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Abstract: Irrational centers are defined analogously to associated primes.
The union of irrational centers is the locus of non-rational singularities, but
irrational centers carry more information. There may be embedded irrational
centers signifying more complicated singularities. Various results regarding
irrational centers are proved, in particular some concerning depth estimates
and the Cohen-Macaulayness of certain ideal sheaves. It is also proved that
absolute irrational centers of a log canonical pair are also non-klt centers.
This allows applying results proved for irrational centers for non-klt centers
of log canonical pairs.
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1. INTRODUCTION

Rational singularities form one of the most important classes of singularities.
Their essence lies in the fact that their cohomological behavior is very similar to
that of smooth points. For instance, vanishing theorems can be easily extended
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to varieties with rational singularities. Establishing that a certain class of singu-
larities is rational opens the door to using very powerful tools on varieties with
those singularities.

The main purpose of the present article is to get a handle on determining how
far a non-rational singularity is from being rational, or in other words, introduce
a measure of the failure of a singularity being rational.

Recently there has been an effort to extend the notion of rational singularities
to pairs. There are at least two approaches; Schwede and Takagi [ST08] are
dealing with pairs (X, ∆) where b∆c = 0 while Kollár and Kovács [KK09] are
studying pairs (X, ∆) where ∆ is reduced. I will work with pairs and concentrate
on the latter approach, but the results are interesting already in the classical case
and should be easily adjustable to fit the setup of the former approach.

I will introduce and start developing the notion of irrational centers (or non-
rational centers). These are special subvarieties of the singular locus that are
one way or another “responsible” for he failure of the singularity to be rational.
After having finished this article I was informed that Alexeev and Hacon has
introduced a similar notion in [AH09]. The definition given here reduces to their
definition in the case ∆ = 0. Some of their results are similar to the ones in the
present article, but their methods are different from those applied here.

The behaviour of irrational centers is very similar to that of non-klt centers.
In fact, I will show that Kollár’s recent results [Kol10] (cf. [Ale08], [Fuj09]) con-
cerning depth of ideal sheaves of unions of non-klt centers has a reasonably close
analogue for irrational centers. In particular, I will prove the following results
(for the relevant definitions, see §2 and §4):

Theorem 1.1 (= Corollary 3.4). Let (X, D) be a rational pair. Then OX(−D)
is a CM sheaf.

Theorem 1.2 (= Corollary 5.4). Let (X, D) be a normal pair and x ∈ X which
is not the general point of an absolute irrational center of (X, D). Then

depthx OX(−D) ≥ min(3, codimX x).

The main focus of this article is the introduction of the notion of irrational
centers as a tool to study singularities. The above theorem is a demonstration
of how one may use this notion. I also prove that
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Theorem 1.3 (= Theorem 6.3). Absolute irrational centers of lc pairs are also
non-klt centers.

This opens the door to numerous possible applications regarding log canonical
pairs. For instance it implies the following:

Theorem 1.4 (= Corollary 3.5) [KK09, Thm. 111],[Kol10, Thm. 2]. Let (X, ∆)
be a dlt pair. Then for any effective integral divisor D ≤ b∆c OX(−D) is a CM
sheaf.

Theorem 1.5 (= Corollary 6.4) [Ale08],[Fuj09],[Kol10]. Let (X, ∆) be an lc pair
and x ∈ X which is not a non-klt center of (X, ∆). Then

depthx OX(−b∆c) ≥ min(3, codimX x).

It should also be noted that for lc pairs Kollár’s results are more general than
the ones here. On one hand his results extend to more generally chosen integral
divisors and also to slc singularities. I believe both of those generalizations are
possible through the methods presented here, but this will be addressed at a later
time.

Definitions and Notation 1.6. Unless otherwise stated, all objects are as-
sumed to be defined over C, all schemes are assumed to be of finite type over C
and a morphism means a morphism between schemes of finite type over C.

For definitions related to pairs, see (2.A).

If φ : Y → Z is a birational morphism, then Exc(φ) will denote the exceptional
set of φ. By abuse of notation, if this exceptional set is of pure codimension 1,
then Exc(φ) will also denote the exceptional divisor of φ. For a closed subscheme
W ⊆ X, the ideal sheaf of W is denoted by IW⊆X or if no confusion is likely,
then simply by IW . For a point x ∈ X, κ(x) denotes the residue field of OX,x.

For a proper birational morphism π : Y → X let T ⊆ X denote the indeter-
minacy locus of the rational map π−1 : X 99K Y . Then for a subset W ⊆ X

we define the strict transform of W on Y , denoted by π−1∗ W as the closure of
π−1(W \ T ) in Y . Notice that if W is contained in T , then its strict transform is
the empty set.

