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A CHARACTERIZATION OF RATIONAL SINGULARITIES

SÁNDOR J. KOVÁCS

Themain purpose of this note is to present a characterization of rational singularities
in characteristic 0. The essence of the characterization is that it is enough to require
less than the usual definition.

Theorem 1. Let φ : Y → X be a morphism of varieties overC, and let ρ :
�X → Rφ∗�Y be the associated natural morphism. Assume thatY has rational
singularities and there exists a morphism (in the derived category of�X-modules)
ρ′ : Rφ∗�Y → �X such thatρ′ ◦ρ is a quasi-isomorphism of�X with itself. ThenX
has only rational singularities.

If ρ′ exists, it could be considered similar to a trace operator. In fact, for any finite
morphism of normal varieties,ρ′ exists because of the trace operator.
Note that for the first statement of Theorem 1,φ does not need to be birational.

In particular, Theorem 1 implies that quotient singularities are rational, including
quotients by reductive groups as in [B, Corollaire]. In the latter case,ρ′ is given by
the Reynolds operator.
A well-known and widely used theorem states that in characteristic 0, canonical

singularities are Cohen-Macaulay and therefore rational (see [E] and [KMM]).
The original proofs are based on a very clever use of Grothendieck duality simulta-

neously for a resolution and its restriction onto the exceptional divisor and on a double
loop induction. Kollár gave a simpler proof in [K2, §11] without using derived cate-
gories but still relying on a technically hard vanishing theorem. Recently Kollár and
Mori found a simple proof allowing nonempty boundaries. They do not use derived
categories either, but restrict to the projective case (see [KM, 5.18]). These proofs are
ingenious, but one would like to have a simple natural proof (at least in the “classical”
case, when the boundary is empty).
As an application of Theorem 1 a simple proof is given here in the “classical” case,

but without the projective assumption. This proof seems even simpler than that of
Kollár and Mori. Derived categories and Grothendieck duality are used, but in such
a simple way that one is tempted to say that this proof is the most natural one. Note
also that everything used here was already available when the question was raised for
the first time.
A statement similar to Theorem 1 was given in [K2, 3.12]. Some ideas of the
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present proof already appear there. In addition, the results of [K1] and [K2] can be
used to show that for projective varieties the existence ofρ′ is actually equivalent to
X having rational singularities. Note that the assumption of Theorem 1 implies that
φ has to be surjective.

Theorem 2. Letφ : Y → X be a surjective morphism of projective varieties over
C, and letρ : �X → Rφ∗�Y be the associated natural morphism. Assume that both
X andY have rational singularities. Then there exists a morphismρ′ : Rφ∗�Y → �X

such thatρ′ ◦ρ is a quasi-isomorphism of�X with itself.

Finally, as a byproduct of the proof, a partial generalization of Kempf’s criterion
for rational singularities (cf. [KKMS, p. 50]) is presented.

Theorem 3. Letφ : Y → X be a surjective morphism of projective varieties over
C. LetN = dimY andn = dimX. Assume thatY has rational singularities. ThenX
has rational singularities if and only ifX is Cohen-Macaulay andRN−nφ∗ωY � ωX.

Acknowledgements.I would like to thank János Kollár for valuable comments and
the editors for their kind flexibility.

Definitions and notation.Throughout the article, the ground field is alwaysC, the
field of complex numbers. A variety means a separated variety of finite type overC.
A divisorD is calledQ-Cartier ifmD is Cartier for somem> 0. A normal variety

X is said to have log-terminal, (resp., canonical) singularities ifKX is Q-Cartier.
For any resolution of singularities,f : Y → X, with the collection of exceptional
prime divisors{Ei}, there existai ∈ Q, ai > −1 (resp.,ai ≥ 0) such thatKY ≡
f ∗KX +∑

aiEi (cf. [KMM] and [CKM]).
The index of a normal varietyX withKX Q-Cartier is the smallest positive integer

m such thatmKX is Cartier. For a normal varietyX with KX Q-Cartier, there exists
locally an index-1 cover: that is, a finite surjective morphismσ : X′ → X such
that X′ has index 1. A log-terminal variety of index 1 is canonical, and an easy
computation shows that finite covers of log-terminal (resp., canonical) singularities
are log-terminal (resp., canonical). In particular, the index-1 cover of a log-terminal
variety is canonical (see [R, 1.7, 1.9] and [CKM, 6.7, 6.8]).
LetX be a normal variety andφ : Y → X a resolution of singularities.X is said to

have rational singularities ifRiφ∗�Y = 0 for all i > 0 or, equivalently, if the natural
map�X → Rφ∗�Y is a quasi-isomorphism.
Let ω·

X denote the dualizing complex ofX; that is,ω
·
X = f !C, wheref : X →

SpecC is the structure map (cf. [H]).

Main ingredients. Let φ : Y → X be a proper morphism. Then one has the fol-
lowing:

• Grothendieck duality [H, VII]: For allG·-bounded complexes of�Y -modules,

Rφ∗R�omY (G
·,ω·

Y ) � R�omX(Rφ∗G·,ω·
X).

• Adjointness [H, II.5.10]: For allF ·-bounded complexes of�X-modules and
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G·-bounded complexes of�Y -modules,

Rφ∗R�omY (Lφ
∗F ·,G·) � R�omX(F

·,Rφ∗G·).
If φ is a resolution of singularities, then one has
•Grauert-Riemenschneider vanishing [GR]:Riφ∗ωY = 0 for i > 0. This is referred

to as “GR vanishing.”

Lemma 1 [KKMS, p. 50], [K2, 11.9]. LetX be a normal variety, and letφ : Y →
X be a resolution of singularities. IfX is Cohen-Macaulay andωX � φ∗ωY , thenX
has rational singularities.

