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Inversion of adjunction for
rational and Du Bois pairs

Sándor J. Kovács and Karl Schwede

We prove several results about the behavior of Du Bois singularities and Du Bois
pairs in families. Some of these generalize existing statements about Du Bois
singularities to the pair setting while others are new even in the nonpair setting.
We also prove a new inversion of adjunction result for Du Bois and rational pairs.
In the nonpair setting this asserts that if a family over a smooth base has a special
fiber X0 with Du Bois singularities and the general fiber has rational singularities,
then the total space has rational singularities near X0.

1. Introduction

Rational singularities have been the gold standard for “mild” singularities in al-
gebraic geometry for several decades. Whenever a new class of varieties with
singularities is discovered, the first question usually asked is whether or not the
new varieties have rational singularities. A key reason for this is that varieties
with rational singularities behave cohomologically as if they were smooth. How-
ever, for many purposes rational singularities are not broad enough. For instance,
nodes are not rational singularities, and more generally, singularities appearing on
stable varieties, that is, mild degenerations of smooth ones that are necessary to
consider in order to compactify moduli spaces, are not always rational. The class of
Du Bois (or DB) singularities is slightly more inclusive than rational singularities.
Du Bois singularities behave cohomologically as if they had simple normal crossing
singularities (i.e., a higher-dimensional version of nodes).

Recently, Kollár [2013] and Kovács [2011a] introduced the notions of rational
and Du Bois pairs (X, D) for a normal variety X and a reduced divisor D ⊆ X .
These notions are philosophically distinct from the singularities considered typi-
cally in the minimal model program since (X, D) having rational (respectively Du
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Bois) singularities does not generally imply that the ambient space X has rational
(respectively Du Bois) singularities [Kollár 2013, Remark 2.81(2)] (respectively
Examples 2.10, 2.14, and [Graf and Kovács 2014]). Instead the singularities of
(X, D) measure the connection between the singularities of X and D (a notion
obviously connected with problems related to inversion of adjunction). Furthermore,
like Du Bois singularities, if (X, Z) is a Du Bois pair then the ideal sheaf of Z
satisfies various Kodaira-type vanishing theorems, an observation which we hope
will be useful in the future.

Even though a priori rational and Du Bois singularities are not part of the class
one usually associates with the minimal model program, these singularities play
important roles in both the minimal model program and moduli theory via the fact
that (semi)log canonical singularities are Du Bois [Kovács et al. 2010; Kollár and
Kovács 2010]. In addition, Du Bois singularities have played important roles in
various other contexts recently. They are arguably the largest class of singularities
for which we know that Kodaira vanishing holds [Patakfalvi 2015], they appear
in proofs of extension and other vanishing theorems [Greb et al. 2011], positivity
theorems [Schumacher 2012], categorical resolutions [Lunts 2012], log canonical
compactifications [Hacon and Xu 2013] and many other results more directly related
to the minimal model program.

It is now a basic tenet of the minimal model program that the right way to study
singularities is via pairs; see [Kollár 1997; 2013]. This allows for more freedom in
applications and makes inductive arguments easier. The same is true for rational and
Du Bois singularities. The introduction of Du Bois pairs streamlined some existing
proofs (see [Kollár 2013, Chapter 6]) and extended the realm of applications.

In this paper we extend several recent results on Du Bois singularities to the
context of Du Bois pairs, notably the recent results on deformations of Du Bois singu-
larities found in [Kovács and Schwede 2011a] and the requisite injectivity theorem,
a result of Kollár and Kovács on the behavior of depth in Du Bois families, and the
characterization of Cohen–Macaulay Du Bois singularities of [Kovács et al. 2010].

Furthermore, we prove a new inversion of adjunction statement for rational and
Du Bois pairs. This statement is new even in the nonpair setting. Roughly speaking,
in the nonpair setting it says that if f : X→ B is a family over a smooth base such
that the general fiber has rational singularities and the special fiber has Du Bois
singularities, then X has rational singularities in a neighborhood of the special fiber.
See Theorem E below for the general statement.

We state each of these theorems below. We begin with the deformation statement.

Theorem A (Theorem 4.2). Let X be a reduced scheme essentially of finite type
over C, Z ⊆ X a reduced subscheme and H a reduced effective Cartier divisor
on X that does not contain any component of Z. If (H, Z ∩ H) is a Du Bois pair,
then (X, Z) is a Du Bois pair near H.
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Just as in the nonpair setting, to prove this we first show an injectivity theorem.

Theorem B (Theorem 3.2). Let X be a reduced scheme over C and Z ⊆ X a
reduced subscheme. Then the natural map

8 j
: Ext j

OX
(�0

X,Z , ω
•

X ) ↪→ Ext j
OX
(IZ , ω

•

X )

is injective for every j ∈ Z .

Here Ext j
OX
( , ω•X ) is shorthand to denote h j(R HomOX

( , ω•X )).
We also generalize some of the results of [Kollár and Kovács 2010] for families

to the context of Du Bois pairs.

Theorem C (Corollary 5.6). Let f : (X, Z) → B be a flat projective family
with OZ ,IZ flat over B as well. Assume that all the fiber pairs (Xb, Zb) are
Du Bois. Assume also that B is connected and the generic fibers (IZ )gen are
Cohen–Macaulay. Then all the fibers (IZ )b are Cohen–Macaulay.

We have a multiplier ideal/module like characterization of Du Bois pairs.

Theorem D (Theorem 6.3). Let X be a normal variety and Z ⊆ X a divisor.
Further, let π : X̃→ X be a log resolution of (X, Z) with E = π−1(Z)red∨ exc(π).
If IZ is Cohen–Macaulay then (X, Z) is Du Bois if and only if

π∗ωX̃ (E)' ωX (Z).

All of the results above are used in the proof of our inversion of adjunction result.

Theorem E (Theorem 7.1). Let f : X → B be a flat projective geometrically
integral family over a smooth connected base B with dim B ≥ 1, H = f −1(0) the
special fiber, and D a reduced codimension-1 subscheme of X which is flat over B.
Assume that (H, D|H ) is a Du Bois pair and that (X \ H, D \ H) is a rational pair.
Then (X, D) is a rational pair.

This last result is new even in the case D = 0; see Corollary 7.8. In the special
case when X \ H is smooth and D = 0, Theorem E follows from [Schwede 2007,
Theorem 5.1].