Let X be a noetherian scheme, x ∈ X a (not necessarily closed) point, and F

a coherent sheaf on X. The dimension and codimension of the closed subscheme
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{x} ⊆ X will be denoted by dimx and codimX x respectively. In particular,
dimX = dim x+codimX x for any x ∈ X. The dimension of F is the dimension
of its support: dimF : = dim suppF . The local dimension, denoted by dimx is
understood on the local scheme (X, x) and it is equal to dimFx the dimension
of Fx as an OX,x-module. The depth of F at x, denoted by depthx F is defined
as the depth of Fx as an OX,x-module. A non-zero coherent sheaf F is said to
satisfy Serre’s condition Sn if

depthx F ≥ min(n, dimx F )

for all x ∈ X [BH93, p.63]. Notice that this definition implies that if X is
contained in another noetherian scheme Y , then F satisfies Serre’s condition Sn

regarded as a sheaf on X if and only if it satisfies Sn regarded as a sheaf on
Y . This is because the depth as well as the support of F is independent of the
ambient scheme considered.

The dualizing complex of X is denoted by ω
q

X and if X is of pure dimension
n the dualizing sheaf of X is defined as ωX : = h−n(ω q

X). Note that if X is not
normal, then this is not necessarily the push-forward of the canonical sheaf from
the non-singular locus.

Let x ∈ X be a closed point. Then F is called Cohen-Macaulay (CM for short)
at x if Fx is a Cohen-Macaulay module over OX,x, and F is Cohen-Macaulay
(CM for short) if it is CM at x for all closed points x ∈ suppF . In particular,
X is CM if so is OX . Finally, X is called Gorenstein if OX is CM and ωX is an
invertible sheaf.

A relatively straightforward consequence of the definition of the dualizing sheaf
and basic properties of CM rings is that X is CM if and only if ω

q
X 'qis ωX [n] cf.

[Con00, 3.5.1].

Let X be a complex scheme of dimension n. Let Dfilt(X) denote the derived
category of filtered complexes of OX -modules with differentials of order ≤ 1 and
Dfilt,coh(X) the subcategory of Dfilt(X) of complexes K, such that for all i, the
cohomology sheaves of Gri

filtK are coherent cf. [DB81], [GNPP88]. Let D(X) and
Dcoh(X) denote the derived categories with the same definition except that the
complexes are assumed to have the trivial filtration. The superscripts +,−, b

carry the usual meaning (bounded below, bounded above, bounded). Isomor-
phism in these categories is denoted by 'qis . A sheaf F is also considered as a
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complex F
q with F 0 = F and F i = 0 for i 6= 0. If K is a complex in any of the

above categories, then hi(K) denotes the i-th cohomology sheaf of K.

The right derived functor of an additive functor F , if it exists, is denoted by RF

and RiF is short for hi ◦RF . Furthermore, Hi, Hi
c, Hi

Z , and H i
Z will denote RiΓ,

RiΓc, RiΓZ , and RiHZ respectively, where Γ is the functor of global sections, Γc

is the functor of global sections with proper support, ΓZ is the functor of global
sections with support in the closed subset Z, and HZ is the functor of the sheaf
of local sections with support in the closed subset Z. Note that according to this
terminology, if φ : Y → X is a morphism and F is a coherent sheaf on Y , then
Rφ∗F is the complex whose cohomology sheaves give rise to the usual higher
direct images of F . HomX(F ,G ) denotes the sheaf of morphisms between the
sheaves F and G and Ext i

X := RiHomX = hi ◦ RHomX .

We will use the notion that a morphism f : A → B in a derived category has
a left inverse. This means that there exists a morphism f ` : B → A in the same
derived category such that f ` ◦ f : A → A is the identity morphism of A. I.e., f `

is a left inverse of f .

2. RATIONAL PAIRS

2.A. Basic definitions

A Q-divisor is a Q-linear combination of integral Weil divisors; ∆ =
∑

ai∆i,
ai ∈ Q, ∆i (integral) Weil divisor. For a Q-divisor ∆ =

∑
ai∆i we will use the

following notation: ∆red : =
∑

∆i and the round-down of ∆ is defined by the
formula: b∆c =

∑ baic∆i, where baic is the largest integer not larger than ai.

A log variety or pair (X, ∆) consists of an irreducible variety (i.e., an ir-
reducible reduced scheme of finite type over a field k) X and an effective Q-
divisor ∆ ⊆ X such that no irreducible component of ∆ is contained in Sing X.
(This last assumption is automatically satisfied if, for example, X is normal.)
A morphism of pairs φ : (Y, Γ) → (X, ∆) is a morphism φ : Y → X such that
φ(suppΓ) ⊆ supp∆.

A reduced pair is a pair (X, D) where D is a reduced integral divisor. In this
case with a slight abuse of notation we will use D to also denote supp D. If
(X, D) is a reduced pair, then (X, D) is said to have simple normal crossings or
to be an snc pair at p ∈ X if X is smooth at p and the components of D are
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smooth at p intersecting transversely in a Zariski neighbourhood of p, i.e., in local
analytic coordinates, x1, . . . , xn, near p, D is defined by

∏r
i=1 xi = 0 for some

r. Furthermore, (X, D) is snc if it is snc at every p ∈ X. An snc pair (X, D)
will be called a smooth pair if the irreducible components of D do not intersect.
Equivalently, (X, D) is a smooth pair if and only if both X and D are smooth.

