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SÁNDOR J. KOVÁCS∗

Consider the curves on the (x, y)-plane parametrized by λ and given by the
equation,

y2 = x5 − 5λx+ 4λ.

An easy computation shows that these curves are non-singular for λ ∈
C \ {0, 1}. On the other hand the projective closure of each of these curves
is singular at the point [0 : 1 : 0]. Blowing up this point and another one
infinitely near this one yields a resolution, Cλ. The collection of Cλ forms
a family of smooth projective curves over the base C \ {0, 1}.

Exercise 0.1. Prove that the projection of Cλ onto the y = 0 axis is the
only degree 2 morphism onto P1 that Cλ admits. (Hint: See [28], IV.5.3).
Conclude that for λ1 6= λ2, Cλ1

6' Cλ2
.

A family of curves is called isotrivial if any two general members are
isomorphic. For example the blow up of the projective plane at a single
point, considered as a P1-bundle over P1, is an isotrivial family since all
of its members are isomorphic to the projective line. Since the genus of a
curve in a family is constant, and there is only one curve of genus zero, one
cannot expect much more in this case. However, for higher genus curves
one can have non-isotrivial families as the above example shows.

Exercise 0.2. Compute the genus of Cλ. Find another non-isotrivial family
of smooth curves of the same genus over C \ {0, 1}. Make a guess: Is there
an infinite sequence of pairwise different families of that kind?

At the 1962 ICM in Stockholm, Shafarevich conjectured that there exist
only finitely many isomorphism classes of non-isotrivial families of smooth
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projective curves of a given genus over a given base curve. Furthermore,
if there is such a family, then the base curve satisfies a certain hyperbolic
condition. (For definitions and a more precise formulation, see Section §1).
The conjecture was confirmed by Parshin [57] for the case of a compact
base and by Arakelov [3] in general. It was recently generalized to families
of higher dimensional varieties. This generalization is our main topic.

It will be advantageous to work with a compactification of the family.
Considering families over a compact base curve B naturally leads to a
slightly different view on the problem. Instead of smooth families over a
non-compact base, we are looking at arbitrary families over a compact base,
and consider the locus over which the family is smooth. It is fairly obvious
that these are equivalent situations. An arbitrary family over a compact
base gives a smooth family over some open subset and a smooth family over
an open curve can be extended to a (not necessarily smooth) family over
the projective closure of the curve cf. [28], III.9.8.

One could ask what can be said about the singular members of the
family. On the simplest level, how many are there? In fact, Szpiro has
asked this: What is the lower bound on the number of singular members
if B ' P1? This is the same as asking how close the base of the smooth
family can be to being compact. Beauville [6] gave the following answer
to Szpiro’s question: there are always at least three singular members and
there are families with exactly three. In fact, Beauville’s proof also shows
that there is at least one singular member if the base curve is elliptic. In
short, 2g(B) − 2 + δ > 0, where g(B) is the genus of the (compact) base
curve and δ is the number of singular members of the family. In other words,
the base of a smooth family must be hyperbolic.

Notice that the existence of Kodaira surfaces shows that there are fami-
lies over high genus curves without any singular fibers. For the construction
of Kodaira surfaces see for example [5], V.14. An interesting point to men-
tion is that even though we do not expect general obstacles for higher genus
bases, the known examples are limited in terms of the possible base curves.
Taking repeated general hyperplane sections in a moduli space of curves,
one can produce “examples” over compact curves, however, this still does
not produce a method to find a family over a given curve. It would be in-
teresting to see explicit examples that are significantly different from the
Kodaira construction. Having said that, we return to the opposite end of
the problem, the focus of this article.

Recently, Catanese and Schneider [8] asked whether something similar
to the Szpiro–Beauville bound holds for families with higher dimensional
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fibers. The conjecture of Shokurov [59] translates to the same question: Is
it true that for a family of varieties of general type, δ ≥ 3 if g(B) = 0 and
δ ≥ 1 if g(B) = 1? Equivalently, is 2g(B) − 2 + δ > 0? In effect we are
asking whether “hyperbolicity of the base” holds in higher dimensions.

The wide range of applications this question relates to is interesting to
note: Catanese and Schneider wanted to use this statement to obtain good
estimates for the size of the automorphism group of a variety of general type,
while Shokurov needed it for proving quasi-projectivity of certain moduli
spaces. Hyperbolicity for families of curves was used by Moret-Bailly [53]
and de Jong and Oort [12] to extend those families over codimension 2
subsets.

The structure of the article is as follows. In the first two sections,
the original Shafarevich conjecture is discussed in the function field and
in the number field case. Section §3 is a brief account of hyperbolicity in
general. Section §4 is a short look at a few vanishing theorems. Section §5
contains a sketch of how to prove hyperbolicity of the base for families
of curves. Section §6 is a short introduction to the theory of moduli of
curves. Beginning with Section §7, we turn to a more detailed discussion
of the tools and ideas involved. Sections §7 and §8 contain preliminary
steps to Section §9. Weak boundedness, introduced in Section §9, turns
out to be one of the most important notions we encounter. In Section §10
we turn to higher dimensional generalizations of the Shafarevich problem.
Section §11 contains a brief discussion of positivity of push-forwards and
Section §12 is a tour of more vanishing theorems. Section §13 deals with a
further generalization, which ultimately leads to studying singular families.
Section §14 touches on the subject of families over higher dimensional bases.
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§1. The Function Field Case

The following notation will be preserved throughout the entire article:

Notation 1.1. Let B be a smooth projective curve of genus g over an
algebraically closed field k of characteristic 0 and ∆ ⊂ B a finite subset. In
the sequel B and ∆ will be fixed.

We will consider families over B, i.e., flat projective morphisms f :
X → B with connected fibers, where X is a smooth projective variety
over k.

For a morphism Y → S and a base change morphism T → S, the symbol
YT will denote Y ×S T . In particular, for Y = X, S = B and b ∈ B we
write Xb = f−1(b). In addition, if T = SpecF , then YT will also be denoted
by YF .

Definition 1.2. A family f : X → B is isotrivial if Xa ' Xb for general
points a, b ∈ B. The family f : X → B will be called admissible (with
respect to (B,∆)) if it is not isotrivial and ∆ contains the discriminant
locus of f , i.e., the map f : X \ f−1(∆)→ B \∆ is smooth.

Our starting point is the aforementioned conjecture of Shafarevich:

1.3. Shafarevich’s Conjecture. Let (B,∆) be fixed and q ≥ 2 an
integer.

(1.3.1) There exist only finitely many isomorphism classes of admissible
families of curves of genus q.

(1.3.2) If 2g − 2 + #∆ ≤ 0, then there exist no such families.

Exercise 1.4. Prove that the inequality in (1.3.2) can be satisfied only if
B is either a rational or an elliptic curve:

2g − 2 + #∆ ≤ 0 ⇔

{

g = 0 and #∆ ≤ 2,

g = 1 and ∆ = ∅.

Shafarevich showed a special case of (1.3.2): There exist no smooth
families of curves of genus q over P1. (1.3.1) was confirmed by Parshin [57]
for ∆ = ∅ and by Arakelov [3] in general.

Our main goal is to generalize this statement to higher dimensional
families. In order to do that we will have to reformulate the statement
as Parshin and Arakelov did, but before doing so, we need a little bit of
background on deformations and parameter spaces.
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1.5. Deformations. In general, a deformation of an object means to
include that object in a family. There is a potentially confusing point
here. Our main objects of study are families, that is, deformations of their
members. However, we do not want to consider our families as deformations.
We want to look at deformations of these families. This may be a bit harder
to imagine first, but it works just the same way as deformations of other
objects. In addition, we want to fix the base of these families, so we are
interested in deformations leaving the base fixed, which makes both the
notation and the theory easier.