Statements similar to Theorem E have been proved in many related situations.
For instance, assume D = 0, X \ H is canonical and H is semi–log canonical.
Then it follows from inversion of adjunction that X has canonical singularities,
see [Kollár and Shepherd-Barron 1988, Theorem 5.1; Karu 2000, Theorem 2.5;
Kawakita 2007]. A nonexhaustive list of some other related results includes [Fedder
and Watanabe 1989, Proposition 2.13; Schwede 2009; Hacon 2014; Erickson 2014].
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2. Definitions and basic properties

2A. Rational pairs. First we recall the notion of rational pairs defined by Kollár
and Kovács, as described in [Kollár 2013, Chapter 2]. Note that a similar notion
was defined by Schwede and Takagi [2008]. The two notions are closely related,
but different. Their relationship is similar to how dlt singularities compare to klt
singularities. Here we will discuss the former notion which in the dlt versus klt
analogy corresponds to dlt.

In this subsection we work over an algebraically closed field k, although in the
rest of the paper we restrict to working over the complex numbers.

Definition 2.1. Let X be a normal variety and D⊆ X an integral Weil divisor on X .
A log resolution (Y, DY )−→

π (X, D) is a resolution of singularities such that DY

is the strict transform of D, and such that (DY )red ∪ exc(π) is a simple normal
crossing divisor.

Definition 2.2. A reduced pair (X, D) consists of a normal variety X and a reduced
divisor D on X . For the definition of an snc pair, the strata of an snc pair and other
normal crossing conditions please refer to [Kollár 2013, Definition 1.7].

One frequently wants log resolutions that do not blow up unnecessary centers.
One good way to achieve this is with a thrifty resolution.

Definition 2.3 (thrifty resolution [Kollár 2013, Definition 2.79]). Let (X, D) be a
reduced pair. A thrifty resolution of (X, D) is a resolution π : Y → X such that:

(a) DY = π
−1
∗

D is a simple normal crossing divisor.

(b) π is an isomorphism over the generic point of every stratum of the snc locus
of (X, D) and π is an isomorphism at the generic point of every stratum
of (Y,DY ).

Item (b) can also be replaced by:

(b′) The exceptional set E of π does not contain any stratum of (Y, DY ) and π(E)
does not contain any stratum of the simple normal crossing locus of (X, D).

We can now define rational pairs [Kollár 2013, Section 2.5].

Definition 2.4 (rational pairs). A reduced pair (X, D) is called a rational pair if
there exists a thrifty resolution π : (Y, DY )→ (X, D) such that:

(i) OX (−D)' π∗OY (−DY ).

(ii) R iπ∗OY (−DY )= 0 for all i > 0.

(iii) R iπ∗ωY (DY )= 0 for all i > 0.
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If (X, D) is a rational pair, and is in characteristic zero, then every thrifty
resolution satisfies the properties (i), (ii), (iii) above [Kollár 2013, Corollary 2.86].
Even better though, property (iii) always holds in characteristic zero, as we point
out below, whether or not (X, D) is a rational pair.

Theorem 2.5. Assume that char k = 0, and let (X, D) be a reduced pair and
π : (Y, DY )→ (X, D) a thrifty resolution. Then R iπ∗ωY (DY )= 0 for all i > 0.

Proof. This follows from [Kollár 2013, Theorem 10.39]. �

Alternatively, one can prove Theorem 2.5 directly:

Claim 2.6. Let π : E → D be a proper birational map between reduced equidi-
mensional C-schemes of finite type such that E is a simple normal crossing divisor
in some smooth ambient space. Assume that π is birational onto its image when
restricted to every strata of E (in particular, also each irreducible component of E).
Then R iπ∗ωE = 0 for i > 0.

Proof. We proceed by induction on dim D and the number of irreducible components
of E , and note that the base case is simply Grauert–Riemenschneider vanishing
[Grauert and Riemenschneider 1970]. Write E = E0∪E ′, where E0 is an irreducible
component of E and E ′ denotes the remaining irreducible components. We have a
short exact sequence

0→ OE → OE0 ⊕OE ′→ OE0∩E ′→ 0.

Dualizing we obtain

0→ ωE0 ⊕ωE ′→ ωE → ωE0∩E ′→ 0.

The intersection E0 ∩ E ′ is a simple normal crossing divisor in the smooth ambient
space E0. It is also a union of strata of E and hence π is still birational when
restricted to each strata of E ′ ∩ E0. Applying R iπ∗ and the inductive hypothesis
to E0, E ′ and E0 ∩ E ′ proves the claim. �

Alternative proof of Theorem 2.5. Push forward the short exact sequence

0→ ωY → ωY (DY )→ ωDY → 0

via π and apply the claim to ωDY and ωY . Note that the thrifty resolution hypothesis
guarantees that π is birational when restricted to any strata of DY (since it is an
isomorphism at the generic point of each strata). �

This gives us the following criterion.

Proposition 2.7. Let (X, D) be a reduced pair and π : (Y, DY )→ (X, D) a thrifty
resolution. Then (X, D) is a rational pair if and only if

R Hom •OX
(OX (−D), ω•X )' R π∗ωY (DY )[dim X ] ' π∗ωY (DY )[dim X ]



974 Sándor J. Kovács and Karl Schwede

for some thrifty resolution. Furthermore, in characteristic zero the second isomor-
phism is automatic.

Proof. Observe that the conditions (i) and (ii) of Definition 2.4 are equivalent to
the isomorphism R π∗OY (−DY )' OX (−D). Applying Grothendieck duality and
condition (iii) to this isomorphism yields the statement. The characteristic zero
statement is simply Theorem 2.5. �

2B. Notation. Throughout the rest of this paper, all schemes will be assumed to be
Noetherian separated schemes and essentially1 of finite type over C. Given divisors
D =

∑
ai Di and D′ =

∑
bi Di on a normal variety (possibly allowing ai , b j to be

zero), we define

D∨ D′ =
∑

max(ai , bi )Di and D∧ D′ =
∑

min(ai , bi )Di .

Of course, if D and D′ have no common components then D∨ D′ = D+ D′ and
D ∧ D′ = 0. On a scheme X essentially of finite type over C, we use D( ) =

R Hom •OX
( , ω•X ) to denote the Grothendieck duality functor.

2C. Du Bois pairs. The notion of Du Bois singularities is becoming more and
more part of basic knowledge in higher-dimensional geometry. In particular, for
the notion of the Deligne–Du Bois complex of a scheme of finite type over C and
its degree zero associated graded complex, denoted by �0

X , we refer the reader to
[Kollár 2013, Section 6.1].

In contrast, the notion of Du Bois pairs is relatively new and so here we discuss
some of its basic properties.