A morphism of pairs φ : (Y, ∆Y ) → (X, ∆) is a partial log resolution of (X, ∆)
if φ : Y → X is a proper, birational morphism which is an isomorphism near
general points of ∆ such that ∆Y = φ−1∗ ∆. A partial log resolution is a log
resolution if Exc(φ) is a divisor and

(
Y, (∆Y )red + Exc(φ)

)
is an snc pair. Note

that we allow (X, ∆) to be snc and still call a morphism with these properties a log
resolution. Also note that the notion of a log resolution is not used consistently
in the literature.

If (X, ∆) is a pair, then ∆ is called a boundary if b(1− ε)∆c = 0 for all
0 < ε < 1, i.e., the coefficients of all irreducible components of ∆ are in the
interval [0, 1]. For the definition of klt, dlt, and lc pairs see [KM98]. Let (X, ∆)
be a pair and µ : Xm → X a proper birational morphism. Let E =

∑
aiEi be the

discrepancy divisor, i.e., a linear combination of exceptional divisors such that

KXm + µ−1
∗ ∆ ∼Q µ∗(KX + ∆) + E

and let ∆m : = µ−1∗ ∆ +
∑

ai≤−1 Ei. For an irreducible divisor F on a birational
model of X we define its discrepancy as its coefficient in E. Notice that as divisors
correspond to valuations, this discrepancy is independent of the model chosen, it
only depends on the divisor. A non-klt place of a pair (X, ∆) is an irreducible
divisor F over X with discrepancy at most −1 and a non-klt center is the image
of a non-klt place. Excnklt(µ) denotes the union of the loci of all non-klt places
of φ.

Note that in the literature, non-klt places and centers are often called log
canonical places and centers. For a more detailed and precise definition see [HK10,
p.37].

Now if (Xm,∆m) is as above, then it is a minimal dlt model of (X, ∆) if it
is a dlt pair and the discrepancy of every µ-exceptional divisor is at most −1
cf. [KK10]. Note that if (X, ∆) is lc with a minimal dlt model (Xm,∆m), then
KXm + ∆m ∼Q µ∗(KX + ∆). Also note that minimal dlt models are not unique;
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for instance, blowing up the intersection of two or more irreducible components
of an snc divisor produces a (new) minimal dlt model of the given snc pair.

2.B. Rational pairs

Recall the definitions of rational singularities:

Definition 2.1. Let X be a normal variety and φ : Y → X a resolution of
singularities. X is said to have rational singularities if Riφ∗OY = 0 for all i > 0,
or equivalently if the natural map OX → Rφ∗OY is a quasi-isomorphism.

Definition 2.2. Let (X, D) be a pair and D an integral divisor. Then (X, D)
is called a normal pair if there exists a log resolution φ : (Y, DY ) → (X, D) such
that the natural morphism φ# : OX(−D) → φ∗OY (−DY ) is an isomorphism.

Proposition 2.3. Let (X, D) be a normal pair. Then (X, Dred) is an snc pair
in codimension 1.

Proof. Let φ : (Y, DY ) → (X, D) be a log resolution for which the natural mor-
phism

φ# : OX(−D) → φ∗OY (−DY )

is an isomorphism.

First consider X \ suppD. Then φ# : OX\supp D → φ∗OY \supp φ−1(D) is an
isomorphism, and hence X \ suppD is normal. In particular, X is smooth in
codimension 1 away from D.

Next observe that by definition φ is an isomorphism near the general points of
D and hence (X, Dred) is an snc pair in codimension 1 near D. This proves the
claim. ¤

Proposition 2.4. Let (X, D) be a reduced pair. Then we have the following two
implications:

(2.4.1) if X is normal and R1φ∗OY (−DY ) = 0 for a log resolution
φ : (Y, DY ) → (X, D) , then (X, D) is a normal pair, and

(2.4.2) if (X, D) is a normal pair and D is Cartier, then X is normal.
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Proof. Consider the following diagram of exact sequences:

0 // OX(−D) //

α

²²

OX
//

β

²²

OD
//

γ

²²

0

0 // φ∗OY (−DY ) // φ∗OY
// φ∗ODY

// R1φ∗OY (−DY )

By definition both X and D are reduced, so β and γ are injective and then α is
injective as well.

Recall that X is normal if and only is β is an isomorphism and (X, D) is normal
if and only is α is an isomorphism.

If β is an isomorphism, then it is in particular surjective and hence γ is sur-
jective. If furthermore R1φ∗OY (−DY ) = 0, then γ is an isomorphism and then
by the Snake Lemma α is also an isomorphism. This proves (2.4.1).

If α is an isomorphism and D is Cartier then φ∗D ∼ DY +F for some effective
φ-exceptional divisor F ⊂ Y . Therefore α factors as

OX(−D) //

'
α

66
φ∗φ∗OX(−D) // φ∗OY (−DY ).

Since these are torsion-free sheaves of rank 1 it follows that all three must be
isomorphic. In other words,

OX(−D) ' φ∗φ∗OX(−D) ' OX(−D)⊗ φ∗OY

and hence β is an isomorphism, so (2.4.2) is proven. ¤

Definition 2.5. [KK09] A reduced pair (X, D) is called a rational pair if there
exists a log resolution φ : (Y, DY ) → (X, D) such that

OX(−D)'qis Rφ∗OY (−DY ).