Proof. By GR vanishing,ω·
X � Rφ∗ω·

Y , and then

�X � R�omX(ω
·
X,ω

·
X) � R�omX(Rφ∗ω·

Y ,ω
·
X)

� Rφ∗R�omY (ω
·
Y ,ω

·
Y ) � Rφ∗�Y .

Proof of Theorem 1.Let π : X̃ → X be a resolution ofX andσ : Ỹ → Y be a
resolution ofY such thatφ ◦σ factors throughπ : There existsψ : Ỹ → X̃ such that
φ ◦σ = π ◦ψ . Then one has the following commutative diagram:

�X

ρ ��

α

��

Rφ∗�Y

β

��
Rπ∗�

X̃ γ
�� Rφ∗Rσ∗�

Ỹ
.

Now ρ has a left inverse by assumption andβ is a quasi-isomorphism sinceY has
rational singularities. Therefore(ρ′ ◦β−1◦γ )◦α is a quasi-isomorphism of�X with
itself, so one may assume thatφ is a resolution of singularities.
Next applyR�omX( ,ω·

X) to the quasi-isomorphism

�X
ρ−→ Rφ∗�Y

ρ′
−−→ �X.

Then
ω·
X −→ Rφ∗ω·

Y −→ ω·
X

is a quasi-isomorphism as well. Hencehi(ω·
X) ⊆ Riφ∗ω·

Y � Ri+dφ∗ωY . Now
Ri+dφ∗ωY = 0 for i > −d by GR vanishing. Thereforehi(ω·

X) = 0 for i > −d,
soX is Cohen-Macaulay. The above proof also shows that

ωX −→ φ∗ωY −→ ωX

is an isomorphism, soωX � φ∗ωY . ThereforeX has rational singularities by
Lemma 1.

Theorem 4 [E]. Log-terminal singularities are rational.

Proof. Let X be a variety with log-terminal singularities. By Theorem 1 it is
enough to prove that the index-1 cover ofX has rational singularities. Thus one can
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assume thatX has canonical singularities andωX is a line bundle.
Let φ : Y → X be a resolution of singularities ofX. By assumption there exists

a nontrivial morphismι : Lφ∗ωX � φ∗ωX → ωY . Its adjoint morphism onX is
ωX → Rφ∗ωY , which is a quasi-isomorphism by GR vanishing.
Applying R�omY ( ,ωY ) (notR�omY ( ,ω·

Y )) to ι, one obtains

Rφ∗R�omY (ωY ,ωY ) �� Rφ∗R�omY (Lφ
∗ωX,ωY )

� �� R�omX(ωX,Rφ∗ωY )

�
��

Rφ∗�Y
ρ′

��

�
��

�X.

The last quasi-isomorphism uses the fact thatRφ∗ωY � ωX and thatωX is a line
bundle. It is easy to see thatρ′ ◦ ρ acts trivially on�X; hence Theorem 1 can be
applied.

The following is a simple consequence of [K1, 7.6].

Theorem 5. Letφ : Y → X be a surjective morphism of projective varieties over
C, and assume that bothX and Y have rational singularities. LetN = dimY and
n = dimX. Then

RN−nφ∗ωY � ωX.

Proof. Let π : X̃ → X be a resolution ofX andσ : Ỹ → Y a resolution ofY such
thatφ ◦σ factors throughπ ; that is, there existsψ : Ỹ → X̃ such thatφ ◦σ = π ◦ψ .
Then one has the following commutative diagram:

R(φ ◦σ)∗ωỸ
[N ] δ ��

α

��

Rπ∗ωX̃
[n]

β

��
Rφ∗ωY [N ]

γ
�� ωX[n].

Because bothX andY have rational singularities,α andβ are quasi-isomorphisms
by GR vanishing. Next take−nth cohomology of these complexes. By [K2, 3.4],

R−n(φ ◦σ)∗ωỸ
[N ] � RN−n(π ◦ψ)∗ωỸ

� π∗RN−nψ∗ωỸ
,

so one has

π∗RN−nψ∗ωỸ

�h−n(α)

��

h−n(δ) �� π∗ωX̃

h−n(β)�
��

RN−nφ∗ωY
h−n(γ )

�� ωX.

Now h−n(δ) is an isomorphism by [K1, 7.6], soh−n(γ ) is an isomorphism as well.
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Lemma 2. Let φ : Y → X be a surjective morphism of projective varieties over
C and ρ : �X → Rφ∗�Y the associated natural morphism. LetN = dimY and
n = dimX. Assume thatY has rational singularities. IfX is Cohen-Macaulay and
RN−nφ∗ωY � ωX, then there exists a morphismρ′ : Rφ∗�Y → �X such thatρ′ ◦ρ is
a quasi-isomorphism of�X with itself.

Proof. Let σ : Ỹ → Y be a resolution of singularities. SinceY has rational singu-
larities,�Y � Rσ∗�

Ỹ
andωY � Rσ∗ωỸ

. Thus one may assume thatY is smooth.
By [K2, 3.1] ω·

X � ωX[n] � RN−nφ∗ωY [n] is a direct summand ofRφ∗ωY [N ] �
Rφ∗ω·

Y . Therefore there exist morphisms whose composition is a quasi-isomorphism

ω·
X −→ Rφ∗ω·

Y −→ ω·
X.

Applying R�omX( ,ω·
X) to this quasi-isomorphism, one concludes that

�X
ρ−→ Rφ∗�Y

ρ′
−→ �X

is a quasi-isomorphism as well.

Corollary. Theorems 2 and 3 hold.
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