A deformation of a family φ : Y → S with the base fixed is a family
Y → S × T , where T is connected and such that for some t0 ∈ T we have
(
Yt0 → S × {t0}

)
' (Y → S):

Y ' Yt0

φ
²²

// Y

²²
S ' S × {t0} // S × T.

We say that two families Y1 → S and Y2 → S have the same deformation
type if they can be deformed into each other, i.e., if there exists a connected
T and a family Y→ S × T such that for some t1, t2 ∈ T ,

(
Yti → S × {ti}

)
' (Yi → S) for i = 1, 2.

We will consider deformations of admissible families. It will be advanta-
geous to restrict to deformations of the family over B \∆. Doing so poten-
tially allows more deformations than over the original base B: it can easily
happen that a deformation over B \∆, that is, a family X→ (B \∆)× T ,
cannot be compactified to a (flat) family over B×T , because the compactifi-
cation may contain fibers of higher than expected dimension. This however,
will not cause any problems because of the nature of our inquiry cf. (1.7).

Parameter Spaces. Given a family φ : Y → S, we say that S parametrizes

the members of the family. If the members of the family φ form a class, C, of
varieties, then we say that S is a parameter space for the class C. Note that
we do not require that the members of C appear only once in the family.

Exercise 1.6. Show that P5 is a parameter space for plane conics.
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A very useful parameter space is the Hilbert scheme, a parameter space
for subschemes of Pn. The Hilbert scheme of Pn decomposes as the disjoint
union of Hilbert schemes of subschemes with a given Hilbert polynomial.
The components of this union are projective schemes (in particular of finite
type). When one is hoping to parametrize the members of a class of varieties,
then the most likely way to succeed is to try to find the parameter space as a
subscheme of an appropriate Hilbert scheme. For more on Hilbert schemes
see [37] and [66]. We will return to their importance and some applications
in Section §6.

For more on parameter spaces see [24], Lectures 4, 21.

1.7. With regard to the Shafarevich conjecture, Parshin made the following
observation. In order to prove that there are only finitely many admissible
families, one can try to proceed the following way. Instead of aiming for
the general statement, first try to prove that there are only finitely many
deformation types. This is expected to be somewhat easier, because there
are ways to parametrize deformations, and the fact that there are only
finitely many types translates to the parameter space being of finite type.
The next step then is to prove that admissible families are rigid, that is,
they do not admit non-trivial deformations. Notice that if we prove these
statements for families over B \∆, then they also follow for families over B.
Now since every deformation type contains only one family, and since there
are only finitely many deformation types, the original statement follows.

The following is the reformulation of the Shafarevich conjecture that
was used by Parshin and Arakelov.

1.8. Reformulation. Let q ≥ 2 be an integer. Recall that (B,∆) is
fixed.

(1.8.1) Boundedness (B): There exist only finitely many deformation
types of admissible families, i.e., admissible families of curves of
genus q are parametrized by T, a scheme of finite type.

(1.8.2) Rigidity (R): There exist no non-trivial deformations of admissi-
ble families of curves of genus q, i.e., dimT = 0.

(1.8.3) Hyperbolicity (H): No admissible families of curves of genus q
exist if 2g − 2 + #∆ ≤ 0, i.e., T 6= ∅ ⇒ 2g − 2 + #∆ > 0.

Remark 1.8.4. As we discussed above, (B) and (R) together imply (1.3.1)
and (H) is clearly equivalent to (1.3.2).
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§2. The Number Field Case

The number field version of Shafarevich’s conjecture played a very important
role in Faltings’ proof of the Mordell conjecture. This section is a brief
detour to this very exciting area, but it is disconnected from the rest of the
article. The reader should feel free to skip this section and continue with
the next one.

Definition 2.1. Let (R,m) be a DVR, F = Frac(R), and C a smooth
projective curve over F . C is said to have good reduction over R if there
exists a scheme Z, smooth and projective over SpecR, such that C ' ZF ,

C
' // ZF

²²

// Z

²²
SpecF // SpecR

Definition 2.2. Let R be a Dedekind ring, F = Frac(R), and C a smooth
projective curve over F . C has good reduction at the closed point m ∈ SpecR
if it has good reduction over Rm.

2.3. Shafarevich Conjecture. Let q ≥ 2 be an integer.

(2.3.1) Let F be a number field, R ⊂ F the ring of integers of F ,
and ∆ ⊂ SpecR a finite set. Then there exists only finitely
many smooth projective curves over F of genus q that have good
reduction outside ∆.

(2.3.2) There are no smooth projective curves of genus q over SpecZ.

Remark 2.3.3. The Shafarevich Conjecture in the number field case has
been confirmed: (2.3.1) by Faltings [20] and (2.3.2) by Fontaine [21].

One can reformulate (1.3.1) to resemble the above statement:

2.4. Shafarevich Conjecture (function field case, version 2). Let
q ≥ 2 be an integer, F = K(B) the function field of B. We may assume
that ∆ is not empty, i.e., that B\∆ is affine. Let R be the subring of F such
that B \∆ = SpecR. Then there exist only finitely many smooth projective
non-isotrivial curves over F of genus q having good reduction over all closed
points of SpecR.
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Definition 2.5. If C is a smooth projective curve over F (an arbitrary
field), then there exists a morphism C → SpecF . Sections, SpecF → C, of
this morphism correspond in a one-to-one manner to F -rational points of
C, points that are defined over the field F . F -rational points of C will be
denoted by C(F ).

Example 2.5.1.

(1)The R-rational points of the curve x2 + y2 − z2 = 0 form a circle, its
C-rational points form a sphere.

(2)The curve x2 + y2 + z2 = 0 has no R-rational points.

(3)Let Cn be the curve defined by the equation xn+ yn− zn = 0. If n ≥ 3,
then according to Wiles’ Theorem, which is also known as Fermat’s Last
Theorem,

Cn(Q) =

{{
[1 : 0 : 1], [0 : 1 : 1], [1 : −1 : 0]

}
, if n is odd,

{
[1 : 0 : 1], [0 : 1 : 1], [1 : 0 : −1], [0 : 1 : −1]

}
if n is even.

As mentioned earlier, Faltings used (2.3) to prove:

2.6. Mordell Conjecture. Let F be a number field and C a smooth
projective curve of genus q ≥ 2 defined over F . Then C(F ) is finite.

The function field version of this conjecture was proved earlier by Manin
[51]:

2.7. Mordell Conjecture for function fields. Let F be a function field
(i.e., the function field of a variety over k, where k is an algebraically closed
field of characteristic 0) and let C be a smooth projective non-isotrivial
curve over F of genus q ≥ 2. Then C(F ) is finite.

Remark 2.7.1. The essential case to settle is when tr.degk F = 1, i.e.,
F = K(B), where B is a smooth projective curve over k.

Exercise 2.8. Let B be a smooth projective curve over k and F = K(B)
its function field. Let C be a smooth projective curve over F , and let f :
X → B be the “closure” of f0 : C → SpecF . Prove that the following
statements are equivalent.