A log resolution as above will be called a rational log resolution of (X, D).

Remark 2.6. From the definition it is not obvious whether (X, D) being rational
implies that X has rational singularities. It turns out that this is actually true if
either X is Cohen-Macaulay or D is Cartier (2.12).

Remark 2.7. Notice that this definition is different from that of Schwede and
Takagi’s [ST08] in several ways. In particular, according to this definition snc
pairs are rational. On the other hand this definition is not independent of the
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resolution chosen but the only way it depends on the resolution is exactly the
fact that it allows snc pairs to be rational. This situation is similar to the case
of dlt singularities, where a dlt pair may have log canonical centers even though
it has no “purely” log canonical singularities. In fact, the irrational centers (cf.
(4.2)) are exactly the log canonical (or non-klt) centers of a dlt pair.

In Schwede and Takagi’s terminology a rational pair with D Cartier is said to
have purely rational singularities. See [ST08, 3.15] for details.

Example 2.8. Let (X, ∆) be a Q-factorial dlt pair. Then it follows from [KK09,
111] or [Kov10, 2.1] that (X, b∆c) is a rational pair.

The following is a simple consequence of known vanishing theorems that appear
in various forms in [Amb03, Fuj09, KK09]. Since only this simple version is
needed here, a reasonably self-contained proof is provided for the convenience of
the reader. This statement was independently observed by Zsolt Patakfalvi.

Theorem 2.9 (Grauert-Riemenschneider vanishing for pairs) cf. [Amb03, Fuj09,
KK09]. Let (X, D) be a pair and φ : (Y, DY ) → (X, D) a log resolution. Let
B ≤ DY be an effective reduced integral divisor. Then

Riφ∗ωY (B) = 0 for i > 0.

Remark 2.9.1. Notice that the statement does not say that vanishing holds for
any pairs. It is important that DY is the strict transform of D.

We need the following simple generalization of the (relative) Kawamata-
Viehweg vanishing theorem. It is contained implicitly in [Amb03] and explicitly
in [Fuj09, 2.33] and [KK09, 4.3].

Lemma 2.10. Let Y be a smooth variety, φ : Y → X a proper morphism, and
M a φ-nef and φ-big Q-divisor on Y . Further let L be a Cartier divisor with
L = OY (L) and B +

∑
∆i an effective simple normal crossing divisor on Y .

Assume that for some 0 ≤ ai < 1, L ≡ M +
∑

ai∆i and that M is φ-big on all
log canonical centers of (Y, B). Then

Rif∗
(
ωY (B)⊗L

)
= 0 for i > 0.

Proof. Write B = B1 + B′ where B1 is irreducible and consider the following
short exact sequence,

0 → ωY (B′)⊗L → ωY (B)⊗L → ωB1(B
′∣∣

B1
)⊗L

∣∣
B1
→ 0.
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Notice that the log canonical centers of (B1, B
′∣∣

B1
) are restrictions of the log

canonical centers of (Y, B). Therefore, using the long exact cohomology sequence
of Rφ∗ and induction on the number of components of B and the dimension of Y

this reduces the statement to the usual Kawamata-Viehweg vanishing theorem.
¤

Proof of (2.9). Since φ : (Y, DY ) → (X, D) is a log resolution, it follows that
DY +E is supported on an snc divisor where E = Exc(φ) is the exceptional divisor
of φ. Therefore any log canonical center of (Y, B), in other words any intersection
of the irreducible components of B, intersects E transversally. In particular OY

is φ-big on any log canonical center of (Y, B) and hence the statement follows
from (2.10). ¤

Corollary 2.11. Let (X, D) be a rational pair and φ : (Y, DY ) → (X, D) a
rational resolution.

(2.11.1) OX(−D) ' φ∗OY (−DY ), i.e., (X, D) is normal,
(2.11.2) Riφ∗OY (−DY ) = 0 for i > 0,
(2.11.3) Riφ∗ωY (DY ) = 0 for i > 0.

Theorem 2.12. Let (X, D) be a rational pair and φ : (Y, DY ) → (X, D) a
rational resolution. Then

(2.12.1) φ∗ωY (DY ) ' ωX(D) := HomX(OX(−D), ωX), and
(2.12.2) φ∗ωY ' ωX .

Proof. Let n = dim X. Then Grothendieck duality and (2.11.3) yields that

(?) RHomX(OX(−D), ω q
X)'qis RHomX(Rφ∗OY (−DY ), ω q

X)'qis

'qis Rφ∗RHomY (OY (−DY ), ω q
Y )'qis Rφ∗ωY (DY )[n]'qis φ∗ωY (DY )[n]

and

(??) ω
q

D 'qis RHomX(OD, ω
q

X).

Observe that (?) immediately implies (2.12.1). Consider the short exact sequence

0 → OX(−D) → OX → OD → 0

and apply the functor RHomX( ,ω
q

X) to obtain the distinguished triangle

RHomX(OD, ω
q

X) // ω
q

X
// RHomX(OX(−D), ω q

X)
+1 // .