Given a (possibly nonreduced) subscheme Z ⊆ X one has an induced map
in Db

coh(X),
�0

X →�0
Z ,

noting that by definition �0
Z =�

0
Zred

. Then �0
X,Z is defined to be the object in the

derived category making the following an exact triangle:

�0
X,Z →�0

X →�0
Z
+1
−→ . (2.7.1)

If IZ is the ideal sheaf of Z , then it is easy to see that there is a natural map
IZ →�0

X,Z [Kovács 2011a, Section 3.D].

Definition 2.8 [Kovács 2011a, Definition 3.13]. We say that (X, Z) is a Du Bois
pair (or simply a DB pair) if the above map IZ →�0

X,Z is a quasi-isomorphism.

In the original definition of a Du Bois pair in [Kovács 2011a] it was assumed
that Z is reduced. As it turns out, this is not a necessary hypothesis.

1that is, a localization of a finite type scheme
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Lemma 2.9. If (X, Z) is a Du Bois pair and X is reduced, then Z is reduced.

Proof. Note that �0
Z = �

0
Zred

and so �0
X,Z ' �

0
X,Zred

. On the other hand, we also
have an exact sequence,

0 // h0(�0
X,Z )

'

��

// h0(�0
X )

'

��

// h0(�0
Z )

'

��

0 // IIm(ZSN
red)⊆XSN // OXSN // OZSN

red

where XSN, ZSN
red are the seminormalizations of X and Zred respectively, and the

right two isomorphisms come from [Saito 2000]. Note that the scheme-theoretic
image of ZSN

red in XSN is reduced. The fact that the left-most vertical map is an
isomorphism implies that h0(�0

X,Z ) is a radical ideal in OXSN . Since (X, Z) is
Du Bois, we see that h0(�0

X,Z ) = IZ⊆X and hence IZ⊆X is radical in OXSN and
hence also in OX = OX red as desired. �

Frequently we will take the Grothendieck dual of �0
X,Z . Hence, following the

notation of [Kovács and Schwede 2011a], we will write

ω•X,Z := R Hom •OX
(�0

X,Z , ω
•

X ). (2.9.1)

The reader is referred to [Kollár 2013, Section 6.1] for basic properties of Du Bois
pairs. As mentioned in the introduction, this notion of pairs is somewhat different
in flavor from the definition of (X, Z) being log canonical or log terminal. Being
a Du Bois pair is more a statement about the relationship between X and Z , not
an absolute statement about the singularities of X or Z separately. In particular,
Examples 2.10 and 2.14 show that (X, Z) being Du Bois does not imply that X is
Du Bois.

Example 2.10 (Du Bois pair whose ambient space is not Du Bois). Let R denote
the pullback of the diagram

k[x] ' k[x, y]/〈y〉 k[x, y]oo

k[x2, x3
]

OO

Roo

OO

where the nondotted arrows are induced in the obvious ways. It is easy to see that
R = k[x2, x3, y, yx]. By construction X = Spec R is not Du Bois since it is not
seminormal. However, we claim that the pair (Spec R, V (〈y, yx〉R)) is Du Bois.
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Consider the following diagram:

0 // 〈y, yx〉R

α

��

// R //

β

��

k[x2, x3
]

γ

��

// 0

0 // 〈y〉k[x,y] // k[x, y] // k[x] // 0

The maps labeled β and γ are the seminormalizations but α is an isomorphism.
On the other hand, we know that �0

X =�
0
X sn in general since they have the same

hyperresolution. Therefore, up to harmless identification of modules with sheaves
on an affine scheme, we see �0

Spec R ' k[x, y] and �0
Spec k[x2,x3]

' k[x] and so

〈y, yx〉R = 〈y〉k[x,y] '�0
Spec R,V (〈y,yx〉R).

This proves that (Spec R, V (〈y, yx〉R)) is Du Bois and completes the example.

Next we will give an example of a normal Du Bois pair whose ambient space is
not Du Bois. To this end we will use a criterion for a cone being a Du Bois pair. In
order to do that we need to recall a definition [Kollár 2013, III.3.8].

Let X be a projective scheme and L an ample line bundle on X . We will need
the spectrum of the section ring of L ,

Ca(X,L ) := Speck

⊕
p≥0

H 0(X,L p),

which is also called the (generalized) ample cone over X with conormal bundle L .
If no confusion is likely, in particular when L is fixed, we will use the shorthand
of C X := Ca(X,L ). Notice that for a subscheme Z ⊆ X there is a natural map
ι : Ca(Z ,L |Z )→ Ca(X,L ) which is a closed embedding away from the vertex
P ∈ C X . By a slight abuse of notation we will also use (C X,C Z) to denote the
pair

(
Ca(X,L ), ι(Ca(Z ,L |Z ))

)
.

Now we are ready to state the needed Du Bois criterion.

Proposition 2.11 ([Graf and Kovács 2014], cf. [Ma 2015]). Let X be a smooth
projective variety, Z ⊂ X an snc divisor (possibly the empty set), and L an ample
line bundle on X. Then (C X,C Z) is a Du Bois pair if and only if

H i (X,L m(−Z))= 0

for all i,m > 0.

Proof. If Z = ∅, this follows from [Ma 2015, Theorem 4.4]. The general case
works similarly. For a direct proof see [Graf and Kovács 2014, Theorem 2.5]. �

While the above is sufficient for our purposes, we also obtained independently a
slightly different statement using similar methods.
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Lemma 2.12 (Du Bois pairs for graded rings). Let X be a projective variety with
Du Bois singularities, L an ample line bundle and D a reduced connected divisor
on X. Assume that D also has only Du Bois singularities. Form the corresponding
section ring S=

⊕
i≥0 0(X,L

i ) and I =
⊕

i≥0 0(X,OX (−D)⊗L i ). Fix m= S+
to be the irrelevant ideal. Set Y = C X = Spec S and Z = C D = Spec(S/I ). If

H 1(X,OX (−D)⊗L i )= 0 (2.12.1)

for i ≥ 0 so that S/I '
⊕

i≥0 0(D,L
i
|D), then for all i ≥ 1 we have

hi(�0
Y,Z )' [H

i+1
m (I )]>0.

Again under hypothesis (2.12.1), we see immediately that (Y, Z) is Du Bois if and
only if [H i

m(I )]>0 = 0 for every i > 0.