(1)There exists an F -rational point of C;

(2)There exists a SpecF -section of f0;

(3)There exists a B-section of f .
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Shafarevich’s conjecture implies Mordell’s in both the function field and
the number field case by an argument due to Parshin:

2.9. Parshin’s Covering Trick. For every P ∈ C(F ) or equivalently, for

every section X
σPx
→ B, there exists a finite cover of X, WP

πP−→ X such that

• the degree of πP is bounded in terms of q,

• the projection WP → B is smooth over B \∆,

• the map πP is ramified exactly over the image of σP ,

• the genus of the fibers of WP → B is bounded in terms of q.

For details on the construction of the covers, WP
πP−→ X, see [50], IV.2.1.

The last ingredient of the proof is:

Theorem 2.10. (de Franchis [11]) Let C andD be smooth projective curves
of genus at least two. Then there exist only finitely many dominant rational

maps D → C.

The Shafarevich Conjecture implies that there are only finitely many
different WP ’s. Viewing WP and X as curves over F , de Franchis’ theorem
implies that a fixed WP can admit only finitely many different maps to X.

Since those maps are ramified exactly over the image of the correspond-
ing σP , this means that there are only finitely many σP ’s, i.e., C(F ) is finite,
and therefore Mordell’s conjecture follows from that of Shafarevich.

We end our little excursion to the number field case here. In the rest
of the article we work in the function field case and use the notation and
assumptions of (1.1).

§3. Hyperbolicity

Definition 3.1. A complex analytic space X is called Brody hyperbolic if
every holomorphic map C→ X is constant.

Remark 3.1.1. Another important, related notion is Kobayashi hyperbol-
icity. For its definition and relation to Brody hyperbolicity the reader is
referred to [49].
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Exercise 3.2. Let T be a complex torus. Prove that if X is Brody hyper-
bolic, then every holomorphic map C∗ → X is constant, and every holo-
morphic map T → X is constant.

We would like to define the algebraic analogue of hyperbolicity motivated
by this observation. Algebraic maps are more restrictive than holomorphic
ones. For instance the universal covering map, C→ E, of an elliptic curve,
E, is not algebraic. In particular, excluding algebraic maps from C to X

does not exclude maps from E to X.

The following is a working definition. For a notion that resembles
Kobayashi hyperbolicity one would need a different definition. This should
perhaps be called “algebraic Brody hyperbolicity” to emphasize that fact.
Nevertheless, the following is the way it is currently used:

Definition 3.3. An algebraic variety X is called algebraically hyperbolic if

• every regular map A1 \ {0} → X is constant, and

• every regular map A→ X is constant, where A is an abelian variety.

Next we recall some basic, but very important notions.

Definition 3.4. Let L be a line bundle on X. It is said to be generated

by global sections if for every point x ∈ X there exists a global section
σx ∈ H0(X,L) such that the germ σx generates the stalk Lx as an OX -
module. If L is generated by global sections, then the global sections define
a morphism φL : X → PN = P

(
H0(X,L)

)
. L is called semi-ample if Lm is

generated by global sections for mÀ 0. L is called ample if it is semi-ample
and φLm is an embedding for m À 0. A line bundle L on X is called big

if the global sections of Lm define a rational map φLm : X 99K PN such
that X is birational to φLm(X) for mÀ 0. Note that in this case Lm is not
necessarily generated by global sections, so φLm is not necessarily defined
everywhere.

A smooth projective variety, X, is of general type if ωX is big. It is easy
to see that this condition is invariant under birational equivalence between
smooth projective varieties. An arbitrary projective variety is of general
type if so is a desingularization of it.

It is expected that varieties of general type are close to being hyper-
bolic. Lang has made several conjectures describing this phenomenon more
concretely [50], Ch. I §3. One of those conjectures is the following:
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3.5. Lang’s Conjecture. Let X be a projective variety. Then X is
algebraically hyperbolic if and only if every subvariety of X is of general
type.

§4. Vanishing Theorems

Vanishing theorems have played a central role in algebraic geometry for the
last couple of decades, especially in classification theory. Kollár [34] gives
an introduction to the basic use of vanishing theorems as well as a survey of
results and applications available at the time. For more recent results one
should consult [15], [18], [38], [45], [60]. Because of the availability of those
surveys, we will only recall statements that are important for the present
article.

In nearly any discussion of vanishing theorems, one must start with the
fundamental vanishing theorem of Kodaira.

Theorem 4.1. (Kodaira [33]) LetX be a smooth complex projective variety
and L an ample line bundle on X. Then

H i(X,ωX ⊗ L) = 0 for i > 0.

This has been generalized in several ways, but as noted above we will
restrict to a select few. The original statement of Kodaira was generalized
to allow semi-ample and big line bundles in place of ample ones by Grauert
and Riemenschneider.

Theorem 4.2. (Grauert–Riemenschneider [22]) LetX be a smooth complex
projective variety and L a semi-ample and big line bundle on X. Then

H i(X,ωX ⊗ L) = 0 for i > 0.

Remark 4.2.1. “Semi-ample” was later replaced by “nef” in the statement
by Kawamata and Viehweg ([29], [63]).

Akizuki and Nakano extended Kodaira’s vanishing to include other ex-
terior powers of the sheaf of differential forms:

Theorem 4.3. (Akizuki–Nakano [2]) LetX be a smooth complex projective
variety and L an ample line bundle on X. Then

Hq(X,Ωp
X ⊗ L) = 0 for p+ q > dimX.
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4.4. Ramanujam [58] gave a simplified proof for (4.3) and showed that it
does not hold if one only requires L to be semi-ample and big.

§5. Families of Curves

In this section we are going to give an indication how to prove hyperbolicity
for a smooth family of curves over a compact base.

Lemma 5.1. Let f : X → B be a smooth family of curves of genus q ≥ 2.
If ωX/B is ample, then ωX/B ⊗ f∗ω−1B is not ample.

Proof. Since f is smooth then there exists a short exact sequence of locally
free sheaves,

0→ f∗ωB → ΩX → ωX/B → 0.

Twisting this short exact sequence by ωX/B , one obtains another one:

0→ ωX → ΩX ⊗ ωX/B → ω2X/B → 0.

Since ωX/B is ample, H2(X,ΩX ⊗ ωX/B) = 0 by (4.3). Hence the map
H1(X,ω2X/B) → H2(X,ωX) is surjective. The latter group is non-zero, so

the former is non-zero as well. However, by (4.1), this implies that indeed
ωX/B ⊗ f∗ω−1B cannot be ample.

Exercise 5.2. Let f : X → B be a smooth family of curves of genus q ≥ 2.
Prove that if ωX/B is ample, then g(B) > 1. Notice that this is a step
toward (H). To prove (H), one can proceed in a similar way using more
delicate vanishing theorems.

To finish the proof one needs to prove that for a non-isotrivial family
ωX/B is ample. As we will discuss later, this ampleness follows from pos-
itivity results on the push-forwards of powers of ωX/B. See §11 for more
details.

To argue that it is actually reasonable to expect that ωX/B is ample, let
us restrict to the case of g(B) = 1. We are trying to prove that in this case
no smooth non-isotrivial f exists. The fibers of f are smooth curves of genus
at least two, and the base is of genus one, so X cannot contain any rational
curves. Therefore X is a non-ruled minimal surface and thus some power
of its canonical bundle is generated by global sections. By adjunction, the
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restriction of ωX/B to a fiber is the canonical bundle of the fiber, hence it
is positive on it. Therefore the morphism induced by the global sections of
ωX/B cannot contract any fibers.

