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It is a well-known consequence of the Torelli theorem that a smooth projec-
tive family of curves of genus at least 2 over a projective rational or elliptic
curve is isotrivial, that is, the �bres of the family are isomorphic. Since the
automorphism group of a curve of genus at least 2 is �nite, this also implies
that the family becomes trivial after a �nite base change.
The above statement was generalized for smooth projective families of

minimal surfaces of general type in [Migliorini95], and for smooth projec-
tive families of varieties (of arbitrary dimension) with ample canonical bundle
in [Kov�acs96]. Both articles studied families over curves.
The aim of this article is to present a further generalization, namely let the

base of the family have arbitrary dimension.

0.1 Theorem=4.2 Theorem. Let f : X → S be a smooth morphism of pro-
jective algebraic varieties such that the canonical bundle of every �bre of f
is ample. Assume that S is birational to an S ′ with 
S′ semi-negative. Then
f is isotrivial.

Smooth varieties with nef tangent bundle have been studied by several
authors. Note that the results in this article are formulated for the cotangent
bundle instead of the tangent bundle.
There are three essential parts of the proof. One is an Arakelov type result,

proved in Sect. 2, which asserts that if S is an abelian variety, then there is
a reduction to another family which has an ample relative canonical bundle
and the same variation in moduli. In particular if S is an irreducible abelian
variety, then either !X=S is ample or f is isotrivial. The key ingredients are
positivity results of [Koll�ar87] and [Esnault-Viehweg91].
The second essential part is a vanishing theorem, proved in Sect. 1, which

in particular implies that !X=S cannot be ample, therefore proving (0.1) for an
abelian base.
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The third part, carried out in Sect. 3 and Sect. 4, consists of several reduc-
tion steps. The main theme of them is constructing a new family over a base
for which the statement is already known, with the property that the set of
isomorphism classes of the �bres is preserved.
Finally these yield (0.1) by the structure theorem of [DPS92] and because

Fano varieties are rationally connected (cf. [KMM92b]).

0.1.1 Remark. The Arakelov type theorem and some of the reduction steps do
not require f to be smooth, and accordingly they are proved in a more general
setting. Smoothness of f is essential for the vanishing theorem.
One cannot expect (0.1) to be valid in the same generality as the other

parts, since generic Lefschetz pencils provide counterexamples. However, it is
expected that the ampleness assumption on the canonical bundle of the �bres
can be weakened to that the �bres are varieties of general type with nef canon-
ical bundle. This actually would follow if the vanishing theorem of Sect.1 were
extended to nef and big line bundles. The proof presented in Sect. 1, however,
requires ampleness since the Kodaira-Akizuki-Nakano vanishing theorem is not
valid for line bundles that are only nef and big.

De�nitions and Notation. Throughout the article the ground�eld will always
be C, the �eld of complex numbers.
A divisor D on a scheme X is called Q-Cartier if mD is Cartier for some

m¿0.
A normal variety X is said to have canonical singularities if KX is Q-

Cartier and for any resolution of singularities � : X̃ → X , with the collection
of exceptional prime divisors {Ei}, there exist ai ∈Q, ai= 0 such that KX̃ =
�∗KX +

∑
aiEi (cf. [CKM88]). X is called a canonical variety if it has only

canonical singularities and KX is ample.
A singularity is called Gorenstein if its local ring is a Gorenstein ring.

A variety is Gorenstein if it admits only Gorenstein singularities. In particular,
the dualizing sheaf of a Gorenstein variety is locally free.
A locally free sheaf E on a scheme X is called semi-positive (or nef ) if

for every smooth complete curve C and every map  : C → X , any quotient
bundle of ∗E has non-negative degree. E is called semi-negative if �E, the
dual of E, is semi-positive. Syml(E) denotes the l-th symmetric power of E,
and detE the determinant bundle of E, i.e., detE =

∧r
E if r = rk E.

Let f : X → S be a morphism of schemes, then Xs denotes the �bre of f
over the point s ∈ S and fs denotes the restriction of f to Xs. More generally,
for a morphism Z → S, let fZ : XZ = X ×S Z → Z . If f is composed with
another morphism g :S → T , then Xt denotes the �bre of g ◦ f over the point
t ∈ T , i.e., Xt = XSt .

f is called isotrivial if Xs ' Xt for every s; t ∈ S.
A smooth projective variety X is called a Fano variety if −KX is ample.