Proof. First observe that both Y and Z are seminormal since they are saturated
section rings over seminormal schemes. L. Ma [2015, Equation (4.4.4) in the proof
of Theorem 4.4] showed that

hi(�0
Y )' [H

i+1
m (S)]>0 (2.12.2)

for i > 0. Likewise hi(�0
Z ) = [H

i+1
m (S/I )]>0 for i > 0. Now we analyze

hi+ j(R 0m(�
0
Y )) via a spectral sequence. Since Y is Du Bois outside of the origin

V(m), we see that h j(�0
Y ) is supported only at the origin for j > 0. It follows that

the E2-page of the spectral sequence

H i
m(h

j(�0
Y ))⇒ hi+ j(R 0m(�

0
Y ))

looks like

· · · · · · · · · · · · · · · · · ·

h3(�0
Y ) 0 0 0 0 · · ·

h2(�0
Y ) 0 0 0 0 · · ·

h1(�0
Y )

**

0 0 0 0 · · ·

0 H 1
m(S) H 2

m(S) H 3
m(S) H 4

m(S) · · ·

Here we are using the fact that S is seminormal, and so h0(�0
Y ) = S. It is not

difficult to see that the unique nonzero map of the (i − 1)-st page of this spectral
sequence induces the isomorphism of (2.12.2), and so those unique nonzero maps
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are injective. Thus the spectral sequence contains the data of a long exact sequence

0→ H 1
m(S)� H1

m(�
0
Y )→ h1(�0

Y ) ↪→ H 2
m(S)� H2

m(�
0
Y )→ h2(�0

Y ) ↪→ H 3
m(S)� · · · .

Hence Hi
m(�

0
Y )=[H

i
m(S)]≤0 for i ≥ 2 and H1

m(�
0
Y )' H 1

m(S). Likewise Hi
m(�

0
Z )=

[H i
m(S/I )]≤0 for i ≥ 2 and H1

m(�
0
Z )' H 1

m(S/I ). Furthermore, since Y and Z are
seminormal we see that h0(�0

X,Z )= I and so the same spectral sequence argument
implies that we have a long exact sequence

0→H 1
m(I )�H1

m(�
0
Y,Z )→h1(�0

Y,Z )→H 2
m(I )�H2

m(�
0
Y,Z )→h2(�0

Y,Z )→H 3
m(I )� · · · .

We still have the labeled surjectivities by the Matlis dual of Theorem 3.2, which
we will prove later (we assume it for now). Thus it is enough to see that the maps
above make the identification Hi

m(�
0
Y,Z )= [H

i
m(I )]≤0 for i ≥ 2.

We consider the diagram with distinguished triangles as rows

I

��

// S

��

// S/I

��

+1
//

�0
Y,Z

// �0
Y

// �0
Z

+1
//

We will apply the functor R 0m( ) and take cohomology i ≥ 1 to obtain

H i
m(S)

α

��

// H i
m(S/I )

β

��

// H i+1
m (I )

γ

��

// H i+1
m (S)

δ

��

// H i+1
m (S/I )

ε

��

Hi
m(�

0
Y )

// Hi
m(�

0
Z )

// Hi+1
m (�0

Y,Z )
// Hi+1

m (�0
Y )

// Hi+1
m (�0

Z )

[H i
m(S)]≤0 [H i

m(S/I )]≤0 [H i+1
m (S)]≤0 [H i+1

m (S/I )]≤0

Note that γ is the map we already identified as surjective above. It is easy to see that
the vertical maps α, β, δ, and ε are the projections and so [α]≤0, [β]≤0, [δ]≤0, and
[ε]≤0 are isomorphisms. Thus [γ ]≤0 is also an isomorphism. But from the second
row we see that Hi

m(�
0
Y,Z ) is of nonpositive degree so that Hi

m(�
0
Y,Z )= [H

i
m(I )]≤0

for i ≥ 2. �

Remark 2.13. It would be natural to try to prove a common generalization of the
(independently obtained) Proposition 2.11 and Lemma 2.12.

Example 2.14 (a normal Du Bois pair whose ambient space is not Du Bois). Let
W be an arbitrary smooth canonically polarized variety, that is, W is smooth
and projective and ωW is ample. Further let n > 1, and set X = W × Pn and
L = π∗1ωW ⊗π

∗

2 OPn (1). Finally, let K ⊆ Pn be a smooth hypersurface of degree
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n+ 1, that is, OPn (K )' ω−1
Pn , and let Z =W × K . We claim that, using the above

notation, (C X,C Z) is a Du Bois pair, while C X itself is not. Note also that by
construction C X is normal.

Consider H1(X,OX (−Z)⊗L j ) for j ≥ 0 and observe that

OX (−Z)⊗L j
=π∗2 OPn(−n−1)⊗π∗1ω

j
W⊗π

∗

2 OPn ( j)=π∗1ω
j
W⊗π

∗

2 OPn ( j−n−1).

Now H1(Pn,OPn ( j − n− 1))= 0 for all j ≥ 0 and H 0(Pn,OPn ( j − n− 1))= 0
for j ≤ n. But if j > n ≥ 1, then H1(W, ω j

W )= 0 by Kodaira vanishing and so it
follows by the Künneth formula that H1(X,OX (−Z)⊗L j )= 0 for all j ≥ 0, so
the hypotheses of Lemma 2.12 are satisfied.

Let r = dim W and consider H r(X,L ). By the Künneth formula

H r(X,L )⊇ H r(W, ωW )⊗ H 0(Pn,OPn (1)) 6= 0,

and hence by Proposition 2.11 C X is not Du Bois.
On the other hand we have that

L (−Z)' π∗1ωW ⊗π
∗

2 OPn (1− n− 1)' ωX ⊗π
∗

2 OPn (1). (2.14.1)

Now observe that Hq(Pn,OPn (1− n − 1)) = 0 for all q ≥ 0, so, again by the
Künneth formula, it follows that H i(X,L (−Z))= 0 for all i > 0.

In order to conclude that (C X,C Z) is a Du Bois pair we need that

H i(X,L m(−Z))= 0 for all i,m > 0.

We just showed that H i(X,L (−Z)) = 0 for all i > 0, which handles the m = 1
case. If m > 1 then M :=L m−1

⊗π∗2 OPn (1) is ample on X and by (2.14.1) and
Kodaira vanishing we have that

H i(X,L m(−Z))= H i(X,L (−Z)⊗L m−1)' H i(X, ωX ⊗M )= 0,

and hence it follows from Proposition 2.11 that (C X,C Z) is indeed a Du Bois pair.

We will find the following lemma useful; cf. [Esnault 1990; Schwede 2007].