Now there are two possibilities. If the image of this morphism is a curve,
then all fibers map isomorphically onto this curve. This implies that the
fibers are pairwise isomorphic, contradicting the non-isotriviality of f . If the
image of the morphism is a surface, then X is of general type and the only
way ωX may not be ample is if it contracts some rational curves. However,
we have already established that X does not contain any rational curves,
so ωX = ωX/B must be ample. This completes the proof of (H) in the case
of g(B) = 1. P1 can be covered by an elliptic curve, hence a smooth family
over P1 induces one over the elliptic curve. This implies that no smooth
non-isotrivial f exists over P1 either.

§6. Moduli Spaces of Curves

The notion of parameter spaces was invented in and thus to some extent
belongs to the 19th century, a time when varieties were meant to be embed-
ded in projective space and families of varieties were families of embedded
varieties.

The 20th century saw a dramatic change in the way we think of varieties.
They are no longer subobjects, they exist without a necessary reference
to an ambient space. Some of them do not even admit an embedding
to projective space, but even those that do are preferred to be viewed
abstractly. Correspondingly, we would like to parametrize isomorphism
classes without respect to any embedding. For instance, while smooth
plane conics are parametrized by a Zariski open subset of P5, they are all
isomorphic to P1, so up to isomorphism the parameter space is a single point.
Of course, the way to parametrize the possible degree two embeddings of P1

into P2, that is smooth plane conics, should not be forgotten, but in order
to follow our principle of regarding varieties in an abstract way we need a
corresponding notion of parametrization.

Roughly speaking, a moduli space is a parameter space whose points are
in one–to–one correspondence with isomorphism classes of the members of
a class of varieties (or schemes).
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Recall that k is an algebraically closed field of characteristic 0. Let

Mq(k) = {smooth projective curves of genus q, defined over k}
/

'.

By definition, this is only a set, but the theory of moduli tells us that we
can make it an algebraic scheme in a natural way:

Theorem 6.1. (Mumford [54]) For q ≥ 2 there exists a quasi-projective
scheme Mq and a natural bijection betweenMq(k) and the set of k-points
of Mq.

“Natural” here means that every flat family f : X → B of smooth
projective curves of genus q induces a morphism from the base of the family
to Mq, ηf : B →Mq, such that each point is mapped to the isomorphism
class of the fiber over the point, that is, for all b ∈ B, ηf (b) = [Xb]. A
scheme with this property is called a coarse moduli scheme, or a moduli

space. The Mq in the theorem is the moduli space of smooth projective
curves of genus q.

In order to study compact families, we would like to work with a pro-
jective compactification: Mq ⊆Mq. However, in order for this to be useful,
the compactification should also be natural. In other words, it should be
the moduli space for an extended class of varieties. This leads us to consider
non-smooth families of curves as well.

Definition 6.2. A curve singularity is called a normal crossing if it is locally
analytically isomorphic to the singularity of the plane curve xy = 0. A re-
duced projective curve C is stable if it has only normal crossing singularities
and ωC is ample.

The extended moduli problem studies

Mq(k) = {stable curves of arithmetic genus q, defined over k}
/

'

and we have a statement similar to (6.1):

Theorem 6.3. (Deligne–Mumford [13], Knudsen–Mumford [32]) For q ≥ 2
there exists a projective coarse moduli scheme Mq forMq, such that Mq ⊆
Mq is an open subscheme.

Hence for every family f : X → B of stable curves of genus q there
exists a morphism ηf : B →Mq such that for all b ∈ B, ηf (b) = [Xb].
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6.4. Moduli spaces and Hilbert schemes. The Hilbert scheme,
Hilbp PN , parametrizes subschemes of PN with fixed Hilbert polynomial
p. The Hilbert scheme, HilbPN , parametrizes all subschemes of PN . It is
the disjoint union of Hilbp PN as p runs through all Hilbert polynomials.

Hilbert schemes belong to the best kind of parameter spaces. There
exists a universal family of the schemes parametrized by HilbPN such that
any family of subschemes of PN can be obtained from the universal family
by pull-back.

Hilbert schemes play a very important role in the construction of moduli
spaces. The main idea is the following.

We want to find a parameter space for all smooth (or stable) projective
curves of a given genus. The first difficulty is to try to get a hold on all of
them at the same time. This problem is solved by a certain boundedness
property: For a curve C of genus q ≥ 2, the sheaf of differential forms,
ωC , is an ample line bundle and one can prove that ω3C is generated by
global sections and defines an embedding of C into PN for N = 5q − 7.
From the construction it is clear that all smooth projective curves of genus
q are represented as a curve in PN with the same Hilbert polynomial. The
next step is to verify that the points of the corresponding Hilbert scheme
parametrizing our curves form a locally closed subscheme, H, of the ambient
Hilbert scheme.

This scheme is still not exactly that we want because the same curve
is represented by several points. Even though the sheaf of differentials is
unique, giving a universal choice, the embedding defined by the global sec-
tions is unique only up to an isomorphism of the target projective space. The
morphism depends on the actual generators we choose among the sections.
In other words, PGLn(k) acts on H and the orbits of this action correspond
to the isomorphism classes of smooth projective curves of genus q.

Therefore the desired moduli space is given as the PGLn(k) quotient of
H. The fact that this quotient exists as a scheme and has reasonably nice
properties is a highly non-trivial fact, but fortunately Mumford’s geometric
invariant theory tells us that this is the case. Hence the desired moduli
space exists.

The naturality of moduli spaces implies that a smooth family of curves
of genus q, f : X → B, induces a map ηf : B →Mq. One might hope that
the converse is true, as well, namely that maps into Mq induce families. In
that case families would be in one-to-one correspondence with maps from
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the base of the family to the moduli space and Mq would be a fine moduli

space. This, however, turns out to be too much to ask for.

Of course, this is only the tip of an iceberg. The theory of moduli of
curves is a highly developed beautiful subject. The reader is encouraged
to continue discovering this topic. A very readable and up to date account
is [25].

We now return to Shafarevich’s Conjecture and examine the conditions
listed in (1.8).

§7. Boundedness

The aim of this section is to sketch a proof of the following statement.

Theorem 7.1. In order to prove (B), it suffices to show that for somem > 1
the degree of f∗ω

m
X/B is bounded, the bound depending on B \∆ and q, but

not on f .

This section may be hard to digest for the beginner. Anyone willing
to accept the above statement should feel free to continue with the next
chapter.

Proof. (Sketch) First recall that condition (B) says that admissible families
are parametrized by a scheme of finite type.

The naturality of moduli spaces implies that a family f : X → B

induces a map ηf : B \∆→Mq, and since B is a smooth curve, ηf induces
another map η̄f : B →Mq. Unfortunately, as we discussed in the previous
section, maps do not necessarily induce families so we cannot parametrize
our families this way.

However, we can proceed a different way. One can prove that there
exist m,N > 1 such that for any admissible family f : X → B, the global
sections of ωmX/B define a map to PN such that it embeds each smooth fiber

of f as a degree d curve in PN . Here d is the degree of ωmX/B restricted to

a fiber of f . This induces a map, ζf , from the base, B \∆, to the Hilbert
scheme of degree d curves in PN , Hilbd PN . This Hilbert scheme admits a
natural map to Mq and the composition of this natural map with ζf is ηf .

This allows one to parametrize admissible families by the maps ζf :
B \∆→ Hilbd PN . Maps can be characterized by their graphs. The closure
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of the graph of ζf is a curve contained in B × Hilbd PN such that the first
projection maps it isomorphically onto B. Hence the parameter space we
are looking for is a subscheme of the Hilbert scheme of B×Hilbd PN cf. [37].

