphism for pþ q > dimX þ 1 and surjective for pþ q ¼ dimX þ 1.

4. Logarithmic Vanishing Theorem

THEOREM 4.1. Let X be a projective variety and D an effective divisor on X. LetM
be a semi-ample line bundle on X that is strongly ample with respect to X nD. Then for
pþ q > n,

Hq
ðX ;Op

X ðlogDÞ �M ¼ 0:

Proof.Using the notation and assumptions of (2.1), we ¢rst prove the same state-
ment for L ¼MN , N  0:

4.1.1. Hq
ðX ;Op

X ðlogDÞ � LÞ ¼ 0 for pþ q > dimX :

Tensoring the short exact sequence,

0 ! OX ! L ! LL ! 0;

by Op
X ðlogDÞ leads to the distinguished triangle,

Op
X ðlogDÞ ! Op

X ðlogDÞ � L ! Op
X ðlogDÞ �

L LL !
þ1

and the corresponding long exact hypercohomology sequence:

Hq1
ðL;Op

X ðlogDÞ �
L LLÞ !

@
Hq
ðX ;Op

X ðlogDÞÞ !Hq
ðX ;Op

X ðlogDÞ � LÞ:

ð4:1:2Þ

On the other hand, Lemma 2.2 gives the distinguished triangle,

Op1
L ðlogD

LÞ ! Op
X ðlogDÞ �

L LL ! Op
LðlogD

LÞ � LL !
þ1

;

and in turn the long exact hypercohomology sequence:

Hq1
ðL;Op1

L ðlogD
LÞÞ !Hq1

ðL;Op
X ðlogDÞ �

L LLÞ

!Hq1
ðL;Op

LðlogD
LÞ � LLÞ:
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Now by induction and Lemma 3.2.3 we may assume that
Hq1

ðL;Op
LðlogD

LÞ � LLÞ ¼ 0. Hence,

f:Hq1
ðL;Op1

L ðlogD
LÞÞ !Hq1

ðL;Op
X ðlogDÞ �

L LLÞ

is an isomorphism for pþ q > dimX þ 1 and surjective for pþ q ¼ dimX þ 1. Fur-
thermore f is induced by the map Op1

L ðlogD
LÞ ! Op

X ðlogDÞ � LL which locally
is given by Z 7!Z ^ df � f 1 where f is a local equation of L in X . So f is de¢ned
the same way as the Gysin map was, hence, the following diagram is commutative,
where G is from (3.3.2.3) and @ is from (4.1.2).

Now G and f are isomorphisms for pþ q > dimX þ 1 and surjective for
pþ q ¼ dimX þ 1, so the same holds for @. However, then (4.1.2) implies that

Hq
ðX ;Op

X ðlogDÞ � LÞ ¼ 0 for pþ q > dimX :

To obtain the statement in the general case one uses the usual covering trick:

4.1.3. Let

p: ~XX ¼ SpecX
MN1
i¼0

M
i
! X

be the cover obtained by taking theN th-root of L. Now the trace map of p provides a
left inverse to the natural map, cf. [15, p. 151], [11, 3.22]:

Op
X ðlogDÞ ! Rp�O

p
~XX
ðlog p�DÞ

Applying Hq and using (4.1.1) on ~XX proves the statement. &

COROLLARY 4.2 [14]. Let Y be a smooth complex projective variety and M a
semi-ample and big line bundle on Y. Then

HiðY ;oY �MÞ ¼ 0 for i > 0:

Proof. First assume thatM is generated by global sections. Let f:Y ! X be the
morphism given by the global sections ofM. Then there exists an ample line bundle,
L, on X such that M¼ f�L, so by (1.2.8), Lemma 3.2.4, and Theorem 4.1

HiðY ;oY �MÞ ’Hi
ðX ;Rf�oY � LÞ ’Hi

ðX ;On
X ðlog ;Þ � LÞ ¼ 0:

The general case is now proved by the usual covering trick, cf. Theorem 4.1. &
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We also have a relative version:

THEOREM 4.3. Let c:X ! Z be a projective morphism and D an effective
Q-Cartier divisor on X. Let L be a c-ample line bundle on X. Then for pþ q > n,

Rqc�ðO
p
X ðlogDÞ � LÞ ¼ 0:

Proof. The statement is local, so we may assume that Z is projective. LetM be an
ample line bundle on Z, such that for all p; q,Rqc�ðO

p
X ðlogDÞ � LÞ �M is generated

by global sections and have no higher cohomology. This can be done because
Op

X ðlogDÞ is bounded and has coherent cohomology sheaves. Furthermore, choose
M in such a way, that L � c�M is ample on X . Then by the Leray spectral sequence,
Lemma 3.2.4 and Theorem 4.1,

H0ðZ;Rqc�ðO
p
X ðlogDÞ � LÞ �MÞ ¼Hq

ðX ;Op
X ðlogDÞ � L � c�MÞ ¼ 0:

Since Rqc�ðO
p
X ðlogDÞ � LÞ �M is generated by global sections, this proves the

statement. &

Finally, this gives a bound on the range of degrees where Op
X ðlogDÞ can have

nonzero cohomology sheaves.

COROLARY 4.4. Let X be a projective variety and D an effectiveQ-Cartier divisor
on X. Then hqðOp

X ðlogDÞÞ ¼ 0 for q > n p or q < 0.
Proof. Let c ¼ idX :X ! X and M¼ OX . The second inequality is simply

(1.2.5). &

Regarding the case ofHqðY ;Op
Y �MÞ for p < n, Ramanujam has already noticed

that ifM is only semi-ample (or even generated by global sections) and big, than
vanishing does not necessarily hold [35]. However, since globally generated and
big line bundles are pull-backs of (very) ample ones, Theorem 4.1 can be considered
as a substitute. Later applications will show that it can actually be used for this
purpose.

5. Relative Complexes

Let f :X ! C be a morphism such that C is a smooth complex curve. Let D � C be a
¢nite set and D ¼ f �D. Let e�: ðX�;D�Þ ! ðX ;DÞ be a good hyperresolution, and
consider the map fi ¼ f � ei:Xi ! C. The goal is to construct a complex whose
cohomological properties resemble those of Op

X=C in the smooth case.
Taking the wedge product induces a map,

Op
Xi
ðlogDiÞ � f �i oCðDÞ ! Opþ1

Xi
ðlogDiÞ:
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This is obviously compatible with e�, so it gives a morphism of complexes:

^p:O
p
X ðlogDÞ � f �oCðDÞ ! Opþ1

X ðlogDÞ:

It is also easy to see that this is independent of the actual hyperresolution used cf. [26,
p. 375]. Hence, ^p is a well-de¢ned natural map in DðX Þ.

Choose a representative, Kp 2 ObjðCðX ÞÞ, of O
p
X ðlogDÞ for all p such that ^p is

represented by morphisms Kp ! Kpþ1 inMorðCðX ÞÞ. By abuse of notation this will
also be denoted by ^p. Let ^0p ¼ ^p � idf �oC ðDÞ 2 HomCðX ÞððKp � f �oCðDÞ,
Kpþ1 � f �oCðDÞÞ. Since oCðDÞ is a line bundle, ^p � ^

0
p1 ¼ 0. Let

Mr ¼ 0 2 ObjðCðX ÞÞ, w00r ¼ 0 2 HomCðX ÞðKr � f �oCðDÞ, Mr � f �oCðDÞÞ and
w0r ¼ 0 2 HomCðX ÞðMr � f �oCðDÞ, Krþ1Þ for rX n. Assume that p < n and for every
q > p, Mq 2 ObjðCðX ÞÞ is de¢ned. Assume further that there are morphisms of
complexes,

w00q:Kq � f �oCðDÞ !Mq � f �oCðDÞ and w0q:Mq � f �oCðDÞ ! Kqþ1;

such that

^q ¼ w0q � w
00
q and w00q � ^

0
q1 ¼ 0:

Let

wq ¼ w00q � idf �oC ðDÞ
1 :Kr !Mr

and

Mp ¼Mðwpþ1Þ½1
 � f �oCðDÞ
1
2 ObjðCðX ÞÞ;

i.e.,

Mm
p � f �oCðDÞ ¼ Km

pþ1 &Mm1
pþ1

and

dm
Mp� f �oC ðDÞ ¼

dm
Kpþ1

0
wm

pþ1 dm1
Mpþ1

 !
:

Also let

w00p ¼
^p

0


 �
:Kp � f �oCðDÞ !Mp � f �oCðDÞ

and

w0p ¼ ðidKpþ1 ; 0Þ:Mp � f �oCðDÞ ! Kpþ1:

w0p is a morphism of complexes by the de¢nition o f the mapping cone and w0p is a
morphism of complexes because wpþ1 � ^p ¼ 0. It is also obvious that
^p ¼ w0p � w

0
p and w0p � ^

0
p1 ¼ 0.
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By their de¢nition, the equivalence classes of wp, w0p and w00p in DðX Þ are indepen-
dent of the hyperresolution chosen. From now on these symbols will denote their
equivalence classes in DðX Þ. A map will mean an element of MorðDðX ÞÞ, so it is
possibly not represented by an actual morphism of complexes between two arbitrary
representatives of the respective objects.

THEOREM^DEFINITION 5.1. Let f :X ! C be a morphism between complex var-
ieties such that dimX ¼ n and C is a smooth curve. Let D � C be a ¢nite set and
D ¼ f �D. For every nonnegative integer p there exists a complex
Op

X=CðlogDÞ 2 ObjðDðX ÞÞ with the following properties.

(5.1.1) The natural map ^p factors through Op
X=CðlogDÞ � f �oCðDÞ, i.e., there exist

maps:

w00p:O
p
X ðlogDÞ � f �oCðDÞ ! Op

X=CðlogDÞ � f �oCðDÞ and

w0p:O
p
X=CðlogDÞ � f �oCðDÞ ! Opþ1

X ðlogDÞ

such that ^p ¼ w0p � w
00
p.

(5.1.2) If wp ¼ w00p � idf �oC ðDÞ
1 :Op

X ðlogDÞ ! Op
X=CðlogDÞ, then

Op
X=CðlogDÞ � f �oCðDÞ !

w0p
Opþ1

X ðlogDÞ !
wpþ1

Opþ1
X=CðlogDÞ !

þ1

is a distinguished triangle in DðX Þ.
(5.1.3) wp is functorial, i.e., if f:Y ! X is a C-morphism, then there are natural maps

in DðX Þ forming a commutative diagram:

Op
X ðlogDÞ ! Op

X=CðlogDÞ???y
???y

Rf�O
p
Y ðlogf

�DÞ ! Rf�O
p
Y=Cðlogf

�DÞ:

(5.1.4) If f is smooth over C n D, then Op
X=CðlogDÞ ’qis O

p
X=CðlogDÞ.

(5.1.5) Or
X=CðlogDÞ ¼ 0 for rX n and if f is proper, then Op

X=CðlogDÞ 2
ObjðDb

cohðX ÞÞ for every p.

Proof. Let Op
X=CðlogDÞ ’qis ½Mp
 2 ObjðDðX ÞÞ. Then (5.1.1), (5.1.2) and the ¢rst

part of (5.1.5) follows from the discussion above. Using (5.1.2), the ¢rst part of
(5.1.5) and descending induction on p, (5.1.3), (5.1.4) and the rest of (5.1.5) follows
from (1.2.2) and (1.2.7). &

Note that the combination of (1.2.2), (1.2.6), and (5.1.3) implies that if f:Y ! X
is a C-morphism, then there are natural maps in DðX Þ forming a commutative
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diagram:

OX ! O0
X ðlogDÞ ! O0

X=CðlogDÞ???y
???y

???y
Rf�OY ! Rf�O

0
Y ðlogf

�DÞ ! Rf�O
0
Y=Cðlogf

�DÞ

ð5:1:6Þ

6. More vanishing theorems

THEOREM 6.1. Let X be a projective variety of dimension n and f :X ! C a
morphism to a smooth complex curve. Let D � C be a ¢nite set and D ¼ f �D. Let
L be a line bundle on X such that L and L � f �oCðDÞ

ðn1Þ are semi-ample and ample
with respect to X nD. Then

Hn
ðX ;O0

X=CðlogDÞ � L � f �oCðDÞÞ ¼ 0:

Proof. Let Lp ¼ L� f �oCðDÞ
ðp1Þ for p ¼ 0; . . . ; n. By assumption, Lp is

semi-ample and ample with respect to X nD for 1W pW n since either f �oCðDÞ
or f �oCðDÞ

1 is semi-positive. In fact Lp is strongly ample with respect to X nD
for 1W pW n by Lemma 3.2.4 sinceD is an effective, nefQ-Cartier divisor. Twisting
(5.1.2) by Lp yields the following distinguished triangle:

Op1
X=CðlogDÞ � Lp1 ! Op

X ðlogDÞ � Lp ! Op
X=CðlogDÞ � Lp !