Lemma 2.15. Assume that (X, Z) is a pair with Z ⊆ X reduced schemes. Assume
further that X ⊆ Y where Y is smooth. Let π : Ỹ → Y be a log resolution of
both X and Z in Y and set X and Z to be the reduced preimages of X and Z in Ỹ
respectively. Then

�0
X,Z ' R π∗IZ⊆X ,

where IZ⊆X is the ideal of Z in X.
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Proof. Consider the diagram

�0
X,Z

α

��

// �0
X

β

��

// �0
Z

γ

��

+1
//

R π∗�0
X ,Z

// R π∗�0
X

// R π∗�0
Z

+1
//

R π∗IZ⊆X
// R π∗OX

// R π∗OZ
+1
//

The vertical arrows β and γ are quasi-isomorphisms by [Kovács and Schwede
2011b, Theorem 6.4] (also see [Schwede 2007, Theorem 4.3]) since X and Z are
snc and hence Du Bois. The second row of equalities also follows since X and Z are
Du Bois. Then α is a quasi-isomorphism as well and hence the lemma follows. �

There are some situations when a pair being Du Bois implies that the ambient
space is also Du Bois. It is proved in [Graf and Kovács 2014] that this happens if
X is Gorenstein, but that X being Q-Gorenstein is not sufficient. Another simple
situation in which this holds is the following.

Lemma 2.16. Let X be a reduced C-scheme essentially of finite type and H a
Cartier divisor. If (X, H) is a Du Bois pair then X (and hence H ) is also Du Bois.

Proof. The statement is local and so we may assume that X = Spec R is affine.
We know that OX (−H)→ �0

X,H is a quasi-isomorphism and thus so is OX →

�0
X,H ⊗OX (H). We will show that this map factors through OX →�0

X , which will
complete the proof by [Kovács 1999, Theorem 2.3].

Embed X ⊆ Y as a smooth scheme and let π : Ỹ → Y be a simultaneous log
resolution of (Y, X) and (Y, H) with X , H the reduced total transforms of X and H
respectively. Then�0

X,H =R π∗IH⊆X by Lemma 2.15. Fix X ′ to be the components
of X which are not also components of H and we see that IH⊆X ' OX ′(−H |X ′).
Thus

�0
X,H ⊗OX (H)' R π∗OX ′((π

∗H − H)|X ′).

Since π∗H − H is effective, we obtain a map

�0
X ' R π∗OX → R π∗OX ′→ R π∗OX ′((π

∗H − H)|X ′)'�0
X,H ⊗OX (H).

This map obviously factors the quasi-isomorphism OX→�0
X,H⊗OX (H) and hence

the proof is complete. �

We recall properties of �0
X,Z that we will need later.

Lemma 2.17. Let X be a scheme over C with Z ⊆ X a closed subscheme and
j :U = X \ Z ↪→ X the complement of Z. Then:
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(a) If in addition X is proper, then H i(X,IZ )→ Hi(X, �0
X,Z ) is surjective for

all i ∈ Z [Kovács 2011a, Corollary 4.2; Kollár 2013, Theorem 6.22].

(b) If H is a general member of a basepoint-free linear system, then �0
X,Z ⊗OH '

�0
H,H∩Z [Kovács 2011a, Proposition 3.18; Kollár 2013, Theorem 6.5(6)].

(c) If X =U ∪V is a decomposition into closed subschemes and Z ⊆ X is another
closed subscheme, then we have a distinguished triangle

�0
U∪V,Z →�0

U,Z∩U ⊕�
0
V,Z∩V →�0

U∩V,Z∩U∩V
+1
−→

(cf. [Kollár 2013, Theorem 6.5(11)]).

(d) Let X =U ∪ V be a decomposition of X into closed subschemes. Then

�0
U∪V,V '�

0
U,U∩V

(cf. [Kovács 2011a, Proposition 3.19; Kollár 2013, Theorem 6.17]).

Proof. Parts (a) and (b) follow from the references in their statements. For (c), the
included reference only states the triangle in the case that Z = ∅. However, our
more general version follows easily from the diagram

�0
U∪V,Z

��

// �0
U,Z∩U ⊕�

0
V,Z∩V

��

// �0
U∩V,Z∩U∩V

��

+1
//

�0
U∪V

��

// �0
U ⊕�

0
V

��

// �0
U∩V

��

+1
//

�0
Z

+1
��

// �0
Z∩U ⊕�

0
Z∩V

+1
��

// �0
Z∩U∩V

+1
��

+1
//

and the 9-lemma in triangulated categories [Kovács 2013, B.1].
For (d), consider the distinguished triangle

�0
U∪V

// �0
U ⊕�

0
V

// �0
U∩V

+1
//

of part (c) with Z =∅. Then [Kollár and Kovács 2010, Lemma 2.1] implies that
the left vertical arrow of the following diagram is an isomorphism:

�0
U∪V,V

//

'

��

�0
U∪V

��

// �0
V

+1
//

��

�0
U,U∩V

// �0
U

// �0
U∩V

+1
//
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For more details see the proofs in the references and replace �× with �0. �

The next lemma constructs a natural exact triangle for Du Bois pairs.

Lemma 2.18. Let X be a scheme and W, Z ⊆ X subschemes. Then there is a
distinguished triangle

�0
X,W∪Z →�0

X,Z →�0
W,Z∩W

+1
−→ .

In particular, because there is also a short exact sequence

0→IW∪Z⊆X →IZ⊆X →IZ∩W⊆W → 0,

if any two of {(X,W ∪ Z), (X, Z), (W, Z ∩W )} are Du Bois, so is the third.

Proof. We begin with a diagram of distinguished triangles as columns and rows
(see [Kollár 2013, Theorem 6.5.11; Kovács 2013, Theorem B1]):

�0
X,W∪Z

//

��

�0
X,Z ⊕�

0
X,W

��

−
// �0

X,Z∩W

��

+1
//

�0
X

��

id⊕ id
// �0

X ⊕�
0
X

��

−
// �0

X

��

+1
//

�0
W∪Z

// �0
Z ⊕�

0
W

−
// �0

Z∩W
+1
//

The horizontal maps in the second column of this diagram are each obtained by
subtracting the canonical maps on each factor of the direct sum, hence the minus
signs. The octahedral axiom implies that there exists a diagram of distinguished
triangles,

�0
X,W∪Z

��

// �0
X,Z

��

// K •

∼

��

+1
//

�0
X,W

// �0
X,Z∩W

// K •
+1
//

We need to identify K •. Notice that the bottom row also fits into another diagram
of distinguished triangles (see [Kovács 2013, Theorem B1]):
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�0
X,W

//

��

�0
X,Z∩W

//

��

K •
+1

//

��

�0
X

∼
//

��

�0
X

//

��

0
+1

//

��

�0
W

//

+1
��

�0
Z∩W

//

��

+1
��

�0
W,Z∩W [1]

+1
��

+1
//

Hence K • '�0
W,Z∩W and the lemma follows. �

Finally, note that being Du Bois is a direct generalization of being rational for
pairs (see also Kollár 2013, Corollary 6.25).