The Hilbert scheme is an infinite union of schemes of finite type, the
components corresponding to the different Hilbert polynominals. The
parametrizing scheme being of finite type means that all such graphs should
be contained in only finitely many components. That is, there should be
only finitely many Hilbert polynomials that can actually occur. All of these
curves are isomorphic to B and their image in Mq is non-trivial, so the only
relevant coefficient of the Hilbert polynomial is determined by the degree of
a fixed ample line bundle pulled back from Mq.

Therefore, if L is a fixed ample line bundle on Mq, then to prove (B), it
suffices to prove that deg η̄∗fL is bounded on B, the bound depending on B,

∆ and q, but not on f . The construction of Mq produces natural ample line

bundles: for p sufficiently large and divisible there exist line bundles, λ
(p)
m

on Mq, such that for a family of stable curves f : X → B, if η̄f : B →Mq

is the induced map, then

( det
(
f∗ω

m
X/B

)
)
p
= η̄∗fλ

(p)
m .

This statement is a consequence of the construction of λ
(p)
m and the

fact that one uses the powers of the relative dualizing sheaf to embed the
members of the family into projective space. The only missing information

we need is that λ
(p)
m is ample for m > 1. This was proved by Arakelov. Later

on we will need the analogous statement for a family of higher dimensional
varieties. Fortunately that is also available due to work of Kawamata,
Kollár, and Viehweg cf. (9.2). Therefore, to prove (B), it suffices to show
that deg f∗ω

m
X/B is bounded on B for some m > 1.

Remark 7.1.1. The notation λ
(p)
m might strike the reader as being odd.

The point of this notation is the following. When this line bundle is pulled
back to B, then it is a pth power, but originally it may not be. We are
considering maps defined by sections of

(
det(f∗ω

m
X/B)

)p
for m, p large and

divisible enough. We have no reason to expect this sheaf in general to have
any sections for p = 1, so det(f∗ω

m
X/B) is not expected to be the pull-back

of a line bundle from the moduli space.
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§8. Hyperbolicity Revisited

The first row in the following diagram is the statement of condition (H).
The last row shows equivalent conditions for both the assumption and the
conclusion.

2g − 2 + #∆ ≤ 0

KS

®¶

+3 @ f : X → B admissible

KS

®¶

B \∆ =







P1

A1

A1 \ {0}
elliptic curve

@ B \∆→Mq

non-constant,
induced by
a family.

Therefore proving (H) is equivalent to proving that there does not exist
a non-constant morphism, induced by a family, of the form A1 \ {0} →
Mq or E → Mq, where E is an arbitrary elliptic curve. This resembles
hyperbolicity notions we encountered earlier, justifying the name. It is
convenient at this point to make a new definition.

Definition 8.1. Mq is modular hyperbolic if every morphism B → Mq

induced by a family is constant for B = A1 \ {0} or B is abelian variety.

Remark 8.1.1. Essentially, this means that we require the moduli stack
to be hyperbolic. For details on stacks see [13], [4], [48].

8.2. The previous observation can be now stated as follows: If Mq is modular
hyperbolic, then (H) holds.

§9. Weak Boundedness

In this section we will discuss a property that implies both (B) and (H)
and add it to the list of (1.8).

(9.1) Weak Boundedness (WB) For an admissible family f : X → B, the
degree of f∗ω

m
X/B is bounded above in terms of g(B),#∆, g(Xgen),

m. In particular, the bound is independent of f .

Using this new notion we can rephrase (7.1):
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Theorem 9.2. (WB) ⇒ (B)

The traditional proof of hyperbolicity for curves proceeds via some form
of weak boundedness. The key point is that the upper bound obtained on
deg f∗ω

m
X/B has the form of (2g(B)−2+#∆)·c(g(B),#∆, g(Xgen),m) where

c(g(B),#∆, g(Xgen),m) > 0. This proves hyperbolicity; since det f∗ω
m
X/B

is ample, its degree is positive, so any upper bound of it is positive as well.

In higher dimensions, the bounds obtained are not always in this form.
However, perhaps somewhat surprisingly, hyperbolicity follows from the fact
of weak boundedness, not from the explicit bound.

Theorem 9.3. (WB) ⇒ (H)

A more precise and somewhat more general formulation is the following:

Theorem 9.4. ([46], 0.9) Let F be a collection of smooth varieties of general

type, B a smooth projective curve and ∆ ⊂ B a finite subset of B. Let

Fam(B,∆,F) =
{
f : X → B | X is smooth, f is flat and f−1(t) ∈ F

for all t ∈ B \∆
}
.

Assume that there exist M,m ∈ N such that for all (f : X → B) ∈
Fam(B,∆,F)

deg
(
f∗ω

m
X/B

)
≤M,

and that Fam(B,∆,F) contains non-isotrivial families. Then 2g(B) − 2 +
#∆ > 0.

Proof. First consider the case g(B) = 1 and assume that ∆ = ∅. Let
τ : B → B be a finite étale endomorphism of degree > 1. Then (fτ :
Xτ → Bτ ) ∈ Fam(B,∆,F) and, by assumption,

deg τ · deg
(
f∗ω

m
X/B

)
= deg

(
fτ ∗ω

m
Xτ/Bτ

)
≤M.

Since deg τ can be arbitrary large and deg
(
f∗ω

m
X/B

)
> 0 by [35], this leads

to contradiction.

The case of g(B) = 0, #∆ ≤ 2 works similarly. One may assume that
#∆ = 2. Again, there exists a finite endomorphism τ : B → B of degree
> 1 such that τ is smooth over B \ ∆ and completely ramified over ∆:
assume that ∆ = {0,∞} and consider the map induced by z 7→ zn. At this
point we would like to apply the same argument as above, but before we can
do that we have to deal with the singularities this procedure produces. In
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fact we have to start by applying stable reduction to the family ([25], 3.47),
and then the singularities we end up working with are sufficiently mild to
allow us to use the above argument to finish the proof. For more details see
[46], 0.9.

These statements suggest that (WB) is a condition worth studying.

Next we turn to higher dimensional generalizations. As a first step,
one can try to keep the base of the family be a curve and allow higher
dimensional fibers. Independently or simultaneously, one can study families
over higher dimensional bases. Finally, generalizing the conditions on the
fibers naturally leads to the study of families with singular fibers. We will
discuss the state of affairs in all of these directions.

§10. Higher Dimensional Fibers

The first task is to state what we are after, so we need to generalize both
the statement and the conditions. The condition that a curve has genus at
least 2, i.e., our assumption that g(Xgen) ≥ 2, is equivalent to the condition
that ωXgen is ample. In higher dimensions, the role of the genus is played by
the Hilbert polynomial, so fixing g(Xgen) will be replaced by fixing hωXgen

,
the Hilbert polynomial of ωXgen .

10.1. Therefore we have the following starting data:

(10.1.1) a fixed smooth curve B of genus g,

(10.1.2) a fixed finite subset ∆ ⊂ B, and

(10.1.3) a fixed polynomial h.

Definition 10.2. An admissible family is a non-isotrivial family f : X →
B, such that X is a smooth projective variety and for all b ∈ B \ ∆, the
variety Xb is smooth and projective with ωXb

ample and hωXb
= h. Two

such families are equivalent if they are isomorphic over B \∆.

Having made this definition, the various parts of Shafarevich’s conjecture
make sense in any dimension.

10.3. Higher Dimensional Shafarevich Conjecture.

(B) Admissible families are parametrized by a scheme T of finite type.