þ1
:

By Theorem 4.1 Hnpðp1Þ
ðX ;Op

X ðlogDÞ � LpÞ ¼ 0, so the map

Hnp
ðX ;Op

X=CðlogDÞ � Lp !Hnðp1Þ
ðX ;Op1

X=CðlogDÞ � Lp1Þ

is surjective for all 1W pW n. Observe that these maps form a chain as p runs through
p ¼ n; n 1; . . . ; 1. So the composite map

H0
ðX ;On

X=CðlogDÞ � LnÞ !Hn
ðX ;O0

X=CðlogDÞ � L0Þ

is also surjective. However, On
X=CðlogDÞ ¼ 0 by construction (cf. (5.1.5)). Therefore

the statement follows. &

LEMMA 6.2. Let f:Y ! X be a proper generically ¢nite map of varieties of
dimension n. Let F be a coherent sheaf on Y. Then the natural map
HnðX ;f�FÞ ! HnðY ;FÞ is surjective.

Proof. Let x 2 X and let dðxÞ ¼ dimYx, the dimension of the ¢ber of f over x.
Now ðRjf�FÞx ¼ 0 for j > dðxÞ, so supp Rjf�F � Xj ¼ fx 2 X j dðxÞW jg. Clearly,
X ¼ X0 [ X1 [ � � � [ Xn1 and for all j > 0, the dimension of f1ðXjÞ is at most
n 1, so dimXj þ jW n 1. Hence, dim supp Rjf�FW n j  1 for j > 0.
Therefore, HiðX ;Rjf�FÞ ¼ 0 for j > 0; i þ jX n. Finally this implies that in the
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Leray spectral sequence HiðX ;Rjf�FÞ ) HiþjðY ;FÞ the only nonzero term for
i þ jX n is HnðX ;f�FÞ. &

LEMMA 6.3. Let f:Y ! X be a proper generically ¢nite map of normal varieties of
dimension n. Let L be a line bundle on X.

(6.3.1) If f is birational, then the natural map HnðX ;LÞ ! HnðY ;f�LÞ is surjective.
(6.3.2) If X is projective and has rational singularities, then the natural map

HnðX ;LÞ ! HnðY ;f�LÞ is injective.

Proof. If f is birational, then OX ’ f�OY , so L ’ f�f
�
L, hence, Lemma 6.2

implies (6.3.1). If X is projective and has rational singularities, then the natural
map OX ! Rf�OY has a left inverse by [29, Theorem 2]. Hence,
HnðX ;LÞ !Hn

ðX ;Rf�OY � LÞ ’ HnðY ;f�LÞ is injective. &

THEOREM 6.4. Let X be a projective variety of dimension n and f :X ! C a
morphism to a smooth proper curve. Let D � C be a ¢nite set and D ¼ f �D. Assume
that there exists a smooth projective variety, Y, and a proper generically ¢nite map,
f:Y ! X, such that hjYnB:Y n B! C n D is smooth, where h ¼ f � f and
B ¼ h�D. Let ~CC be smooth proper curve, s: ~CC ! C a ¢nite cover, unrami¢ed over
C n D. Assume that for ~DD ¼ ðs�DÞred, o ~CCð

~DDÞ � s�oCðDÞ. Let ~XX be the normalization
of ~CC �C X and ~YY ! ~CC �C Y a resolution of singularities such that it is an
isomorphism over ~CC n s�D:

Assume that there exists a line bundle L on X such that p�L contains a line bundle ~LL

such that ~LL and ~LL � ~ff �oCð
~DDÞðn1Þ are semi-ample and ample with respect to ~XX n p�D.

