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ALGEBRAIC HYPERBOLICITY OF FINE MODULI SPACES

SÁNDOR J. KOVÁCS

Throughout the groundfield is C, the field of complex numbers.
The typical example of a moduli space is Mg, the moduli space of smooth pro-

jective curves of genus g. Unfortunately, it is not a fine moduli space. However,
if one only considers smooth projective curves of genus g that have no non-trivial
automorphisms, then one obtains a fine moduli space, M◦

g.
More generally there exists a fine moduli space, M, for smooth projective canon-

ically polarized varieties that have no non-trivial automorphisms [Viehweg95, 7.8].
Regarding these fine moduli spaces Shokurov made the following conjecture:

0.1 Algebraic Hyperbolicity Conjecture. [Shokurov97, 14.1] There is no non-
constant morphism A

1 → M.

Remark. Shokurov’s conjecture is somewhat more general. Please refer to [ibid.]
for the exact statement.

The main result of this article is a proof of the above conjecture (in fact a little
more is proved).

0.2 Theorem. Let g◦ : Y ◦ → C◦ be a smooth family of canonically polarized
varieties (i.e., ωYt

is ample for all t ∈ C◦) such that C◦ is an open dense subset of
P
1. Let g : Y → P

1 be a projective family such that g−1(C◦) = Y ◦ and g∣∣
Y ◦

= g◦.

Then g is either isotrivial or has at least 3 singular fibres. In particular there is no
non-constant morphism from A

1 \ {0} to a fine moduli space of smooth canonically
polarized varieties, hence, the latter space is “hyperbolic” as predicted by Shokurov’s
Conjecture.

This also gives a partial answer to the following question of Catanese and Schnei-
der.

0.3 Question. [Catanese-Schneider95, 4.1] Let Y be a smooth variety of general
type, g : Y → P

1 a fibration. Is it true that g has at least 3 singular fibres?

The answer to this question is affirmative, when dimY = 2 by [Beauville81] and
when dimY = 3 by [Migliorini95] and [Kovács97]. Here the question is answered
in the affirmative in any dimension for canonically polarized varieties. This result
was independently obtained by [Bedulev-Viehweg99].
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0.4 Corollary. Let Y be a smooth canonically polarized variety (i.e., ωY is ample),
g : Y → P

1 a fibration. Then g has at least 3 singular fibres.

The same methods give better estimates in low dimensions for semi-stable fibra-
tions of canonically polarized varieties.

0.5 Theorem. Let Y be a smooth canonically polarized variety of dimension n ≤ 3,
g : Y → P

1 a semi-stable fibration. Then g has at least 5 singular fibres if n = 2
and it has at least 4 singular fibres if n = 3.

Remark. The case n = 2 is a special case of the main result of [Tan95], while the
case n = 3 is new.

It would also be interesting to see whether the stronger assumption on the total
space implies stronger restrictions:

0.6 Question. Let Y be a smooth variety of general type, g : Y → P
1 a fibration

(not necessarily semi-stable). What is the minimal number of singular fibres of g?

Remark. Beauvillle gave examples of non-isotrivial families of curves of genus larger
than 1 with only 3 singular fibers. However, the total space of those families does
not satisfy the condition. For instance the total space of the example given in
[Beauville81] is not of general type.

Tan gave an example of a semi-stable family of curves of genus 2 with 5 singular
fibres [Tan95], however the total space of that example is still not of general type.
On the other hand Tan’s example might be altered to give an example with a total
space of general type and only 5 singular fibres.

Definitions and Notation. Throughout the article the groundfield is C, the field
of complex numbers.

A smooth projective variety, X, is called canonically polarized if ωX is ample.
A morphism φ : X → Y is said to have fibre dimension at most r if dimφ−1(y) ≤

r for all y ∈ Y . A Cartier divisor D on X is called r-ample if for some m > 0, mD
is base point free and the morphism given by mD has fibre dimension at most r.
In particular D is ample if and only if it is 0-ample.
D is called nef if D · C ≥ 0 for every proper curve C ⊂ X.
D is called big if X is proper and |mD| gives a birational map for some m > 0.