(R) dimT = 0.
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(H) T 6= ∅ ⇒ 2g − 2 + #∆ > 0.

(WB) For an admissible family f : X → B, the degree of f∗ω
m
X/B is

bounded in terms of g,#∆, h and m.

Next we are going to try to determine which of these statements remain
true in higher dimensions.

10.4. (R)

Let Y → B be an arbitrary non-isotrivial family of curves of genus ≥ 2,
and C a smooth projective curve of genus ≥ 2. Then f : X = Y × C → B

is an admissible family, and a deformation of C gives a deformation of f .
Therefore (R) fails as stated.

Question 10.5. Under what additional conditions does (R) hold?

10.6. (B), (H), and (WB).

Several results have been obtained in this regard recently.

Migliorini [52] showed that for families of minimal surfaces a somewhat
weakened hyperbolicity statement holds, namely that δ ≥ 1 if g ≤ 1.
The author showed the same in [39] for families of minimal varieties of
arbitrary dimension, later proved (H) for families of minimal surfaces in
[40], and then (H) for families of canonically polarized varieties in [43].
Most recently, Viehweg and Zuo [70] proved the analytic version of (H),
i.e., Brody hyperbolicity.

Bedulev and Viehweg [7] proved that (B) holds for families of surfaces
of general type and that (WB) (and in some cases (B)) holds for families
of canonically polarized varieties. As a byproduct of their proof they also
obtained that (H) holds in these cases.

Viehweg and Zuo [68] extended (H) and (WB) to families of varieties of
general type and of varieties admitting a good minimal model. In [46] the
author obtained similar results with different methods allowing the fibers to
have rational Gorenstein singularities, but restricting to the case of families
of minimal varietes of general type.

(WB) implies (B) as in the curve case cf. [69], 6.2. The proof of (9.4)
works in any dimension, so (WB) implies (H) as well. These suggest that
(WB) is again the “right” condition to study.

Currently the best known results are the following:
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Theorem 10.7. (Bedulev–Viehweg [7]) Let f : X → B be an admissible

family with B,∆, h fixed. Let δ = #∆, g = g(B), and n = dimXgen =
dimX − 1. If f∗ω

m
X/B 6= 0, then there exists a positive integer, e = e(m,h)

such that

deg f∗ω
m
X/B ≤ m · e · rk f∗ω

m
X/B ·

(
n(2g − 2 + δ) + δ

)
.

Theorem 10.8. (Viehweg–Zuo [68], Kovács [46]) A similar statement holds
if instead of assuming Xgen smooth and ωXgen ample, we assume that f :
X → B is not birationally isotrivial, and

• [68], [46] Xgen is smooth of general type, or

• [68] Xgen smooth, has a good minimal model and κ(Xgen) ≥ 0, or

• [46] Xgen has rational Gorenstein singularities and ωXgen is ample.

Remark 10.9. One can ask whether the Shafarevich problem holds for
families of other type of varieties. There are some known results in this
setting as well.

Faltings [19] studied the Shafarevich problem for families of abelian
varieties and proved that (B) holds, while (R) fails in general. He also
gave an equivalent condition for (R) to hold in this case.

Oguiso and Viehweg [56] considered (H) for families of non-general type
surfaces. Their work combined with the previous results show that (H)
holds for families of minimal surfaces of non-negative Kodaira dimension.

§11. Positivity of Push-forwards

One of the most important ingredients in the proofs of the known results is
an appropriate variant of a fundamental positivity result.

Definition 11.1. A locally free sheaf, E , is ample if OP(E)(1) on P(E) is
ample.

Theorem 11.2. (Kawamata [30], Kollár [35], [36], Viehweg [64], [65]) Let
f : X → B be an admissible family and m > 1. If f∗ω

m
X/B 6= 0, then

f∗ω
m
X/B is ample on B.

Corollary 11.3. Let f : X → B be an admissible family and m > 1. If
f∗ω

m
X/B 6= 0, then deg f∗ω

m
X/B > 0.
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The methods used to prove (11.2) give a more precise estimate of the
positivity of these push-forwards:

Theorem 11.4. (Esnault–Viehweg [17], 2.4) Let f : X → B be an admis-

sible family, and M a line bundle on B. Assume that there is an m > 1
such that degM < deg f∗ω

m
X/B. Set r = rk f∗ω

m
X/B. Then there exists a

positive integer e = e(m,h), such that (f∗ω
m
X/B)

⊗e·r ⊗M−1 is ample on B.

Corollary 11.5. (for ∆ = ∅) Let N be a line bundle on B such that

degNm·e·r < deg f∗ω
m
X/B. Then ωX/B ⊗ f∗N−1 is ample on X.

Proof. (Sketch) Since
(
f∗(ω

m
X/B⊗f

∗N−m)
)⊗e·r

' (f∗ω
m
X/B)

⊗e·r⊗N−m·e·r,

(11.4) implies that f∗(ω
m
X/B⊗f

∗N−m) is ample on B. Furthermore, ωmX/B⊗

f∗N−m|Xgen
' ωmXgen

is ample on Xgen. Hence ωX/B⊗f
∗N−1 is ample both

“horizontally” and “vertically”, so it is ample. For details about the last
step see [46], 7.6.

This allows us to reduce the proof of (WB) to finding an appropriate
line bundle:

11.6. Plan for proving (WB):

• Find an N depending only on B and ∆ such that ωX/B ⊗ f
∗N−1 is not

ample on X.

• Then by (11.5) we have that degNm·e·r 6< deg f∗ω
m
X/B. In other words

deg f∗ω
m
X/B ≤ m · e · r · degN .

11.7. We will find such an N using vanishing theorems. The main idea is
the following: we want to find a line bundle such that twisting with the
relative dualizing sheaf does not yield an ample line bundle. Ample line
bundles appear in many vanishing theorems, so one way to prove that a
given line bundle is not ample is to prove that a cohomology group does not
vanish that would if the line bundle were ample. Next we are going to look
at the needed vanishing theorems.
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§12. Logarithmic Vanishing Theorems

In order to proceed we will need more delicate vanishing theorems than
before. Our starting point is the theorem of Esnault and Viehweg that
extends (4.3) to sheaves of logarithmic differential forms:

Theorem 12.1. (Esnault–Viehweg [17], 6.4) Let X be a smooth complex

projective variety and L an ample line bundle on X. Further let D be a

normal crossing divisor on X. Then

Hq
(
X,Ωp

X(logD)⊗ L
)
= 0 for p+ q > dimX.

12.2. Extending the known vanishing theorems in a different direction,
Navarro-Aznar et al. proved a version of the Kodaira–Akizuki–Nakano van-
ishing theorem for singular varieties that implies our previous statements:
(4.1), (4.2), and (4.3) cf. [55] in [22]. We will return to this statement later.

As mentioned earlier, in order to prove (WB), we need a suitable van-
ishing theorem. The following is a somewhat weaker statement than that is
really needed, but shows the main idea of the proof and how to apply it.

Theorem 12.3. [40], [43] Let f : X → B be a family such that B is

a smooth projective curve. Assume that D = f ∗∆ is a normal crossing

divisor. Let n = dimXgen and L an ample line bundle on X such that

L ⊗ f∗ωB(∆)−n is also ample. Then

Hn+1
(
X,L ⊗ f∗ωB(∆)

)
= 0.