(6.4.1) If f is birational, then

HnðY ;f�L � h�oCðDÞÞ ¼ 0:
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(6.4.2) If X has rational singularities, then

HnðX ;L � f �oCðDÞÞ ¼ 0:

Proof. LetM¼ L� f �oCðDÞ and ~MM¼ ~LL � ~ff �o ~CCð
~DDÞ � p�M. By (5.1.6) one has

the following commutative diagram:

Hn
ð ~XX ;O0

~XX= ~CC
ðlog p�DÞ � ~MMÞ ¼ 0 by Theorem 6.1, so ~bb is the zero map. Further-

more Z is an isomorphism by (5.1.4), hence, ~aa is the zero map as well.
Now consider the following commutative diagram:

The cokernel of the inclusion ~MM� p�M is supported in codimension 1, so g and ~gg
are surjective. The b is the zero map, since so is ~aa. Now d is injective, because p is
¢nite and X is normal and ~dd is injective by (6.3.2). Therefore a is the zero map.

If f is birational, then a is also surjective by (6.3.1), so (6.4.1) follows.
If X has rational singularities, then a is injective by (6.3.2), so (6.4.2)

follows. &

7. Arakelov^Parshin boundedness

DEFINITION 7.1. A morphism, h:Y ! C is called isotrivial if all but ¢nitely many
¢bers of h are isomorphic to a ¢xed variety. Similarly, h is called birationally
isotrivial if all but ¢nitely many ¢bers of h are birational to a ¢xed variety.

DEFINITION 7.2 [10]. Let F be a normal Gorenstein variety with rational
singularities, L a line bundle on F and G an effective divisor such that
L ¼ OF ðGÞ. Let

(1) CðG;NÞ ¼ cokerðt�o ~FF ð½
~GG=N
Þ ! oF Þ where t: ~FF ! F is a resolution of

singularities such that ~GG ¼ t�G is a normal crossing divisor.
(2) eðGÞ ¼ minfN 2NþjCðG;NÞ ¼ 0g
(3) eðLÞ ¼ supfeðGÞj9l 2 H0ðF ;LÞ such that G ¼ ðl ¼ 0Þg
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eðLÞ will be called the Esnault^Viehweg threshold of L. For properties of eðLÞ the
reader should consult [41, ‰5.3^4]

ASSUMPTION 7.3. Let C be a smooth projective curve of genus g, D � C a ¢nite set
of points, regarded as a (reduced) divisor. Let d ¼ #D, the number of points in D. Let
X be an irreducible projective variety of dimension n with rational Gorenstein
singularities and f :X ! C a morphism. Let D ¼ f �D.

Assume that Xt has rational Gorenstein singularities for t 2 C n D and that there
exists a simultaneous resolution of X nD! C n D, i.e., there exists a smooth pro-
jective variety Y and a birational morphism f:Y ! X, such that
Y n f�D! C n D is smooth. Let h ¼ f � f, B ¼ f�D and let Ygen denote the general
¢ber of h. By blowing up Y along a subvariety of B one may assume that B is a (not
necessarily reduced) normal crossing divisor.

rðmÞ will denote the rank of f�om
X=C. This is equal to the m-th plurigenus of the

general ¢ber of f , PmðXgenÞ. eðmÞ will denote the Esnault-Viehweg threshold of
om

Xgen
. If oXgen is ample, then eðmÞWmnKn

Xgen
þ 1 for m 0 by [41, 5.12].

Remark 7.3.1.Xt has only rational singularities for t 2 C n D, so the same holds for
X nD. It is conjectured that a variety with only rational singularities admits a com-
pacti¢cation with only rational singularities. Furthermore, if that conjecture holds
then the Gorenstein assumption could be avoided as well with a little care. Hence,
the assumption on the singularities of X is conjecturally super£uous.

The following lemma gives an effective measure of the positivity of f�om
X=C . The

proof follows parts of the proof of [5, 3.1] very closely, however both the situation
and the statement are different from theirs, so the actual proof is included.

PROPOSITION 7.4. Assume that f is nonisotrivial and that oXgen is ample.
Then ð f�om

X=CÞ
�eðmÞrðmÞ

� detð f�om
X=CÞ

1 is semi-positive for all m > 0.
Proof. By [41, 2.8], one may replace C by a ¢nite cover, unrami¢ed along D, and X

by the pull-back family in order to assume that det f�om
X=C ¼ D

eðmÞ for some
invertible sheaf D.