In particular ample implies nef and big.
The same notions make sense for line bundles in the obvious way.
Let g : Y → C be a morphism of normal varieties, then ωY/C = ωY ⊗ g∗ω−1

C .
Let f : X → S be a morphism of schemes, then Xs denotes the fibre of f over

the point s ∈ S and fs denotes the restriction of f to Xs. More generally, for a
morphism σ : Z → S, let fZ : XZ = X ×S Z → Z. If f is composed with another
morphism g : S → T , then for a t ∈ T , Xt denotes the fibre of g ◦ f over the point
t, i.e., Xt = XSt

. fZ and XZ may also be denoted by fσ and Xσ respectively.
f : X → S is called isotrivial if the smooth fibers of f are pairwise isomorphic.

Acknowledgement. I would like to thank Ingrid Bauer for pointing out an error
in an earlier draft and Meng Chen for helpful comments. Commutative diagrams
were drawn with the help of Paul Taylor’s TEX macro package.
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§1. Vanishing

The following lemma is almost identical to the one proved in [Kovács97]. It
is a tiny bit more general and more importantly it contains an extra assumption
that was implicitly assumed there but was not stated, namely that X has the same
dimension as Y . The proof is also almost the same, it is mainly reproduced here
for the reader’s convenience.

1.1 Lemma. Let g : Y → C be a morphism from a smooth n-dimensional projec-
tive variety Y to a smooth projective curve C. Let ∆ ⊂ C be the set of points over
which g is not smooth and assume that D = g∗(∆) is a simple normal crossing di-
visor. Further let φ : Y → X be a morphism to an n-dimensional projective variety
X and f : X → C a morphism such that g = f ◦φ and assume that dimφ−1(x) ≤ 1
for all x ∈ X \f−1(∆). Let L be a line bundle on Y such that there exists an ample
line bundle A on X and a natural number m ∈ N such that Lm ≃ φ∗A. Assume
finally that A⊗ f∗ωC(∆)−m(n−1) is also ample. Then for any line bundle, K, such
that K ⊇ L,

Hn(Y,K ⊗ g∗ωC) = 0

1.1.1 Remark. If ωC(∆)−1 is nef, then A ample implies that A⊗f∗ωC(∆)−m(n−1)

is also ample, so in that case the last condition is vacuous.

Proof. Taking exterior powers of the sheaves of logarithmic differentials one has
the following short exact sequences for all p = 0, . . . , n− 1.

0 −→ Ωp−1
Y/C(logD)⊗ g∗ωC(∆) −→ Ωp

Y (logD) −→ Ωp
Y/C(logD) −→ 0

Define Lp = L ⊗ g∗ωC(∆)p−(n−1). Then the above short exact sequence yields:

0 −→ Ωp−1
Y/C(logD)⊗ L−1

p−1 −→ Ωp
Y (logD)⊗ L−1

p −→ Ωp
Y/C(logD)⊗ L−1

p −→ 0

Now

Lm
p = Lm ⊗ g∗ωC(∆)m(p−(n−1)) ≃ φ∗

(

A⊗ f∗ωC(∆)m(p−(n−1))
)

,

where

A⊗ f∗ωC(∆)m(p−(n−1)) ≃ A
︸︷︷︸

ample

⊗
(
f∗ωC(∆)−1

)m(n−1−p)

≃
(

A⊗ f∗ωC(∆)−m(n−1)
)

︸ ︷︷ ︸

ample

⊗f∗ωC(∆)mp

is ample, since either ωC(∆) or ωC(∆)−1 is nef. Then Hn−p−1(Y,Ωp
Y (logD) ⊗

L−1
p ) = 0 by [Esnault-Viehweg92, 6.7], so the map,

Hn−p−1(Y,Ωp
Y/C(logD)⊗ L−1

p ) ✲ Hn−(p−1)−1(Y,Ωp−1
Y/C(logD)⊗ L−1

p−1)



4 SÁNDOR J. KOVÁCS

is injective for all p, so in fact

H0(Y,Ωn−1
Y/C(logD)⊗ L−1

n−1)
✲ Hn−1(Y,Ω0

Y/C(logD)⊗ L−1
0 ), and then

H0(Y, ωY/C ⊗ L−1) ✲ Hn−1(Y,L−1
0 )

is injective. Hn−1(Y,L−1
0 ) = 0 by [Esnault-Viehweg92, 6.7], so H0(Y, ωY/C ⊗

L−1) = 0, and
Hn(Y,L ⊗ g∗ωC) = 0

by Serre duality.
Now let L ⊆ K and Q = K/L. Since Q is supported on a proper subvariety,