Proof. After taking exterior powers of the sheaves of logarithmic differential
forms, one has the following short exact sequence for each p = 1, . . . , n+ 1:

0 −→ Ωp−1
X/B(logD)⊗ f∗ωB(∆) −→ Ωp

X(logD) −→ Ωp
X/B(logD) −→ 0.

Define Lp = L ⊗ f∗ωB(∆)1−p for p = 0, . . . , n + 1. Then the above short
exact sequence yields:

0 −→ Ωp−1
X/B(logD)⊗Lp−1 −→ Ωp

X(logD)⊗Lp −→ Ωp
X/B(logD)⊗Lp −→ 0.

Lp is ample for p = 1, . . . , n + 1, since either ωB(∆) or ωB(∆)−1 is nef, so
by (12.1) Hn+1−(p−1)(X,Ωp

X(logD)⊗ Lp) = 0 (recall that dimX = n+ 1).
Hence the map

Hn+1−p
(
X,Ωp

X/B(logD)⊗ Lp
)
−→ Hn+1−(p−1)

(
X.Ω

p−1

X/B(logD)⊗ Lp−1
)
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is surjective for p = 1, . . . , n+ 1. Observe that these maps form a chain as
p runs through p = n+ 1, n, . . . , 1. Hence the composite map

H0
(
X,Ωn+1

X/B(logD)⊗ Ln+1
)
−→ Hn+1(X,L0)

is also surjective. However, ΩX/B(logD) is of rank n, so Ωn+1
X/B(logD) = 0,

and therefore Hn+1(X,L0) = Hn+1(X,L ⊗ f∗ωB(∆)) = 0 as well.

12.4. We are finally able to prove (WB), at least for ∆ = ∅, by combining
positivity and vanishing: (11.3) and (11.5) with N = OB imply that ωX/B
is ample. Since

Hn+1(X,ωX/B ⊗ f∗ωB
︸ ︷︷ ︸

ωX

) 6= 0,

this and (12.3) imply that ωX/B ⊗ f∗ω−nB cannot be ample. Then (11.5)
with N = f∗ωnB implies that

deg f∗ω
m
X/B ≤ deg f∗ωn·m·e·rB = m · e · r · dimXgen · (2g − 2).

Remark 12.4.1. For a complete proof of (WB) without the assumption
∆ = ∅, see [7], [46], or [69].

Next we will look at other generalizations.

§13. Smooth Fibers that are Minimal of General Type

and Singular Fibers

Viehweg and Zuo [69], respectively Kovács [46] present different approaches
to this case. Here we discuss the latter. For a survey on the former, the
reader is referred to Viehweg [67].

The following principle has been applied with great success in birational
geometry.

Principle 13.1. Studying an ample line bundle on a singular variety is
similar to studying a semi-ample and big line bundle on a smooth variety.
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13.2. The usual situation is the following. Our goal is to prove a statement
for a pair, (X,L), where X is possibly singular, and L is ample on X.
Instead of working on X we work on a desingularization f : Y → X, and
consider the semi-ample and big line bundle K = f ∗L. A prominent example
of this trick is the use of the Kawamata–Viehweg vanishing theorem in the
Minimal Model Program.

13.3. Here we will turn the situation upside-down. Our goal is a statement
for (Y,K), where Y is smooth and K is semi-ample and big on Y . Instead
of working on Y we construct a pair (X,L) and a map f : Y → X, where
X is possibly singular, L is ample on X, f is birational, and K = f ∗L.

The motivation for this approach is that we would like to extend the
results to the case when ωXgen is only semi-ample and big. One crucial
ingredient of the proof is an appropriate version of the Kodaira–Akizuki–
Nakano vanishing theorem (4.3). However, as Ramanujam (4.4) pointed
out, (4.3) fails if the line bundle in question is only assumed to be semi-
ample and big. On the other hand, Navarro-Aznar et al. proved a singular
version (12.2), so one hopes that this way the proof can be made to work.

13.4. Derived categories. In order to state the singular version of the
Kodaira–Akizuki–Nakano vanishing theorem, we need to use derived cate-
gories. The reader unfamiliar with the basics may wish to consult [26] and
[9] for definitions and details.

A derived category is essentially the unified approach to deal with reso-
lutions and derived functors simultaneously. The following dictionary shows
a correspondence between derived categorical notions and what they gener-
alize.

this Ã generalizes this

“complex” Ã “sheaf”
“hypercohomology” Ã “cohomology”

Hi(X,A) Ã H i(X,A)
“distinguished triangle” Ã “short exact sequence”

A −→ B −→ C
+1
−→ Ã 0→ A→ B → C → 0

13.5. Du Bois’s complex. We also need Du Bois’s generalized De Rham
complex. The original construction of Du Bois’s complex, Ω·X(logD), is
based on simplicial resolutions. The reader interested in the details is
referred to the original article [14]. Note also that a simplified construction
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was later obtained in [23] via the general theory of cubic resolutions. An
easily accessible introduction can be found in [61].

The word “hyperresolution” will refer to either simplicial or cubic resolu-
tion. Formally, the construction of Ω·X(logD) is the same regardless which
resolution is used and no specific aspects of either resolution will be used.

The following definition is included to make sense of the statements of
some of the forthcoming theorems. It can be safely ignored if the reader is
not interested in the detailed properties of Du Bois’s complex and is willing
to accept that it is a very close analogue of the De Rham complex of smooth
varieties.

Definition 13.6. Let X be a complex scheme and D a closed subscheme
whose complement in X is dense. Then (X·, D·) → (X,D) is a good

hyperresolution if X· → X is a hyperresolution, and if U· = X· ×X (X \D)
and D· = X· \U·, then Di is a divisor with normal crossings on Xi for all i.

Let X be a complex scheme of dimension n. Let Dfilt(X) denote the
derived category of filtered complexes of OX -modules with differentials of
order ≤ 1 and Dfilt,coh(X) the subcategory of Dfilt(X) of complexes K ·,
such that for all i, the cohomology sheaves of GrifiltK

· are coherent cf.
[14], [23]. Let D(X) and Dcoh(X) denote the derived categories with the
same definition except that the complexes are assumed to have the trivial
filtration. The superscripts +,−, b carry the usual meaning (bounded below,
bounded above, bounded). Isomorphism in these categories is denoted by
'qis . If K

· is a complex in any of the above categories, then hi(K ·) denotes
the i-th cohomology sheaf of K ·. In particular, every sheaf is naturally a
complex with hi = 0 for i 6= 0.

The right derived functor of an additive functor F , if it exists, is denoted
by RF and RiF is short for hi ◦ RF . Hi, Hi

Z , and Hi
Z denote RiΓ, RiΓZ ,

and RiHZ respectively, where Γ is the functor of global sections, ΓZ is the
functor of global sections with support in the closed subset Z, and HZ is
the functor of local sections with support in the closed subset Z. Note that
according to this terminology, if φ : Y → X is a morphism and F is a
coherent sheaf on Y , then Rφ∗F is the complex whose cohomology sheaves
give the usual higher direct images of F .

Theorem 13.7. (Du Bois [14], 6.3, 6.5) Let X be a proper complex scheme

of finite type and D a closed subscheme whose complement is dense in X.
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Then there exists a unique Ω·X(logD) ∈ Ob
(
Dfilt(X)

)
with the following

properties, using the notation:

Ωp
X(logD) := Gr

p
filtΩ

·
X(logD)[p].

(13.7.1) Let j : X \D → X be the inclusion map. Then

Ω·X(logD)'qisRj∗CX\D.