Let r ¼ rðmÞ and p:Z! Xr ¼ X �C X �C � � � �C X a resolution of singularities.
Further let r ¼ f r � p. ThenM¼ p�oXr=C ¼ p� �pr�i oX=C

� �
is big by [40, Theorem

II].
f r is a Gorenstein morphism and the general ¢bre has rational singularities, so

there are natural injective maps:

r� M
m1
� oZ=CÞ

� �
,!f r�o

m
Xr=C; ð7:4:1Þ

f r�o
m
Xr=C,!r�M

m; ð7:4:2Þ

DeðmÞ,!ð f�om
X=CÞ

�r
’ f r�o

m
Xr=C; ð7:4:3Þ
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where (7.4.1) and (7.4.2) are isomorphisms near the generic point of C. The com-
position of (7.4.2) and (7.4.3) gives a section s 2 H0ðZ;Mm

� r�DeðmÞÞ. Let
A ¼ ða ¼ 0Þ. Since p was an arbirary resolution of singularities one may replace
it by further blow-ups, so in particular one may assume that A is a normal crossing
divisor.

Let J � OZ be the ideal sheaf de¢ned as

im½r�f r�o
m
Xr=C !M

m

 ¼ M

m
� J :

Note that the support of OX=J is contained in ¢nitely many ¢bers. By blowing up J
one can assume that it is a line bundle and it is trivial near the general ¢bre of r. By
[19] f�om

X=C ’ h�om
Y=C is semi-positive, hence so is Mm

� J , i.e., it is a nef line
bundle. Let K ¼Mm1

� r�D1. Then

K
eðmÞm
ðmAÞ ¼ MeðmÞmðm1Þm2

- ðM
m
� J Þ

eðmÞðm1Þm;

where the inclusion is an equality near the general ¢ber of r. Hence, KeðmÞ
ðAÞ is nef

near the general ¢ber of r and then r�ðK � oZ=Cð½A=eðmÞ
ÞÞ is semi-positive by [10,
1.7]. By [41, 5.14, 5.21],

F :¼ r� K � oZ=C 
A

eðmÞ

� �
 �
 �
,!r�ðK � oZ=CÞ

is an isomorphism near the generic point of C. On the other hand, by (7.4.1),

r�ðK � oZ=CÞÞ ’ r�ðM
m1
� oZ=CÞ � D

1,!ð f�om
X=CÞ

�r
�D1;

is also an isomorphism near the generic point of C.
Thus F � ð f�om

X=CÞ
�r
�D1 which is an equality on an open dense subset of C. F

is semi-positive and then so is ð f�om
X=CÞ

�r
�D1. Taking the eðmÞth power gives the

statement. &

COROLLARY 7.5. Assume that h is not birationally isotrivial and that oygen is nef
and big. Then ðh�om

X=CÞ
�eðmÞrðmÞ

� detðh�om
Y=CÞ

1 is semi-positive for all m > 0.

LEMMA 7.6. LetM be a line bundle on X and N a line bundle on C. Assume that
f�M�N is ample, Mt ¼MjXt

is generated by global sections for t 2 C n D, and
h0ðMtÞ is constant. Then

(7.6.1) M� f �N is semi-ample with respect to X nD.
(7.6.2) IfMt is ample for t 2 C n D; thenM� f �N is ample with respect to X nD.

Proof. Let t; s 2 C n D. For l  0, H1ðC; Syml
ð f�MÞ �N

l
�OCðt sÞÞ ¼ 0.

Hence, the map H0ðC; Syml
ð f�MÞ �N

l
Þ ! Syml

ð f�MÞ � ðkðtÞ & kðsÞÞ is surjective.
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Since Mt is generated by global sections for t 2 C n D, f �Syml
ð f�MÞ !Ml is

surjective on X nD. In particular f �Syml
ð f�MÞ � ðOXt &OXsÞ !M

l
t &M

l
s is

surjective.
Now one has the following commutative diagram:

Since a and b are surjective, so is g. This shows both statements. &

DEFINITION 7.7. Let m0ðkÞ be the smallest positive constant such that for all pro-
jective varieties, F , of dimension k with at most rational singularities and oF ample,
om

F is generated by global sections if mXm0ðkÞ.