X is a Fano �bre space over S if the �bres of f are connected Fano varieties.
A proper variety X is called rationally connected if two arbitrary points

of X can be joined by an irreducible rational curve (cf. [KMM92a],
[Campana91]).



Families over a base with a birationally nef tangent bundle 349


X denotes the sheaf of di�erentials on X , 
X=S is the sheaf of relative
di�erentials. 
p

X =
∧p 
X , 


p
X=S =

∧p 
X=S , and !X=S = !X ⊗ g∗!−1S .
k(s) denotes the residue �eld at s ∈ S. hi(S;F) is the dimension of

Hi(S;F). �1(X; ?) denotes the fundamental group of X with an unspeci�ed
base point.

1 The vanishing theorem

The following well-known fact is included for ease of reference.

1.1 Fact. Let E be a locally free sheaf of rank r. Assume that there is a
�ltration

E = F0 ⊃ F1 ⊃ · · · ⊃ Fr = 0

of E such that
Fi−1=Fi =Li

is a line bundle for all i = 1; : : : ; r. Then for every 1 5 t 5 r there is a
�ltration

t∧
E = F0t ⊃ F1t ⊃ · · · ⊃ F(

r
t)

t = 0

of
∧t
E such that

Fi−1
t =Fi

t =Li1 ⊗Li2 ⊗ · · · ⊗Lit

for all i = 1; : : : ;
(

r
t

)
and a suitable set of indices 1 5 i1 ¡ i2 ¡ · · · ¡

it5r.

1.2 De�nition. Let E be a locally free sheaf of rank r. E will be called
semi-negative of splitting type if E has a �ltration

E = F0 ⊃ F1 ⊃ · · · ⊃ Fr = 0

such that
Fi−1=Fi =Li

is a semi-negative line bundle; i.e.; L−1
i is nef.

1.3 Lemma. Let f : X → S be a smooth morphism of projective algebraic
varieties of dimension n and k respectively. Assume that f∗
S is semi-negative
of splitting type. Let i; j ∈ N be natural numbers such that i + j + k = n.
Assume further that for every natural number l¿j and for every ample line
bundle L on X;

H i(X;
l
X=S ⊗ f∗!S ⊗L) = 0 :

Then
Hi+1(X;
j

X=S ⊗ f∗!S ⊗L) = 0

for every ample line bundle L.
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Proof. The standard exact sequence of f

0→ f∗
S → 
X → 
X=S → 0

yields a �ltration on 
j+k
X ⊗L which in turn induces a spectral sequence

Er; s
1 = Hr+s(X;
j+k−r

X=S ⊗ f∗
r
S ⊗L)⇒ Hr+s(X;
j+k

X ⊗L) :

Since i+j+k = n, Hi+1(X;
j+k
X ⊗L) = 0 by the Kodaira-Akizuki-Nakano

vanishing theorem. Hence Er; i+1−r
∞ = 0 for all r. In particular Ek; i+1−k

∞ = 0.
Suppose now that

Ek; i+1−k
1 = Hi+1(X;
j

X=S ⊗ f∗!S ⊗L)-0 :

Observe that Eu; v
w = 0 for every u ¿ k and arbitrary v; w, so in order to

have Ek; i+1−k
∞ = 0, there must be a t = 1 such that Ek−t; i−k+t

t -0. Then
Ek−t; i−k+t
1 -0 for the same t, so l = j + t¿j is such that

Ek−t; i−k+t
1 = Hi(X;
l

X=S ⊗ f∗
k−t
S ⊗L)-0 :

Now by assumption f∗
S has a �ltration

f∗
S = F0 ⊃ F1 ⊃ · · · ⊃ Fk = 0

such that Fi−1=Fi = Li and L−1
i is a nef line bundle. Then by (1.1) there

exist i1; : : : ; ik−t such that

Hi(X;
l
X=S ⊗Li1 ⊗ · · · ⊗Lik−t ⊗L)-0 :

Therefore

Hi(X;
l
X=S ⊗ f∗!S ⊗L⊗L−1

ik−t+1
⊗ · · · ⊗L−1

ik )-0 ;

for {ik−t+1; : : : ; ik} = {1; : : : ; k}\{i1; : : : ; ik−t}.
Since L ⊗L−1

ik−t+1
⊗ · · · ⊗L−1

ik is ample, this non-vanishing violates the
assumption. Hence the statement follows.