Hn(Y,Q⊗ g∗ωC) = 0, so

Hn(Y,L ⊗ g∗ωC) ✲ Hn(Y,K ⊗ g∗ωC)

is surjective. Therefore Hn(Y,K ⊗ g∗ωC) = 0. �

1.2 Corollary. Let g : Y → C be a morphism from a smooth n-dimensional
projective variety Y to a smooth projective curve C. Let ∆ ⊂ C be the set of
points over which g is not smooth and assume that D = g∗(∆) is a simple normal
crossing divisor. Further let φ : Y → X be a morphism to an n-dimensional
projective variety X and f : X → C a morphism such that g = f ◦ φ and assume
that dimφ−1(x) ≤ 1 for all x ∈ X \ f−1(∆). Let L be a line bundle on Y such that
there exists an ample line bundle A on X and a natural number m ∈ N such that
Lm ≃ φ∗A. Assume further that ωC(∆) is nef. Then for any line bundle, K, such
that K ⊇ L,

Hn(Y,K ⊗ g∗ωC(∆)n−1 ⊗ g∗ωC) = 0.

Proof. Replace L with L ⊗ g∗ωC(∆)n−1 and A with A ⊗ f∗ωC(∆)m(n−1). This
new line bundle satisfies the last condition of (1.1), i.e.,

(A⊗ f∗ωC(∆)m(n−1))⊗ f∗ωC(∆)−m(n−1) = A

is ample. The lemma applied for K ⊗ g∗ωC(∆)n−1 gives the statement. �

§2. General Families

2.1 Theorem. Let g◦ : Y ◦ → C◦ be a smooth family of projective varieties such
that ωYt

is big and 1-ample for all t ∈ C◦ where C◦ is an open dense subset of P1.
Let g : Y → P

1 be a projective family such that g−1(C◦) = Y ◦ and g∣∣
Y ◦

= g◦.

Then either g is isotrivial or has at least 3 singular fibres.

Proof. Let ∆ ⊂ P
1 be the discriminant locus of g, i.e., g is smooth over the

complement of ∆. One can assume that Y is smooth, g is non-isotrivial and that
∆ = P

1 \ C◦.
• Suppose #∆ = 2.
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Claim. One can construct two new families ĝ : Ŷ → P
1 and f̂ : X̂ → P

1 and

a morphism φ̂ : Ŷ → X̂ such that ĝ = f̂ ◦ φ̂, Ŷ is smooth, ĝ
∣
∣
ĝ−1(C◦)

is smooth,

D̂ = ĝ∗∆ is a divisor with simple normal crossings, and there exists an ample line

bundle Â on X̂ and a line bundle L̂ on Ŷ such that ωŶ /P1 ⊇ L̂ and L̂m = φ̂∗Â for

some m ∈ N.

By [Kollár87, p.363] g∗ω
r
Y/P1 is ample for some r > 0, so

g∗ω
r
Y/P1 ≃ ⊕r

i=1OP1(ai) ai ≥ 1,

Let t, s ∈ P
1 \∆ and It,s their ideal sheaf. Then there exists an l0 ∈ N such that

for every l ≥ l0 and i > 0,

Hi(P1, Syml(g∗ω
r
Y/P1)⊗ It,s) = 0.