Remark 7.7.1. It is known that m0ðkÞ is ¢nite. In fact m0ðkÞW kþ1
2

� �
þ 2 by [25, 5.8]

(cf. [1]) and Fujita’s conjecture predicts that m0ðkÞW kþ 2.

THEOREM 7.8. Let C be a smooth projective curve of genus g, D � C a ¢nite set of
points. Let f :X ! C be a nonisotrivial morphism satisfying the assumptions made
in (7.3) and such that for t 2 C n D, oXt is ample. Then for all mXm0ðdimX  1Þ,

degð f�om
X=CÞ ¼ degðh�om

X=CÞWm � eðmÞ � rðmÞ � ½ð4gþ d 1Þ � dimX þ 2 2g
:

Proof. X has rational singularities, so f�oY=C ’ oX=C , and then h�om
Y=C ’ f�om

X=C .

7.8.1. Let mXm0ðdimX  1Þ and N a line bundle on C such that

degN
meðmÞrðmÞ

< degð f�om
X=CÞ:

Then by (7.4) f�om
X=C �N

m is ample on C. h0ðXt;om
Xt
Þ is constant for t 2 C n D by

Kawamata^Viehweg vanishing, so oX=C � f �N is ample with respect to X nD
by (7.6).

7.8.2. Choose an l > 0 such that ol
X=C � f �N l is generated by global section on

X nD. By blowing up the base locus of ol
X=C � f �N l (contained in D), one may

assume that there exits an effective Cartier divisor G, supported on supp D such
that ol

X=C � f �N l
ðGÞ is generated by global sections on the entire X .

7.8.3. Let P 2 C n D. We may assume that lX 2gþ d. The linear system
jð2gþ dÞP  Dj is base point free, so one can ¢nd a reduced effective divisor,
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D0 2 jð2gþ dÞP  Dj such that D \ D0 ¼ ;. Let D ¼
P

diDi and l0 ¼ lcm
i
ðdiÞ � l. Let

D00 ¼ Dþ D0 þ ðl0  ð2gþ dÞÞP 2 jl0Pj:

Let s: ~CC ! C be the ¢nite cover obtained by taking the l0-th root of D00. Take the
¢ber product of s with f and h. Let ~XX be the normalization of ~CC �C X ,
~ff : ~XX ! ~CC, and ~YY ! ~CC �C Y a resolution of singularities such that it is an
isomorphism over ~CC n s�D0.

Note that Dþ D0 is a nonempty reduced divisor, so both ~CC and ~XX are irreducible.
Let !DD ¼ ðD0Þred, ~DD ¼ ðs� !DDÞred, ~DD ¼ ~ff � ~DD and ~DDj ¼ ðp�DjÞred. Then
~YY n ~ff� ~DD! ~CC n ~DD is smooth, o ~CCð

~DDÞ ’ s�oCð
!DDÞ and !dd ¼ # !DD ¼ 2gþ dþ 1. By [26,

(2.4), (2.17)] d > 0 if g ¼ 0, so 2g 2þ !ddX 0, i.e., o ~CCð
~DDÞ ’ s�oCð

!DDÞ is nef.
Furthermore, over the smooth locus of X , p�Dj ¼ ðl0=gcdðl; djÞÞ ~DDj; so by the de¢-
nition of l0, the coef¢cient of ~DDj is divisible by l, hence, s a divisor ~GG on ~XX , supported
on ~DD, such that p�G ¼ l ~GG. As before, by blowing up the ideal sheaf of ~GG one may
assume that it is a Cartier divisor. Then

p�ðol
X=C � f �N l

ðGÞÞ ¼ p�ðoX=C � f �N Þlðl ~GGÞ ¼ ðp�ðoX=C � f �N Þð ~GGÞÞl;

so p�ðoX=C � f �N Þð ~GGÞ is semi-ample on ~XX and ample with respect to ~XX n ~DD. Finally
let ~oo ¼ p�oX=Cð ~GGÞ and ~NN ¼ s�N . Using this notation ~oo� ~ff � ~NN is semi-ample on ~XX
and ample with respect to ~XX n ~DD.