Theorem 2.19 [Kovács 2011a, Corollary 5.6]. If (X, D) is a rational pair then
(X, D) is also a Du Bois pair.

3. An injectivity theorem

A key ingredient of the proof that Du Bois singularities are deformation invariant
was an injectivity theorem [Kovács and Schwede 2011a, Theorem 3.3]. In this
section, we generalize that result to the context of pairs.

Lemma 3.1 (cf. [Kovács and Schwede 2011a, Lemma 3.1]). Let X be a reduced
scheme, Z ⊆ X a reduced subscheme and L a semiample line bundle. Let s ∈L n

be a general global section for some n� 0 and take the n-th root of this section (as
in [Kollár and Mori 1998, Definition 2.50]):

η : Y = Spec
n−1⊕
i=0

L −i
→ X.

Set W = η−1(Z) (with the induced scheme structure). Note that the restriction
satisfies η|W :W = Spec

⊕n−1
i=0 L −i

|Z → Z. Then as before, writing η∗ = R η∗,

η∗�
0
Y,W '�

0
X,Z ⊗ η∗OY '

n−1⊕
i=0

(�0
X,Z ⊗L −i ),

and this direct sum is compatible with the decomposition η∗OY =
⊕n−1

i=0 L −i .

Proof. Although not explicitly stated, it is easy to see that [Kovács and Schwede
2011a, Lemma 3.1] is functorial in that it is compatible with the map Z→ X . Then
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by applying Lemma 2.17(b), the result follows from the diagram

η∗�
0
Y,W

// η∗�
0
Y

// η∗�
0
W

+1
//

�0
X,Z ⊗ η∗OY

OO

// �0
X ⊗ η∗OY

'

OO

// �0
Z ⊗ η∗OY '�

0
Z ⊗OZ η∗OZ

'

OO OO

+1
// �

Setting ω•X,Z =R Hom •OX
(�0

X,Z , ω
•

X ) as in (2.9.1), we easily obtain the following.

Theorem 3.2. Let X be a reduced scheme over C and Z ⊆ X a reduced subscheme.
Then the natural map

8 j
: h j(ω•X,Z ) ↪→ h j(R HomOX (IZ , ω

•

X ))

is injective for every j ∈ Z.

Proof. The proof is essentially the same as in [Kovács and Schwede 2011a, Theo-
rem 3.3] so we only sketch it briefly. First, since the question is local and compatible
with restricting to an open subset, we may assume that X is projective with ample
line bundle L . It follows from taking a cyclic cover with respect to a general
section of L n , for n� 0, and applying Lemmas 2.17(a) and 3.1 that

H j
(

X,IZ ⊗

n−1⊕
i=0

L −i
)
→ H j

(
X, �0

X,Z ⊗

n−1⊕
i=0

L −i
)

surjects for all j ≥ 0. Therefore H j (X,IZ⊗L −i )→H j (X, �0
X,Z⊗L −i ) surjects

for all i, j ≥ 0.
By an application of Serre–Grothendieck duality we obtain an injection

H j (X, ω•X,Z ⊗L i ) ↪→ H j (X,R Hom •OX
(IZ , ω

•

X )⊗L i ) (3.2.1)

for all i, j ≥ 0. But for i � 0, by Serre vanishing, we obtain that

H 0(X, h j(ω•X,Z )⊗L i ) ↪→ H 0(X, h j(R Hom •OX
(IZ , ω

•

X ))⊗L i ) (3.2.2)

is injective as well (since the spectral sequence computing (3.2.1) degenerates).
On the other hand, if h j(ω•X,Z )→ h j(R Hom •OX

(I , ω•X )) is not injective, then for
some i � 0 neither is (3.2.2). �

4. Deformation of Du Bois pairs

In [Kovács and Schwede 2011a, Corollary 4.2], we showed the following result:
Let f : X → B be a flat proper family over a smooth curve B with a fiber X0,
0∈ B, having Du Bois singularities. Then there is an open neighborhood 0∈U ⊆ B
such that the fibers Xu have Du Bois singularities for u ∈ U . In this section, we
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generalize this result to Du Bois pairs. We mimic our previous approach as much
as possible.

First we need a lemma, which is presumably well known but for which we know
no reference.

Lemma 4.1. Let X be a reduced scheme and Z ⊆ X a reduced subscheme with ideal
sheaf IZ . Further, let H⊆ X be an effective Cartier divisor with ideal sheaf IH

such that H does not contain any irreducible components of either X or Z. Then

IH ∩IZ =IH ·IZ .

Proof. This is left as an exercise to the reader. Earlier versions of this paper, which
are available on the arXiv, also contain a detailed proof. �

Now we prove that if a special fiber supports a Du Bois pair, so does the total
space near that fiber. Recall that effective Cartier divisors on a possibly nonnormal
scheme are simply subschemes locally defined by a single non-zero-divisor near
every point.

Theorem 4.2. Let X be a reduced scheme essentially of finite type over C, Z ⊆ X
a reduced subscheme and H a reduced effective Cartier divisor on X that does
not contain any component of Z. If (H, Z ∩ H) is a Du Bois pair, then (X, Z)
is a Du Bois pair near H. It then follows (from Lemma 2.18) that (X, Z ∪ H) is
Du Bois near H.

Proof. We follow very closely the proofs of [Kovács 2000, Theorem 3.2] and
[Kovács and Schwede 2011a, Theorem 4.1], which are based on [Elkik 1978].
Choose a closed point q of X contained within H . It is sufficient to prove that
(X, Z) is Du Bois at q. Let R denote the stalk OX,q and replace X by Spec R.
Choose f ∈ R to denote a defining equation of H in R. Consider the following
diagram, whose rows are distinguished triangles in Db

coh(X):

IZ

��

× f
// IZ

��

// IZ/( f · IZ )

ρ

��

'

��

+1
//

�0
X,Z × f

// �0
X,Z

// A•

τ

��

+1
//

�0
H,Z∩H

(4.2.1)

where A• is the term completing the second row to a distinguished triangle. We
claim we have a map τ as above such that τ ◦ ρ is a quasi-isomorphism. Certainly
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we have a diagram with distinguished triangles for rows and columns

�0
X,Z

��

× f
// �0

X,Z

��

// A•

τ

..