Hence

ν : H0(P1, Syml(g∗ω
r
Y/P1)) ✲

(

Syml(g∗ω
r
Y/P1)⊗ k(t)

)

⊕
(

Syml(g∗ω
r
Y/P1)⊗ k(s)

)

is surjective.
Since ωr

Y/P1 restricted to Yt and Ys is semi-ample,

ε : Syml(g∗ω
r
Y/P1) → g∗ω

lr
Y/P1

is also surjective over P
1 \ ∆ for l ≫ 0. Thus one has the following commutative

diagram:

H0(P1, Syml(g∗ω
r
Y/P1))

ν✲
(

Syml(g∗ω
r
Y/P1)⊗ k(t)

)

⊕
(

Syml(g∗ω
r
Y/P1)⊗ k(s)

)

H0(P1, g∗ω
lr
Y/P1)

❄

σ
✲

(

g∗ω
lr
Y/P1 ⊗ k(t)

)

⊕
(

g∗ω
lr
Y/P1 ⊗ k(s)

)

,

ε

❄

with ν and ε surjective, so σ is surjective as well.
Therefore

H0(Y, ωm
Y/P1) → H0(Yt, ω

m
Yt
)⊕H0(Ys, ω

m
Ys
) (2.1.2)

is surjective for sufficiently large and divisible m > 0.
Now choose m such that (2.1.2) is surjective and ωm

Yt
is generated by global sec-

tions and the morphism, φωm
Yt
, induced by ωm

Yt
is birational and has fibre dimension

at most 1 for all t ∈ C◦. Then ωm
Y/P1 is generated by global sections over C◦, and

it defines a rational map
φ = φωm

Y/P1
: Y 99K X,

such that φ∣∣
Y ◦

is a morphism, φ separates the fibres of g over C◦, and φ∣∣
Yt

= φωm
Yt
.

Choosing a larger m if necessary one can assume that X is normal.
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Thus φ is a birational map, so ωY/P1 is big. Let

Z

✠�
�
�
�
�

π
❅
❅
❅
❅
❅

ψ

❘
Y

φ
✲ X

be the resolution of indeterminacies of φ.
Now let x ∈ X an arbitrary point. Then ψ−1(x) is connected by Zariski’s Main

Theorem. Suppose (g◦π)(ψ−1(x)) is not a single point. Then (g◦π)(ψ−1(x)) = P
1,

so there exist t, s ∈ C◦ ⊂ P
1, s 6= t and yt ∈ Yt and ys ∈ Ys such that φ(yt) =

x = φ(ys). This contradicts the fact that φ separates the fibres over C◦. Therefore
(g ◦ π)(ψ−1(x)) is a single point, so X is also a family over P

1, i.e., there exists a
morphism f : X → P

1 such that the following diagram is commutative:

Z

✠�
�
�
�
�

π
❅
❅
❅
❅
❅

ψ

❘
Y

φ
✲ X

❅
❅
❅
❅
❅

g
❘ ✠�

�
�
�
�

f

P
1

By construction there exists an ample line bundle A on X such that

ωm
Z/P1 ⊇ π∗ωm

Y/P1 ⊇ ψ∗A.

Replacing g : Y → P
1 by g ◦ π : Z → P

1 we may assume that φ is an everywhere
defined birational morphism and that there exists an ample line bundle A on X
such that ωm

Y/P1 ⊇ L = φ∗A and ωm
Y/P1

∣
∣
Y ◦

= L∣∣
Y ◦

Y
φ ✲ X

✠�
�
�
�
�

f

P
1

g

❄

Next let σ : P
1 → P

1 be the m-th root cover that ramifies over ∆ and π :
Ŷ → Yσ = P

1 ×σ Y a resolution of singularities of Yσ such that D̂ = π∗g∗σ∆ is a
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divisor with simple normal crossings. (Replace m with a suitable multiple of itself
if necessary.)

Ŷ
π ✲ Yσ

σY ✲ Y

❅
❅
❅
❅
❅

φσ

❘

❅
❅
❅
❅
❅

φ

❘
Xσ

σX
✲

g

X

✠�
�
�
�
�

fσ
✠�
�
�
�
�

f

P
1

gσ

❄

σ
✲ P

1
❄

Let E =
∑
eiEi be an effective divisor supported on g−1(∆) such that

ωm
Y/P1 ≃ L⊗OY (E).

By construction there exists an effective divisor, Eσ, on Yσ supported on g−1
σ (∆)

such that σ∗
Y E = mEσ. Then

σ∗
Y ω

m
Y/P1 ≃ σ∗

Y L ⊗OYσ
(σ∗

Y E) ≃ σ∗
Y L ⊗OYσ

(mEσ).