Irrational Centers 1505

By (?) and (??) this is the same as

ω
q

D
// ω

q
X

// φ∗ωY (DY )[n]
+1 // .

Next consider the long exact sequence of cohomology sheaves induced by this
distinguished triangle:

0 → ωX → φ∗ωY (DY ) → ωD → . . .

Since Y is smooth we have a similar short exact sequence on Y .

0 → ωY → ωY (DY ) → ωDY
→ 0

Applying φ∗ and Grauert-Riemenschneider vanishing one obtains a commutative
diagram of exact sequences:

0 // φ∗ωY

α

²²

// φ∗ωY (DY ) //

β '
²²

φ∗ωDY
//

γ

²²

0

0 // ωX // φ∗ωY (DY ) τ // ωD

Since φ is an isomorphism at the general points of Y and the irreducible compo-
nents of DY and since ωY and ωDY

are torsion-free, it follows that both α and γ

are injective. Then the fact that β is an isomorphism implies that the image of
τ is φ∗ωDY

⊆ ωD. However, that implies that then ker τ ' φ∗ωY and hence α is
an isomorphism. ¤

Corollary 2.13 [ST08, 3.20]. Let (X, D) be a rational pair. Assume that D is
a Cartier divisor. Then X has only rational singularities and in particular it is
Cohen-Macaulay.

Proof. If D is Cartier, then hi(ω q
X) = 0 for i 6= dimX by (?) and hence X is

Cohen-Macaulay. It also follows that X is normal by (2.4.2) and hence satisfies
Kempf’s criterion for rational singularities by (2.12.2).

This proves the statement, but actually one can give a simple direct proof:

Let φ : (Y, DY ) → (X, D) be a rational resolution and n = dim X. By assump-
tion the natural map OX(−D) → Rφ∗OY (−DY ) is a quasi-isomorphism and since
φ∗D −DY is an effective (exceptional) divisor it factors the following way:

OX(−D) //

'qis

33
Rφ∗φ∗OX(−D) // Rφ∗OY (−DY ).
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Twisting by OX(D) implies that the natural morphism OX → Rφ∗OY has a left
inverse. Then X has rational singularities by [Kov00, Thm. 1]. ¤

3. DEPTH AND DUALITY

The main statement in this section is a simple reformulation of Grothendieck’s
vanishing and non-vanishing theorems of certain local cohomology groups char-
acterizing depth in terms of similar vanishing and non-vanishing involving the
dualizing complex.

Throught the article dualizing complexes will be considered normalized so if
X is generically non-reduced then supphi(ω q

X) ⊆ Sing X for i 6= −dimX.

First we need an auxiliary result on the localization of dualizing complexes.
This is undoubtedly known to experts. A proof is included for the benefit of the
uninitiated reader.

Lemma 3.1. Let X be a scheme that admits a dualizing complex ω
q

X (this holds
for instance if X is of finite type over a field). Let Xx ' Spec OX,x denote the
local scheme of X at x. Then Xx admits a dualizing complex and

ω
q

Xx
' ω

q
X ⊗ OX,x[−dimx].

Proof. As the statement is local we may assume that X is embedded into a
Gorenstein scheme as a closed subscheme by [Kaw02, 1.4]. Let j : X ↪→ Y

be such an embedding, N = dimY and m = codimY x = dimOY,x. Then by
Grothendieck duality and because Y is CM and j is a closed embedding,

ω
q

X 'qis RHomX(OX , ω
q

X)'qis Rj∗RHomX(OX , ω
q

X)'qis

'qis︸ ︷︷ ︸
Grothendieck duality

RHomY (Rj∗OX , ω
q

Y︸︷︷︸
dualizing complex

)'qis RHomY (OX , ωY︸︷︷︸
dualizing sheaf

)[N ].

Then taking cohomology and localizing at x gives that

ω
q

X ⊗ OX,x[−dimx]'qis

(
ω

q
X

)
x
[−dimx]'qis

'qis

(
RHomY (OX , ωY )[N − dimx]

)
x
'qis RHomYx(OX,x, ωY,x[m])'qis

'qis RHomYx(R(jx)∗OX,x, ω
q

Y,x)'qis R(jx)∗RHomXx(OX,x, ω
q

X,x)'qis ω
q

X,x

¤
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Proposition 3.2. Let X be a scheme that admits a dualizing complex ω
q

X . Let
x ∈ X be a point and F a coherent sheaf on X. Let d = dimx F + dimx and
t = depthx F + dimx. Then

(
Ext−i

X (F , ω
q

X)
)
x

= 0 for i > d and i < t.