��

+1
//

�0
H,Z∩H

��

�0
X

��

× f
// �0

X

��

// B•

��

+1
//

κ

// �0
H

��

�0
Z

× f
//

+1

��

�0
Z

//

+1

��

C•
+1
//

+1

��

µ .. �0
Z∩H

+1
��

and the existence of τ follows immediately from the existence of κ and µ, whose
existence follows from the proof of [Kovács and Schwede 2011a, Theorem 4.1].
Note that the assumptions imply that H |Z = H ∩ Z is a Cartier divisor on Z , so
we may indeed use [Kovács and Schwede 2011a, Theorem 4.1] for both X and Z .
Since IZ/( f · IZ ) = IZ/(( f ) ∩ IZ ) by Lemma 4.1 and because (H, Z ∩ H) is a
Du Bois pair, we see τ ◦ ρ is an isomorphism as claimed.

Next we apply the Grothendieck duality functor D( )= R Hom•R( , ω•R) to
(4.2.1) and take cohomology, using ki( ) as shorthand to denote hi(D( )):

· · · oo ki(IZ )
OO

8i

?�

ki(IZ )
× f
oo

OO

8i

?�

oo
δi ki(IZ/( f · IZ ))

OOOO

γi

oo
αi ki−1(IZ )

OO

8i−1

?�

oo
× f

ki−1(IZ )
OO

8i−1

?�

· · ·oo

· · · oo hi(ω•X,Z )
oo
× f

hi(ω•X,Z )
oo ki(A•) oo

βi
hi−1(ω•X,Z )

oo
× f

hi−1(ω•X,Z ) · · ·oo

where the 8• are injective by Theorem 3.2 and γi , which was obtained from ρ, is
surjective since τ ◦ ρ is an isomorphism.

The proof now follows exactly as for the main theorem of [Kovács and Schwede
2011a], or dually of [Kovács 2000, Theorem 3.2]. Fix z ∈ hi−1(D(IZ )). Pick
w ∈ hi(D(A•)) such that αi (z) = γi (w). Since δi (αi (z)) = 0 and 8i is injective,
it follows that there exists a u ∈ hi−1(ω•X,Z ) such that βi (u) = w. Therefore,
αi (8

i−1(u))= αi (z) and so

z−8i−1(u) ∈ f · hi−1(D(IZ )). (4.2.2)

Now, fix Ei−1 to be the cokernel of 8i−1 and set z̄ ∈ Ei−1 to be the image
of z. Equation (4.2.2) then guarantees that z̄ ∈ f · Ei−1. The multiplication map
Ei−1−−→

× f Ei−1 is then surjective and so Nakayama’s lemma guarantees that 8i−1 is
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also surjective. Therefore ω•X,Z → D(IZ ) is a quasi-isomorphism, which implies
that (X, Z) is a Du Bois pair. �

Corollary 4.3. Let f : X → B be a flat proper family of varieties over a smooth
one-dimensional scheme, B being essentially of finite type over C ( for instance, a
smooth curve). Further, let Z ⊆ X be a subscheme such that no component of Z is
contained in any component of any fiber of f and b ∈ B a closed point such that
(Xb, Zb) is a Du Bois pair. Then there exists a neighborhood b ∈U ⊆ B such that

(a) (X, Z) is Du Bois over U , and

(b) the fibers (Xu, Zu) are Du Bois for all u ∈U.

Proof. The non-Du Bois locus T of (X, Z) is closed, and since f is proper, f (T )
is also closed. Hence (a) follows from Theorem 4.2 and by replacing B with an
open set, we may assume that (X, Z) is Du Bois. Then the Bertini-type theorem
Lemma 2.17(b) implies that (b) follows after possibly shrinking U . �

Corollary 4.4. Let f : X → B be a flat proper family of varieties over a smooth
scheme B essentially of finite type over C. Further let Z ⊆ X be a subscheme which
is also flat over B and b ∈ B a closed point such that (Xb, Zb) is a Du Bois pair.
Then there exists a neighborhood U ⊆ B, b ∈U , such that (X, Z) is Du Bois over U.

Proof. We may assume that B is affine and let d = dim B. We first show that
(X, Z) itself is Du Bois in a neighborhood of (Xb, Zb). Let H1, . . . , Hd be general
smooth subschemes going through b whose local defining equations generate the
maximal ideal of b (i.e., locally analytically they are coordinate hyperplanes).
The pair (Xb, Zb) = (X H1∩H2∩···∩Hd , Z H1∩H2∩···∩Hd ) is Du Bois by assumption,
hence since Xb = X H1∩···∩Hd is a hypersurface in X H2∩···∩Hd it follows that the
pair (X H2∩···∩Hd , Z H2∩···∩Hd ) is Du Bois in a neighborhood of Xb, by Corollary 4.3.
Let W1 denote the non-Du Bois locus of (X H2∩···∩Hd , Z H2∩···∩Hd ). Since W1 is
closed and f is proper, we see that f (W1) is closed in H2 ∩ · · · ∩ Hd and doesn’t
contain b. Shrinking B if necessary, we may assume that W1 is empty. Next
observe that H2 ∩ · · · ∩ Hd is a hypersurface in H3 ∩ · · · ∩ Hd and so again we
see that (X H3∩···∩Hd , Z H3∩···∩Hd ) is Du Bois in a neighborhood of X H2∩···∩Hd by
Corollary 4.3. Set W2 to be the non-Du Bois locus of (X H3∩···∩Hd , Z H3∩···∩Hd ) and
note that f (W2) does not intersect H2 ∩ · · · ∩ Hd . We shrink B again if necessary
so that W2 =∅. Iterating this procedure proves the statement. �

In order to extend Corollary 4.3(b) to families over arbitrary-dimensional bases
we need the following lemma.

Lemma 4.5. Let f : X → B be a flat proper family of varieties over a scheme B
essentially of finite type over C. Further, let Z ⊆ X be a subscheme which is also
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flat over B and assume that (X, Z) is a Du Bois pair. Then

V = {b ∈ B | (Xb, Zb) is a Du Bois pair}

is a constructible set in B. Furthermore, if B is smooth, then V is open.

Proof. We use induction on the dimension of B.
Let π : B ′→ B be a resolution of singularities and consider the base change

f ′ : X ′= X B ′→B ′, assumed to be a flat proper family over B ′ and with Z ′= Z B ′⊆ X ′

a subscheme that is flat over B ′. Notice that all the fibers of f ′ : X ′→ B ′ appear as
fibers of f : X→ B (up to harmless field extension), so b′ ∈ V ′ = π−1(V )⊆ B ′ if
and only if the fiber (X ′b′, Z ′b′) is a Du Bois pair. It follows from Corollary 4.4 that
by replacing B ′ with an open subset we may assume that (X ′, Z ′) is a Du Bois pair.
It also follows that it is enough to prove the statement over a smooth irreducible base.
Indeed, that implies that V ′ is open in B ′ and hence V = f (V ′) is constructible.