Now let Lσ = σ∗
Y ωY/P1 ⊗OYσ

(−Eσ). Then

σ∗
Y L ≃ Lm

σ

Also note that L = φ∗A, so

Lm
σ ≃ σ∗

Y φ
∗A ≃ φ∗σσ

∗
XA.

σX is finite, so Â = σ∗
XA is ample and

Lm
σ ≃ φ∗σÂ.

Let L̂ = π∗Lσ and φ̂ = φσ ◦ π. Then

ωŶ /P1 ⊇ (σY ◦ π)∗ωY/P1 ⊇ L̂

ωm
Ŷ /P1

∣
∣
Ŷ \ĝ−1(∆)

= L̂∣∣
Ŷ \ĝ−1(∆)

L̂m ≃ φ̂∗Â.

Finally let X̂ = Xσ. This proves the Claim.
Therefore (1.1) can be applied to ωŶ /P1 , but then

Hn(Ŷ , ωŶ ) = Hn(Ŷ , ωŶ /P1 ⊗ g∗ωP1) = 0

leading to contradiction. Therefore the assumption that #∆ ≤ 2 was false. �

2.2 Corollary. (0.2) follows.
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§3. Families of Curves and Surfaces

3.1 Theorem. Let Y be a smooth threefold and g : Y → P
1 a fibration such that

the general fibre is of general type. Then either the smooth fibers of g are pairwise
birational or g has at least 3 singular fibres.

Proof. Start the relative Minimal Model Program for g : Y → P
1 (cf. [KMM87]).

Let the first step of the program be the blowing down of (−1)-curves of the smooth
fibres Y → Z (cf. [Kodaira63]). Let h : Z → P

1 be the new fibration. Then ωZt
is

nef and big and hence 1-ample for all t ∈ P
1 \∆.

Then either h is isotrivial or has at least 3 singular fibres by (2.1). Since the
smooth fibres of h are the minimal models of the smooth fibres of g this proves the
statement. �

3.2 Corollary. If in addition the fibers are minimal surfaces then either g is
isotrivial or it has at least 3 singular fibres. �

3.2.3 Remark. The following example of I. Bauer shows that in the above theorem
one cannot replace “the smooth fibres are pairwise birational” with “isotrivial”. In
other words it is possible that the number of singular fibers is less then 3, all smooth
fibers are irreducible and birational to each other, but they are not isomorphic.

Let S be a surface of general type that contains a smooth rational curve ι : C →֒
S. Let σ : C → C be the double cover of C ≃ P

1 ramified at two points. Embed
C via σ × ι into P

1 × S, i.e., the projection onto the first component is the double
cover and the projection to the second component is the inclusion.

Now let X be the blow up of P1×S along C. Then X is a threefold fibred over P1

with exactly two singular fibres (coming from the two ramification points) and the
general fibre is a surface of general type. The smooth fibres are pairwise birational,
but they are not isomorphic since then S would have an infinite automorphism
group.

When the total space of the family is a canonically polarized variety, then there
are even better lower bounds for the number of singular fibres in a semi-stable
family.

3.3 Theorem. Let X be a smooth canonically polarized variety of dimension n ≤ 3,
f : X → P

1 a semi-stable fibration. Then f has at least 7− n singular fibres.

Proof.

Let δ = #∆. By (0.4) δ ≥ 3. Then ωP1(∆) is nef, so one can use (1.2). Hence

Hn(X,ωX ⊗ g∗ωP1(∆)n−1 ⊗ g∗ωP1) = 0.

Suppose that (n−1)δ−2n ≤ 0. Then g∗ωP1(∆)n−1⊗g∗ωP1 = g∗OP1((n−1)δ−2n)
is a subsheaf of OX . Let Q = OX/g

∗OP1((n− 1)δ − 2n). Since Q is supported on
a proper subvariety, Hn(X,Q) = 0, so

0 = Hn(X,ωX ⊗ g∗OP1((n− 1)δ − 2n)) ✲ Hn(X,ωX)

is surjective. That however leads to contradiction since Hn(X,ωX) 6= 0.
This means that g∗OP1((n−1)δ−2n) cannot be embedded to OX , so (n−1)δ−

2n > 0. Therefore δ ≥ 5 if n = 2 and δ ≥ 4 if n = 3. �
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