Furthermore, if Fx 6= 0, then
(
Ext−d

X (F , ω
q

X)
)
x
6= 0, and

(
Ext−t

X (F , ω
q

X)
)
x
6= 0,

Proof. We may obviously assume that F 6= 0. Localization is exact and com-
mutes with the Hom functor, so

(
Ext−i

X (F , ω
q

X)
)
x
' Ext−i

Xx

(
Fx,

(
ω

q
X

)
x

)
and then

the latter group is isomorphic to Extdim x−i
Xx

(
Fx, ω

q
Xx

)
. This is the Matlis dual of

H i−dim x
x (Y,F ) by [Har66, V.6.2]. Therefore we obtain that

(
Ext−i

X (F , ω
q

X)
)
x

= 0 ⇔ H i−dim x
x (Y, F ) = 0

and since both depthx F and dimx F remain the same over Y , the statement
follows from Grothendieck’s theorem [BH93, 3.5.7]. ¤

Corollary 3.3. Under the same conditions and using the same notation as in
(3.2) one has that F is CM at x ∈ X if and only if

(
Ext−i

X (F , ω
q

X)
)
x

= 0 for i 6= d = dimx F + dimx.

Corollary 3.4. Let (X, D) be a rational pair. Then OX(−D) is a CM sheaf.

Proof. Consider a rational log resolution φ : (X̃, D̃) → (X, D) (cf. (2.5)). Using
the assumption and Grothendieck duality we obtain the following:

RHomX(OX(−D), ω q
X)'qis RHomX(Rφ∗OX̃

(−D̃), ω q
X)'qis

'qis Rφ∗RHom
X̃

(O
X̃

(−D̃), ω q
X̃

)'qis Rφ∗ω
q

X̃
(D̃)'qis φ∗ωX̃

(D̃)[dimX].

This implies that

Ext−i
X (OX(−D), ω q

X) = 0 for i 6= dim X

and hence the statement follows by (3.3). ¤

Corollary 3.5. Let (X, ∆) be a dlt pair. Then for any effective integral divisor
D ≤ b∆c OX(−D) is a CM sheaf.
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Proof. By [KK09, Thm. 111] (X, D) is a rational pair and hence the statement
follows from (3.4). ¤

4. IRRATIONAL CENTERS

Definition 4.1. Let F be a coherent sheaf on a scheme X. Then x ∈ X is an
associated point of F if the maximal ideal mX,x ⊂ OX,x is an associated prime
of the module Fx. In other words, x ∈ X is an associated point of F if the
maximal ideal mX,x ⊂ OX,x consists of zero-divisors of the module Fx.

Now we are ready to make the definition of the namesake of the present article:

Definition 4.2. Let (X, D) be a reduced pair and φ : (X̃, D̃) → (X, D) a log
resolution. If x ∈ X is an associated point of Riφ∗OX̃

(−D̃) for some i > 0, then
we call Z = {x}, the Zariski closure of {x}, a relative irrational center of (X, D)
with respect to φ. A closed subset Z ⊆ X is called an irrational center of (X, D)
if there exists a log resolution φ : (X̃, D̃) → (X, D) such that Z is a relative
irrational center of (X, D) with respect to φ and Z ⊆ X is called an absolute
irrational center if for any log resolution φ : (X̃, D̃) → (X, D), Z is a relative
irrational center of (X, D) with respect to φ.

Remark 4.3. If D = 0 then these definitions coincide and agree with the one
given in [AH09]. This can be proven the same way as one proves that having
rational singularities does not depend on the resolution chosen.

5. DEPTH ESTIMATES

5.A. Truncated functors and distinguished triangles

Let φ : (X̃, D̃) → (X, D) be a log resolution.

Now define a series of derived category objects recursively as follows. Let
R≥0φ∗ := Rφ∗ and consider the natural transformation

φ∗ // Rφ∗.
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Then let R≥1φ∗OX̃
(−D̃) be defined as the object completing the induced natural

morphism to a distinguished triangle:

φ∗OX̃
(−D̃) // Rφ∗OX̃

(−D̃) // R≥1φ∗OX̃
(−D̃)[−1]

+1 // .

By construction there exists a natural morphism,

R1φ∗OX̃
(−D̃) // R≥1φ∗OX̃

(−D̃),

and we let R≥2φ∗OX̃
(−D̃) be defined as the object completing the above natural

morphism to a distinguished triangle and so on to obtain a series of objects and
distinguished triangles for each p ∈ N:

Rpφ∗OX̃
(−D̃) // R≥pφ∗OX̃

(−D̃) // R≥p+1φ∗OX̃
(−D̃)[−1]

+1 // .

5.B. Easy vanishing theorems for Ext sheaves

Lemma 5.1. Let (X, D) be a pair and φ : (X̃, D̃) → (X, D) a log resolution.
Let p > 0 be a positive integer and x ∈ X which is not an associated point of
Rpφ∗OX̃

(−D̃). Then
(

Ext j
X(Rpφ∗OX̃

(−D̃), ω q
X)

)
x

= 0, for and j ≥ − dimx.

Proof. As x ∈ X is not an associated point of Rpφ∗OX̃
(−D̃), it follows that

either
(

Rpφ∗OX̃
(−D̃)

)
x

= 0 or depthx Rpφ∗OX̃
(−D̃) ≥ 1. In the latter case the

statement follows from (3.2). ¤

Corollary 5.2. Let (X, D) be a pair and φ : (X̃, D̃) → (X, D) a log resolution.
Let p > 0 be a positive integer and x ∈ X which is not an associated point of
Riφ∗OX̃

(−D̃) for any i ≥ p. Then
(

Ext j
X(R≥pφ∗OX̃

(−D̃), ω q
X)

)
x

= 0, for j ≥ − dimx.