1.4 Theorem. Let f : X → S be a smooth morphism of projective algebraic
varieties of dimension n and k respectively. Let L be an ample line bundle
and assume that f∗
S is semi-negative of splitting type. Then

Hi(X;
l
X=S ⊗ f∗!S ⊗L) = 0 for i + l¿n− k :

Proof. 
X=S is a locally free sheaf of rank n− k, so

Hi(X;
l
X=S ⊗ f∗!S ⊗L) = 0

for l¿n− k and i = 0. Then

Hi+1(X;
n−k
X=S ⊗ f∗!S ⊗L) = 0
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for i = 0 by (1.3). Hence

Hi(X;
l
X=S ⊗ f∗!S ⊗L) = 0

for l¿n− k − 1 and i = 1. Then

Hi+1(X;
n−k−1
X=S ⊗ f∗!S ⊗L) = 0

for i = 1 by (1.3). Hence

Hi(X;
l
X=S ⊗ f∗!S ⊗L) = 0

for l¿n− k − 2 and i = 2.
Iterating this process one sees that

Hi(X;
l
X=S ⊗ f∗!S ⊗L) = 0

for i + l¿n− k.

1.5 Corollary. Let f : X → S be a smooth morphism of projective algebraic
varieties of dimension n and k respectively. Let L be an ample line bundle
and assume that f∗
S is semi-negative of splitting type. Then

Hi(X; f∗!S ⊗L) = 0 for i¿n− k :

1.6 Corollary. Let f : X → S be a smooth morphism of projective algebraic
varieties of dimension n and k respectively; k ¿ 0. Assume that f∗
S is
semi-negative of splitting type. Then !X=S is not ample.

Proof. Hn(X;!X )-0:

1.6.1 Remark. In fact (1.4) is true in a more general setting, but that gen-
eralization will not be used in this article. Using the Kodaira-Akizuki-Nakano
vanishing theorem for s-ample line bundles (cf. [Shi�man-Sommese85, 3.36])
one can replace the condition L being ample by it being s-ample and
change the condition on i; l respectively. Another, trivial improvement can
be made by observing that since f∗
j

S ⊗ f∗!−1S has a �ltration whose suc-
cessive quotients are nef line bundles, f∗!S can be replaced by f∗
j

S for
any j. Hence the proofs of (1.3) and (1.4) with the changes indicated
above give:

1.7 Theorem. Let f : X → S be a smooth morphism of projective algebraic
varieties of dimension n and k respectively. Let L be an s-ample line bundle;
j ∈ N; and assume that f∗
S is semi-negative of splitting type. Then

Hi(X;
l
X=S ⊗ f∗
j

S ⊗L) = 0 for i + l¿n− k + s :

1.8 Corollary. Let f : X → S be a smooth morphism of projective algebraic
varieties of dimension n and k respectively. Assume that f∗
S is semi-negative
of splitting type. Then !X=S is not (k − 1)-ample.
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2 Families over abelian varieties

In the rest of the article the following condition will be used often:

2.1 Condition. Let f : X → S be a morphism of algebraic varieties. Assume
the following:
(2.1.1) f is at, projective;
(2.1.2) X is Gorenstein;
(2.1.3) S is smooth;

and for all s ∈ S:
(2.1.4) Xs is reduced, with only canonical singularities;
(2.1.5) !Xs is ample.
Note that !Xs is a line bundle by (2.1.2) and by [Stevens88, Prop. 7] these

conditions also imply:
(2.1.6) X has only canonical singularities.

2.1.1 Remark. If f is smooth, then (2.1) reduces to:
(2.1.1′) f is projective;
(2.1.5) !Xs is ample for all s ∈ S.

2.2 Lemma. Let f : X → K be a morphism satisfying (2:1). Assume that
detf∗!m

X=A ∈ Pic◦(K) for some m�0. Then f is isotrivial.

Proof. First let dimK = 1. Suppose f is not isotrivial. Then by the proofs
of [Matsusaka-Mumford64, Theorems 1, 2] (cf. [Koll�ar87, 2.3(ii)] and
[Kov�acs96, 2.16]), there is no open subset of K over which f is isotrivial.
Then by [Koll�ar87, Theorem on p. 363] detf∗!

�
X=A is ample for some �¿ 0.

However, this implies that detf∗!m
X=A is ample for all m � 0 by [Esnault-

Viehweg91, 0.1], leading to a contradiction. Therefore f must be isotrivial.
For dimK ¿ 1 take a general hyperplane section of K and use induc-

tion.