(13.7.2) Ω·( )
(
log( )

)
is functorial, i.e., if φ : Y → X is a morphism of

proper complex schemes of finite type, then there exists a natural

map φ∗ of filtered complexes

φ∗ : Ω·X(logD)→ Rφ∗Ω
·
Y (log φ

∗D)

Furthermore, Ω·X(logD) ∈ Ob
(
Db
filt,coh(X)

)
and if φ is proper,

then φ∗ is a morphism in Db
filt,coh(X).

(13.7.3) Let U ⊆ X be an open subscheme of X. Then

Ω·X(logD)
∣
∣
U
'qisΩ

·
U

(
logD|U

)
.

(13.7.4) There exists a spectral sequence degenerating at E1 and abutting

to the singular cohomology of X \D:

E
pq
1 = Hq

(
X,Ωp

X(logD)
)
⇒ Hp+q(X \D,C).

(13.7.5) If ε· : (X·, D·)→ (X,D) is a good hyperresolution, then

Ω·X(logD)'qisRε·∗Ω
·
X·
(logD·).

In particular, hi
(
Ωp
X(logD)

)
= 0 for i < 0.

(13.7.6) There exists a natural map, OX → Ω0
X(logD), compatible with

(13.7.2).

(13.7.7) If X is smooth and D is a normal crossing divisor, then

Ω·X(logD)'qisΩ
·
X(logD).

In particular,

Ωp
X(logD)'qisΩ

p
X(logD).

(13.7.8) If φ : Y → X is a resolution of singularities, then

ΩdimX
X (logD)'qisRφ∗ωY (φ

∗D).

Naturally, one may choose D = ∅ and then it is simply omitted from the
notation. The same applies to Ωp

X := Gr
p
filtΩ

·
X [p]. We are now able to state

the singular version of the Kodaira–Akizuki–Nakano vanishing theorem.
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Theorem 13.8. (Navarro-Aznar [55], [23]) Let X be a complex projective

variety and L an ample line bundle on X. Then

Hq(X,Ωp
X ⊗ L) for p+ q > dimX.

Since Du Bois’s complex agrees with the De Rham complex for smooth
varieties, this theorem reduces to the Kodaira–Akizuki–Nakano theorem in
the smooth case. However, this theorem is still not strong enough in our
original situation if ∆ 6= ∅. We need a singular version of Esnault–Viehweg’s
logarithmic vanishing theorem (12.1).

Theorem 13.9. [46] Let X be a complex projective variety and L an ample
line bundle on X. Further let D be a normal crossing divisor on X. Then

Hq(X,Ωp
X(logD)⊗ L) = 0 for p+ q > dimX.

To adapt the proof of (WB) to the singular case we need a singular
version of (12.3). Besides the above vanishing theorem we also need an
analogue of the sheaf of relative logarithmic differentials.

Theorem-Definition 13.10. [46] Let f : X → B be a morphism between

complex varieties such that dimX = n + 1 and B is a smooth curve. Let

∆ ⊆ B be a finite set and D = f ∗∆. For every nonnegative integer

p there exists a complex Ωp
X/B(logD) ∈ Obj

(
D(X)

)
with the following

properties.

(13.10.1) The natural map ∧p factors through Ω
p
X/B(logD)⊗f∗ωB(∆), i.e.,

there exist maps:

w′′p : Ωp
X(logD)⊗ f∗ωB(∆)→ Ωp

X/B(logD)⊗ f∗ωB(∆) and

w′p : Ωp
X/B(logD)⊗ f∗ωB(∆)→ Ωp+1

X (logD)

such that ∧p = w′p ◦ w
′′
p .

(13.10.2) If wp = w′′p ⊗ idf∗ωB(∆)−1 : Ωp
X(logD)→ Ωp

X/B(logD), then

Ωp
X/B(logD)⊗ f∗ωB(∆)

w′
p
−→ Ωp+1

X (logD)
wp+1
−→ Ωp+1

X/B(logD)
+1
−→

is a distinguished triangle in D(X).
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(13.10.3) wp is functorial, i.e., if φ : Y → X is a B-morphism, then there

are natural maps in D(X) forming a commutative diagram:

Ωp
X(logD) −→ Ωp

X/B(logD)



y




y

Rφ∗Ω
p
Y (log φ

∗D) −→ Rφ∗Ω
p
Y/B(log φ

∗D).

(13.10.4) If f is smooth over B \∆, then Ωp
X/B(logD)'qisΩ

p
X/B(logD).

(13.10.5) Ωr
X/B(logD) = 0 for r > n and if f is proper, then Ωp

X/B(logD) ∈

Obj
(
Db
coh(X)

)
for every p.

Using these objects one can make the proof work to obtain the following
theorem. It is in a non-explicit form. For more precise statements see [46],
(7.8), (7.10), (7.11), (7.13).

Theorem 13.10. Fix B, ∆ ⊂ B. Then weak boundedness holds for families

of canonically polarized varieties with rational Gorenstein singularities over

B \∆ with fixed Hilbert polynomial admitting a simultaneous resolution of
singularities. In particular, 2g − 2 + #∆ > 0 for these families by (9.4).

As a corollary, one obtains weak boundedness for non-birationally-
isotrivial families of minimal varieties of general type.

§14. Higher Dimensional Bases

The remaining generalization is to allow B to have arbitrary dimension. Let
B be a smooth projective variety, ∆ ⊂ B a divisor with normal crossings
and h a polynomial. The definition of an admissible family is formally the
same as in (10.2).

By [66], there exists a coarse moduli scheme, Mh, parametrizing such
Xb’s. Hence for an admissible family, f : X → B, there exists an associated
map, ηf : B \∆→Mh, defined by b 7→ [Xb].

Since B is now allowed to be higher dimensional, the notion of isotrivi-
ality is no longer the best one to consider. Observe that f is isotrivial if and
only if ηf is constant. Saying that f is not isotrivial would allow the family
to be isotrivial in certain directions. What we want to assume is that the
family “truly” changes in any direction on B. To express this we define the
family’s variation in moduli.
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Definition 14.1. (Viehweg [64], [65], Kollár [35]) Var f := dim(Im η) ≤
dimB.

We are interested in the case Var f = dimB. In (8.2), we observed that
hyperbolicity follows if we know that Mh is modular hyperbolic. In fact, for
hyperbolicity over a 1-dimensional base, we only needed the corresponding
property of Mh for curves. However, we would also like to know that every
morphism A→Mh induced by a family is constant, where A is an arbitrary
abelian variety. This follows from the next theorem.

Theorem 14.2. [41], [43] Mh is modular hyperbolic.

Remark 14.2.1. This statement also follows from boundedness by an
argument similar to the one used in the proof of (9.4).

As before, this implies that if f : X → P1 is an admissible family,
then #∆ > 2. More generally, for an admissible family f : X → Pm with
Var f = m, this implies that deg∆ > 2. However, we expect that in this
case deg∆ should be larger than m+ 1.

Theorem 14.3. (Viehweg–Zuo [69]) deg∆ > m+1, i.e., ωPm(∆) is ample.

Remark 14.3.1. Viehweg and Zuo actually prove a lot more than this in
[69]. Please see the article for details.

It is now natural to suspect that a more general statement should hold.
The following statement to this effect is part of a more general conjecture
of Viehweg [67].

14.4. Viehweg’s Conjecture. If f : X → B is an admissible family,
then ωB(∆) is big.

This is known to be true for families of curves by [67], 2.6 and for B = Pn

and various other cases by [69]. However, this question is far from being
completely settled.
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