Proof. If p À 0 then Rpφ∗ = R≥pφ∗ = 0, and hence the statement holds trivially.
Next apply the functor RHomX( , ω

q
X) to the distinguished triangle:

Rpφ∗OX̃
(−D̃) // R≥pφ∗OX̃

(−D̃) // R≥p+1φ∗OX̃
(−D̃)[−1]

+1 //

This is essentially the truncated complex of Rφ∗OX̃(−D̃). The shift is included to make the

subsequent definitions simpler and more balanced.
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to obtain the long exact sequence,

· · · → Ext j
X(R≥p+1φ∗OX̃

(−D̃)[−1], ω q
X) ' Ext j+1

X (R≥p+1φ∗OX̃
(−D̃), ω q

X) →
→ Ext j

X(R≥pφ∗OX̃
(−D̃), ω q

X) → Ext j
X(Rpφ∗OX̃

(−D̃), ω q
X) → . . . .

Now the statement follows from (5.1) by descending induction on p. ¤

5.C. Main theorem

Theorem 5.3. Let (X, D) be a reduced pair, φ : (X̃, D̃) → (X, D) a log resolu-
tion, and x ∈ X which is not the general point of a relative irrational center of
(X, D) with respect to φ. Then

(5.3.1)
(

Ext−i
X (φ∗OX̃

(−D̃), ω q
X)

)
x

= 0, for i < min(3, codimX x) + dimx,

in particular

(5.3.2) depthx φ∗OX̃
(−D̃) ≥ min(3, codimX x).

Proof. First observe that dimx φ∗OX̃
(−D̃) = codimX x, so (5.3.1) implies (5.3.2)

by (3.2). I will prove (5.3.1). Consider the distinguished triangle:

φ∗OX̃
(−D̃) // Rφ∗OX̃

(−D̃) // R≥1φ∗OX̃
(−D̃)[−1]

+1 // ,

and the long exact sequence it induces:

· · · → Ext−i
X (Rφ∗OX̃

(−D̃), ω q
X) → Ext−i

X (φ∗OX̃
(−D̃), ω q

X) →
→ Ext−i+2

X (R≥1φ∗OX̃
(−D̃), ω q

X) → . . . .

If i < 3 + dim x, then −i + 2 ≥ −dimx so
(

Ext−i+2
X (R≥1φ∗OX̃

(−D̃), ω q
X)

)
x

= 0

by (5.2) and so it is enough to prove that
(

Ext−i
X (Rφ∗OX̃

(−D̃), ω q
X)

)
x

= 0 for

i < min(3, codimX x).

Let n = dim X and observe that

(5.3.3) Ext−i
X (Rφ∗OX̃

(−D̃), ω q
X) ' h−i(RHomX(Rφ∗OX̃

(−D̃), ω q
X)) '

' h−i(Rφ∗RHom
X̃

(O
X̃

(−D̃), ω q
X̃

)) ' h−i(Rφ∗ω
q

X̃
(D̃)) ' Rn−iφ∗ωX̃

(D̃)

by Grothendieck duality and the fact that X̃ is smooth and D̃ is a Cartier divisor.
Now observe that if i < n, then

(
Rn−iφ∗ωX̃

(D̃)
)

x
= 0 by (2.9). ¤
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Corollary 5.4. Let (X, D) be a normal pair and x ∈ X which is not the general
point of an absolute irrational center of (X, D). Then

depthx OX(−D) ≥ min(3, codimX x).

Proof. Let φ : (X̃, D̃) → (X, D) be a log resolution for which x ∈ X is not the
general point of a relative irrational center of (X, D) with respect to φ. Notice
that as (X, D) is normal, by definition,

OX(−D) ' φ∗OX̃
(−D̃),

so the statement is straightforward from (5.3). ¤

6. APPLICATIONS TO LOG CANONICAL PAIRS

The key point of applying the results of this paper to log canonical pairs is
that absolute irrational centers are non-klt centers. It is easy to see that the
union of all non-klt centers of a log canonical pair contains the locus where that
log canonical pair is not rational and hence it contains the union of all absolute
irrational centers. However, I am claiming that there is a closer relationship,
namely that the absolute irrational centers themselves are non-klt centers.

Next we will discuss the key step in applying the theory of irrational cen-
ters to log canonical pairs. We will use the following slight abuse of notation:
For a log resolution φ : (Y, ∆Y ) → (X, ∆) we will denote the log resolution
φ : (Y, b∆Y c) → (X, b∆c) by the same symbol. This makes sense as φ really
stands for the birational morphism φ : Y → X that, as a morphism, is a priori
independent of the choice of boundary divisor.

We will need the following in the proof.