Let f : X → A be a morphism satisfying (2.1) such that A is an abelian
variety. Fix an m� 0. Let L = detf∗!m

X=A. Let a ∈ A and ta the translation

by a. Let Â denote the dual variety of A and

�L : A→ Â

a 7→ t∗aL⊗L−1 :

Next let K be the connected component containing 0 of ker �L and
�nally let

� :A→ B = A=K :

Observe that L|K ∈ Pic◦(K), so (2.2) implies the following:
2.3 Corollary. Let a1; a2 ∈ A be such that �(a1) = �(a2). Then Xa1 ' Xa2 .

The next lemma provides an important reduction step for an abelian base.
It allows one to regard only families with detf∗!m

X=A ample.
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2.4 Lemma. There exists a commutative diagram:

X ←−−−−− X̃ Ã−−−−−→ Y

f

y
y

y g

A ←−−−−−
�

Ã −−−−−→
 

B

such that
(2.4.1) � is �etale;
(2.4.2)  = � ◦ �;
(2.4.3) g satis�es (2:1);
(2.4.4) Yb ' Xa for every b ∈ B and a ∈ Ab.

Furthermore; if f is smooth; then so is g.

Proof. For every b ∈ B let Fb = Xa for any a ∈ Ab. By (2.3) this is well-
de�ned and Xb → Ab is a locally trivial �bre bundle with �bre Fb. Hence there
is a representation of the free abelian group �1(Ab; ?):

�b :�1(Ab; ?)→ Aut(Fb) :

Let A′b → Ab be the �nite �etale cover corresponding to the subgroup

ker �b ⊂ �1(Ab; ?) :

Then XA′b
→ A′b is a trivial �bre bundle, namely

XA′b
= Fb × A′b :

By [Szab�o96, Theorem 4] (cf. [Kobayashi72, III.2.1]) there exists an
N ∈ N, independent of b, such that

|Aut(Fb)|5 N :

Set M = N !, then �b factors through

�b :�1(Ab; ?)→ �1(Ab; ?)=M · �1(Ab; ?)→ Aut(Fb) :

Therefore the �nite �etale cover �′′b :A
′′
b → Ab corresponding to the subgroup

M · �1(Ab; ?) ⊂ �1(Ab; ?)

factors through A′b → Ab, so XA′′b
→ A′′b is a trivial �bre bundle as well, i.e.,

XA′′b
= Fb × A′′b :

Next consider the �nite �etale cover � : Ã→ A corresponding to the subgroup

M · �1(A; ?) ⊂ �1(A; ?) :

Clearly �b∗�1(Ãb; ?) = M · �1(Ab; ?), so �b : Ãb → Ab is simply �′′b : A
′′
b → Ab.
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Hence for f̃ : X̃ = X ×A Ã→ B, one has X̃ b = Fb × Ãb, so

H 0(X̃ b; !k
X̃ =Ã) = H 0(Fb; !k

F) :

Now h0(Fb; !k
F) is independent of b for k = 2 by Riemann-Roch and

Kawamata-Viehweg vanishing, sof̃∗!
k
X̃ =Ã

is a locally free sheaf on B for k=2.
Then

g :Y = ProjB
∑

f̃∗!
k
X̃ =Ã → B

has the required properties.

The next proposition is a generic comparison result between !X=S and its
push-forward (note that the base is not required to be abelian here).
After reducing to the case when detf∗!m

X=A is ample using (2.4), this will
allow one to appeal to the vanishing result of the previous section to �nally
prove (0.1) for an abelian base.

2.5 Proposition. Let f :X → S be a morphism satisfying (2:1): Assume that
detf∗!

�
X=S is ample for some �¿0. Then !X=S is ample.

Proof. Let a; b ∈ S and Ia; b their ideal sheaf. f∗!k
X=S is ample for k � 0

by [Esnault-Viehweg91, 0.1]. Fix a k� 0. Then there exists an l0 ∈ N such
that for every l= l0 and i¿0,

Hi(S; Syml(f∗!k
X=S)⊗Ia; b) = 0 :

Hence

� :H 0(S; Syml(f∗!k
X=S))→ (Syml(f∗!k

X=S)⊗ k(a))⊕ (Syml(f∗!k
X=S)⊗ k(b))

is surjective.
Since !X=S restricted to any �bre is ample,

� :Syml(f∗!k
X=S)→ f∗!lk

X=S

is also surjective. Thus one has the following commutative diagram:

H0(S; Syml(f∗!k
X=S))