7.8.4. Let K ¼ oCð
!DDÞn where n ¼ dimX and let ~KK ¼ s�K. Then by construction

~oo� ~ff �ð ~NN � ~KKÞ � p�ðoX=C � f �ðN � KÞÞ:

Let L ¼ oX=C � f �ðN � KÞ � f �oCð
!DDÞ1 and ~LL ¼ ~oo� ~ff � ~NN � ~ff �o ~CCð

~DDÞn1 � p�L.
Since o ~CCð

~DDÞ is nef, ~LL and ~LL � ~ff �o ~CCð
~DDÞðn1Þ are semi-ample on ~XX and ample with

respect to ~XX n ~DD. Hence, HnðX ;oX=C � f �ðN � KÞÞ ¼ 0 by (6.4.2).
Finally take N ¼ oCð

!DDÞn � oC . Then

N �K ’ oC; and oX=C � f �ðN � KÞ ’ oX :

Since HnðX ;oX Þ 6¼ 0,

degð f�om
X=CÞW degN

meðmÞrðmÞ
¼ deg ðoCð

!DDÞn � o1C Þ
meðmÞrðmÞ� �

: &

COROLLARY 7.9. Under the assumptions of Theorem 7.8, 2g 2þ d > 0.
Proof. Follows from Theorems 7.8 and 0.9. &

COROLLARY 7.10. Under the assumptions of Theorem 7.8, for mX dimX
2

� �
þ 2:

degð f�om
X=CÞ

rkð f�om
X=CÞ

¼
degðh�om

Y=CÞ

rkðh�om
Y=CÞ

W 4 dimX � ð2g 2þ dÞ �m � eðmÞ
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Proof. By (7.9) 2g 2þ d > 0, so

degðoCð
!DDÞdimX

� o1C Þ ¼ dimX ð4g 1þ dÞ  ð2g 2ÞW 4 dimX ð2g 2þ dÞ:

Furthermore, m0ðdimX  1ÞW dimX
2

� �
þ 2 by [25, 5.8] (cf. [1]). &

Remark 7.10.1. By Fujita’s conjecture Corollary 7.10 should hold for
mX dimX þ 1.

COROLLARY 7.11. Let h:Y ! C be a nonbirationallyisotrivial family such that Y
is a smooth projective variety of dimension n, C is a smooth projective curve of genus
g and there exists a ¢nite subset D � C such that h is smooth over C n D. Assume
that oY=C is h-nef and h-big. Then

degðh�om
Y=CÞ

rkðh�om
Y=CÞ

W 4 � dimX � ð2g 2þ dÞ �m � eðom
Ygen
Þ; for mX

dimX
2


 �
þ 2:

Proof. By the relative base point free theorem [20] there exist morphisms
f:Y ! X and f :X ! C that satisfy Assumption 7.3, so the statement follows from
Corollary 7.10. &

7.12. Let Dh denote the moduli functor of canonically polarized normal projective
varieties with rational Gorenstein singularities and Hilbert polynomial hðtÞ. Let
D
ðmÞ
h denote the submoduli functor of varieties with om

F very ample, cf. [41, 1.20,
8.18].

D
ðmÞ
h is open and bounded by de¢nition, so by [41, 8.20] there exists a coarse

quasi-projective moduli scheme DðmÞh for D
ðmÞ
h . Furthermore, by [24] there exists

an integer p > 0 and a very ample line bundle l on DðmÞh such that for any
f :T ! S 2 D

ðmÞ
h ðSÞ, the pull back of l on S is detð f�om

T=SÞ
p. Note also that by [41,

5.17] eðom
F Þ is bounded on DðmÞh .

Let !DDðmÞh be the projective closure ofDðmÞh corresponding to the embedding given by
l, and H ¼ HomððC;C n DÞ; ð !DDðmÞh ;DðmÞh ÞÞ the scheme parametrizing morphisms
C:C ! !DDðmÞh such that CðC n DÞ � DðmÞh .

THEOREM 7.13. There exists a subscheme of ¢nite type T � H that contains all
points ½C:C ! !DDðmÞh 
 2 H induced by morphisms f :X ! C 2 D

ðmÞ
h ðCÞ such that

f jXn f �D admits a simultaneous resolution. &
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