Definition 6.1. Let (Z, Θ) be a dlt pair. A log resolution of (Z, Θ),
g : (Y,Γ) → (Z, Θ) is called a Szabó-resolution , if there exist A,B ef-
fective Q-divisors on Y without common irreducible components, such that
supp(A + B) ⊂ Exc(g), bAc = 0, and

KY + Γ ∼Q g∗(KZ + Θ)−A + B.

Remark 6.2. Every dlt pair admits a Szabó-resolution by [Sza94] (cf. [KM98,
2.44]).
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Theorem 6.3. Let (X, ∆) be a log canonical pair. Then there exists a log reso-
lution φ : (Y, ∆Y ) → (X, ∆) such that every relative irrational center of (X, b∆c)
with respect to φ is the image of a non-klt center of (Y, ∆Y ). In particular, every
absolute irrational center of (X, b∆c) is also a non-klt center of (X, ∆).

Proof. First let ψ : (Z,∆Z + E) → (X, ∆) be a minimal dlt model [KK10, 3.1],
where ∆Z = ψ−1∗ ∆ and E = Exc(ψ). By the definition of the minimal dlt model
Z is Q-factorial and

(6.3.1) KZ + ∆Z + E ∼Q ψ∗(KX + ∆).

Next let η : (Y, ∆Y + EY ) → (Z, ∆Z + E) be a Szabó-resolution (6.1), where
∆Y = η−1∗ ∆Z and EY = η−1∗ E. Then there are A,B effective Q-divisors on
Y without common irreducible components, such that supp(A + B) ⊂ Exc(η),
bAc = 0, and

(6.3.2) KY + ∆Y + EY ∼Q η∗(KZ + ∆Z + E)−A + B.

Let Bε := B + ε(η∗E − EY ) where 0 < ε ¿ 1. It follows that

(6.3.3) dBεe − b∆Y c ∼Q KY + {∆Y }+ (1− ε)EY + A + {−Bε}+
− η∗(KZ + ∆Z + (1− ε)E),

and then the relative Kawamata-Viehweg vanishing theorem implies that

Riη∗O(dBεe − b∆Y c) = 0 for i > 0.

As Bε is still an effective η-exceptional divisor, it follows that

η∗OY (dBεe − b∆Y c) ' OZ(−b∆Zc),
cf. (2.4), and hence

(6.3.4) Rη∗OY (dBεe − b∆Y c)'qis OZ(−b∆Zc).

Clearly, φ = ψ ◦ η is a log resolution of (X, ∆) and ∆Y = φ−1∗ ∆. Then from
(6.3.1) and (6.3.3) we obtain
(6.3.5)
dBεe − b∆Y c ∼Q KY + {∆Y }+ EY + A + {−Bε}+ ε(η∗E −EY )− φ∗(KX + ∆).

Note that as opposed to (6.3.3), here the boundary relative to φ may have compo-
nents with coefficient 1, namely EY , so we cannot apply the relative Kawamata-
Viehweg vanishing theorem with respect to φ.
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On the other hand, notice that since (Z, ∆Z + E) is Q-factorial and dlt, so
is (Z, ∆Z) and then by [Kov10, 2.1] Riη∗OY (−b∆Y c) = 0 for i > 0. Therefore,
using (6.3.4), we obtain that

Rφ∗OY (−b∆Y c)'qis Rψ∗Rη∗OY (−b∆Y c)'qis Rψ∗OZ(−b∆Zc)'qis

'qis Rψ∗Rη∗OY (dBεe − b∆Y c)'qis Rφ∗OY (dBεe − b∆Y c).
Next use Kollár-Ambro torsion freeness: Applying [Fuj09, 2.39] to (6.3.5) we
obtain that the closure of any associated point of

Riφ∗OY (−b∆Y c) ' Riφ∗OY (dBεe − b∆Y c)
for some i > 0 is a non-klt center of (X, ∆). Similarly, the closure of an associated
point of Riφ∗ωY (b∆Y c) for some i > 0 is a non-klt center of (X, ∆) by [Fuj09,
2.39]. ¤

As indicated in the introduction we obtain the following corollary:

Corollary 6.4. Let (X, ∆) be a log canonical pair and x ∈ X which is not the
general point of a non-klt center of (X, ∆). Then

depthx OX(−b∆c) ≥ min(3, codimX x).

Proof. By (6.3) there exists a log resolution φ : (Y, ∆Y ) → (X, ∆) such that x is
not a relative irrational center of (X, b∆c) with respect to φ. Then

depthx φ∗OY (−b∆Y c) ≥ min(3, codimX x)

by (5.3) and OX(−b∆c) ' φ∗OY (−b∆Y c) by (2.4). ¤
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[Kov00] S. J. Kovács: A characterization of rational singularities, Duke Math. J. 102

(2000), no. 2, 187–191. MR1749436 (2002b:14005)

[Kov10] S. J. Kovács: DB pairs and vanishing theorems, Journal of Mathematics of Kyoto

University, Nagata Memorial Issue (2010), 21 pages.

[ST08] K. Schwede and S. Takagi: Rational singularities associated to pairs, Michigan

Math. J. 57 (2008), 625–658, Special volume in honor of Melvin Hochster. MR2492473
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