�−−−−−→ (Syml(f∗!k
X=S)⊗ k(a))⊕ (Syml(f∗!k

X=S)⊗ k(b))y
y �

H0(S; f∗!lk
X=S) −−−−−→

�
(f∗!lk

X=S ⊗ k(a))⊕ (f∗!lk
X=S ⊗ k(b)) ;

with � and � surjective, so � is surjective as well. Therefore

H 0(S; !lk
X=S)→ H 0(Xa; !lk

Xa
)⊕ H 0(Xb; !lk

Xb
)

is surjective.
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Now choose l� 0 such that !lk
Xa
is very ample for all a ∈ S. Then the

global sections of !lk
X=S separate the �bres and induce an embedding on every

�bre, hence !X=S is ample.

2.6 Theorem. Let f : X → A be a morphism satisfying (2:1) such that A is an
abelian variety. Then there exists a morphism from A to an abelian variety
A′ and a morphism f′ : X ′ → A′ satisfying (2:1); such that !X ′=A′ is ample
and X ′

a′ ' Xa for every a′ ∈ A′ and a ∈ Aa′ . Furthermore; if f is smooth;
then so is f′. In particular; if A is an irreducible abelian variety; then either
!X=A is ample or f is isotrivial.

Proof. Assume !X=A is not ample. Then � has a positive dimensional kernel
by (2.5), so dim B¡dim A. By (2.4) there exists a morphism Y → B satisfying
(2.1) and (2.4.4), so the statement follows by induction on the dimension
of A.

2.7 Corollary. Let f : X → A be a smooth morphism satisfying (2:1) such
that A is an abelian variety. Then f is isotrivial.1

Proof. (2.6) provides a smooth morphism Y → B with !Y=B ample. Then
dim B = 0 by (1.6), so f is isotrivial.

2.8 Corollary. [Kov�acs96] Let f : X → A be a smooth morphism satisfying
(2:1) such that S is rationally connected. Then f is isotrivial.

Proof. It is enough to prove the statement in the case S = P1. Pick s; t ∈ S and
consider a cover of S by an elliptic curve � :E → S such that � is unrami�ed
over the chosen points. Then X ×S E → E is isotrivial by (2.7), so Xs ' Xt ,
hence f is isotrivial.

2.8.1 Remark. This is weaker than the result of [Kov�acs96], since the latter
proves that smooth families of varieties of general type with nef canonical
bundle have birationally equivalent �bres.

3 Families over Fano �bre spaces

3.1 Proposition. Let f :X → S be a smooth morphism satisfying (2:1). As-
sume that there is a proper at morphism � : S → A such that the �bres of
� are rationally connected varieties. Then (� ◦f)∗!m

X=S is a locally free sheaf
on A for m= 2 and there exists a commutative diagram

X −−−−−→ Y

f

y
y g

S −−−−−→
�

A

such that g is smooth and satis�es (2:1); and Ya ' Xs for every a ∈ A and
s ∈ Sa.

1 Recently Qi Zhang also obtained this result with somewhat di�erent methods
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Proof. Sa is rationally connected, hence fa : Xa → Sa is isotrivial by (2.8),
so Xa → Sa is a locally trivial �bre bundle. Rationally connected varieties are
simply connected by [Campana91, 3.5], hence Xa = Xs × Sa, and then

H 0(Xa; !m
Xa=Sa) = H 0(Xs; !m

Xs
) :

On the other hand h0(Xs; !m
Xs
) is independent of s by Riemann-Roch and

Kodaira vanishing for m = 2, hence h0(Xa; !m
Xa=Sa) is independent of a for

m=2. Therefore (� ◦ f)∗!m
X=S is a locally free sheaf on A for m=2. Take

g :Y = ProjA
∑
(� ◦ f)∗!m

X=S → A :

3.2 Theorem. Let f : X → S be a smooth morphism satisfying (2:1). Assume
that there is a proper at morphism � : S → A such that the �bres of � are
rationally connected varieties and A is an abelian variety. Then f is isotrivial.

Proof. By (3.1) one can reduce to a family over the abelian variety A and
then f is isotrivial by (2.7).

3.3 Corollary. Let f : X → S be a smooth morphism satisfying (2:1). Assume
that 
S is semi-negative. Then f is isotrivial.

Proof. By [DPS94, Main Theorem] a �nite �etale cover of S is a smooth Fano
�bre space over an abelian variety and Fano varieties are rationally connected
by [KMM92b, 3.3] (cf. [Campana92]).

4 The birational case

The following easy technical lemma enables us to reduce (0.1) to (3.3).

4.1 Lemma. Let ’ : T → S be a morphism of algebraic varieties. Let Ts be
a �bre of ’ and I its ideal sheaf. Assume that H 1(Ts;In=In+1) = 0 for all
n= 1. Let E be a locally free sheaf on T of rank r such that E|Ts is trivial.
Then ’∗E is locally free near s ∈ S.

Proof. Let En be the subscheme of T with ideal sheaf In. In particular E1 =
Ts. By assumption E⊗OE1 ' O⊕r

E1 and then also E⊗In=In+1 ' (In=In+1)⊕r .

Claim. E⊗ OEn ' O⊕r
En

for all n= 1.

Proof. Consider
0→ In=In+1 → OEn+1 → OEn → 0 :

Tensoring this by E one has

0→ E⊗In=In+1 → E⊗ OEn+1 → E⊗ OEn → 0 :

By induction one can assume that E ⊗ OEn ' O⊕r
En
. Thus the latter short

exact sequence can be written as:

0→ (In=In+1)⊕r → E⊗ OEn+1 → O⊕r
En
→ 0 :
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Since H 1(Ts;In=In+1) = 0, the mapping

H 0(En+1;E⊗ OEn+1)→ H 0(En;O⊕r
En
)

is surjective, so E⊗ OEn+1 has r linearly independent global sections and there
exists a morphism O⊕r

En+1
→ E ⊗ OEn+1 such that the following diagram is

commutative:

0 −−−−−→ (In=In+1)⊕r −−−−−→ O⊕r
En+1

−−−−−→ O⊕r
En

−−−−−→ 0y
y

y
0 −−−−−→ E⊗In=In+1 −−−−−→ E⊗ OEn+1 −−−−−→ E⊗ OEn −−−−−→ 0 :

Hence the claim follows by the 5-lemma.

Therefore E is trivial in every in�nitesimal neighborhood of Ts, so ’∗E is
locally free near s ∈ S by the Theorem on Formal Functions.

4.2 Theorem. Let f :X → T be a smooth morphism satisfying (2:1). Assume
that T is birational to an S with 
S semi-negative. Then f is isotrivial.

Proof. Resolving the indeterminacy locus of the birational map between
S and T one has two birational morphisms T ′ → T and � : T ′ → S such
that � is obtained by a �nite succession of blowing-ups along smooth sub-
varieties.
It is enough to prove that fT ′ is isotrivial, hence f : X → T can be replaced

by fT ′ :X ′
T → T ′, so one may assume that there exists a morphism � :T → S,

obtained by a �nite succession of blowing-ups along smooth subvarieties.

4.3 Lemma. Assume � : T → S is a single blowing-up of S along a smooth
subvariety. Then �∗f∗!m

X=T is a locally free sheaf on S for m= 2.

Proof. f∗!m
X=T is a locally free sheaf on T by Riemann-Roch and Kodaira

vanishing. Let s ∈ S and I the ideal sheaf of Ts. Then Ts ' P r for some r,
and In=In+1 is a sum of nef line bundles. Hence H 1(Ts;In=In+1) = 0 for
all n = 1. Xs = Fs × Ts by (2.8), where Fs denotes the isomorphic �bres of
f over Ts. Let p : Xs → Fs denote the projection. Then !m

Xs=Ts
' p∗!m

Fs , so
f∗!m

Xs=Ts
' f∗!m

X=T ⊗OTs is trivial on Ts. Therefore by (4.1) �∗f∗!m
X=T is locally

free.

Now let X ′ = ProjS
∑

�∗f∗!m
X=T . Then one has the following commutative

diagram:
X −−−−−→X ′y

y
T −−−−−→ S

such that for every s ∈ S and t ∈ Ts, X ′
s ' Xt .
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Finally consider the general case, i.e., when � is obtained by a �nite succes-
sion of blowing-ups along smooth subvarieties. By repeated use of the previous
argument the family over T descends to a family over S, i.e., there exist com-
muting morphisms:

X −−−−−→X ′y
y

T −−−−−→ S

such that for every s ∈ S and t ∈ Ts, X ′
s ' Xt . Hence f is isotrivial by

(3.3).

4.3.1 Remark. The above proof also shows that in general the isotriviality
of f only depends on the birational class of T in the following sense: If
T is birational to an S such that every smooth projective family of vari-
eties with ample canonical bundle over S is isotrivial, then the same is true
for T .
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