To simplify notation we will replace B with B ′ and assume that B is smooth and
irreducible, but use the inductive hypothesis without these additional assumptions.

The Bertini-type statement Lemma 2.17(b) implies that, if V 6= ∅, there is a
dense open subset U ⊆ B contained in V . The case dim B = 1 follows immediately
via the fact that in a curve any set containing a dense open set is itself open.

In general, it follows that dim(B \ U ) < dim B so by induction V \ U is a
constructible set in B \U and hence V is constructible in B. In the case of a smooth
base Corollary 4.4 implies that V is stable under generalization and since we have
just proved that it is constructible it follows that it is open. �

Corollary 4.6. Let f : X → B be a flat proper family of varieties over a smooth
scheme B essentially of finite type over C. Further let Z ⊆ X be a subscheme which
is also flat over B and b ∈ B a closed point such that (Xb, Zb) is a Du Bois pair.
Then there exists a neighborhood U ⊆ B, b ∈U , such that (Xu, Zu) is a Du Bois
pair for all u ∈U.

Proof. Observe that the non-Du Bois locus W of (X, Z) is closed in X and since f
is proper, f (W ) is also closed in B. Note that f (W ) does not contain b so it also
does not contain the generic point of B. Hence by replacing B by a neighborhood
U ⊆ B of b ∈ B, we may assume that (X, Z) is Du Bois. Then the statement
follows from Lemma 4.5. �

Remark 4.7. One can recover special cases of inversion of adjunction for log
canonicity [Kawakita 2007] easily from Theorem 4.2. For instance, let (X, D+H)
be a pair with K X , D and H Cartier and assume that (H, D|H ) is slc or equiva-
lently Du Bois [Kollár 2013]. Then (X, D+ H) is Du Bois or equivalently lc by
Theorem 4.2.
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5. Generalizing the Kollár–Kovács result to pairs

We recall Theorem 7.12 of [Kollár and Kovács 2010]. Let f : X → B be a flat
projective family of varieties with Du Bois singularities. Then if B is connected
and the general fiber is Cohen–Macaulay, then all the fibers are Cohen–Macaulay.

We would like to generalize this to the context of Du Bois pairs, at least in
the case when Z is a divisor. We recommend the reader have a copy of [Kollár
and Kovács 2010] available when reading this section as we refer to a number of
lemmas therein. We begin by generalizing a result of Du Bois and Jarraud to pairs;
cf. [Du Bois and Jarraud 1974; Du Bois 1981, théorème 4.6].

Theorem 5.1. Let f : X→ B be a flat proper morphism between schemes of finite
type over C. Assume that B is smooth and let Z ⊆ X be a subscheme that is flat
over B. Further assume that the geometric fibers (Xb, Zb)→ b are Du Bois. Then
for all i , R i f∗IZ is locally free of finite rank and compatible with base change; in
other words (R i f∗IZ )T ' R i f∗IZT for any morphism T → B.

Proof. For some b ∈ B, let m be the maximal ideal of OB,b and S = Sn =

Spec OB,b/m
n+1 for n ∈ N. Further, let IZb and IZS denote the ideal sheaves

of Zb in Xb and ZS in X S , respectively. Consider the commutative diagram

H i
c ((X S \ ZS)

an,C)

α

((

λ

��

H i (X S,IZS )

β

ww

ν

��

H i (X an
S ,IZS )

µ

��

H i
c ((Xb \ Zb)

an,C)

γ
((

H i (Xb,IZb)

δww

H i (X an
b ,IZb)

Observe that λ is an isomorphism since X S and Xb have the same support. By
[Kovács 2011a, Theorem 4.1], cf. [Kollár 2013, Theorem 6.8], γ is surjective, so
γ ◦ λ= µ ◦α is surjective and hence µ is surjective. By Serre’s GAGA principle
[Serre 1956], β and δ are isomorphisms and hence ν is surjective. Finally, the
statement follows by cohomology and base change [Grothendieck 1963, §7.7]. �

Next we prove the analogue of the main flatness and base change result of Kollár
and Kovács [2010, Theorem 7.9] for Du Bois pairs.

Theorem 5.2. Let f : X → B be a flat projective morphism between schemes of
finite type over C, and assume that B is smooth. Let Z ⊆ X be a closed subscheme
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that is flat over B and L a relatively ample line bundle on X. Assume (X, Z) is
Du Bois. Then:

(a) The sheaves h−i (R Hom •OX
(IZ , ω

•

f )) are flat over B for all i .

(b) The sheaves f∗
(
h−i (R Hom •OX

(IZ , ω
•

f ))⊗L q
)

are locally free and compati-
ble with arbitrary base change for all i > 0 and q � 0.

(c) For any base change ϑ : T → B and for all i > 0,(
h−i (R Hom •OX

(IZ , ω
•

f ))
)

T ' h−i (R Hom •OXT
(IZT , ω

•

fT
)).

Proof. We follow the proof of [Kollár and Kovács 2010, Theorem 7.9]. We may
assume that B = Spec R is affine and hence that L m is globally generated for
m� 0. For such an m� 0, choose a general section σ ∈ H 0(X,L m) and consider
the cyclic cover induced by σ :

A =

m−1⊕
j=0

L − j
'

m−1⊕
j=0

L − j t j/(tm
− σ).

Set h : Y = SpecX A → X , and ZY = h−1 Z with the induced reduced scheme
structure. Then the geometric fibers of the composition (Y, ZY )→ B are also
Du Bois by [Kollár 2013, Corollary 6.21]. Note that by construction IZY =⊕m−1

j=0 IZ ⊗L − j. Hence R i h∗IZY is locally free of finite rank and compatible
with arbitrary base change by Theorem 5.1. It follows that the summands of these
modules, the R i f∗(IZ ⊗L − j ), are also locally free and compatible with base
change. Since we may choose m arbitrarily large, this holds for all j ∈ N. It
follows immediately that HomOB (R i f∗(IZ ⊗L − j ),OB) is also locally free and
compatible with base change.

By Grothendieck duality and [Kollár and Kovács 2010, Lemma 7.3] (see the
proof of Lemma 7.2 in that paper follows that

HomOB (R
i f∗(IZ ⊗L −q),OB)' f∗h−i (R Hom •OX

(IZ , ω
•

f ⊗L q))

' f∗
(
h−i (R Hom •OX

(IZ , ω
•

f )⊗L q)
)

and hence (b) is proven. Just as in [Kollár and Kovács 2010, Theorem 7.9],
(a) follows from (b) by an argument similar to [Hartshorne 1977, Chapter III,
Theorem 9.9].

Finally we prove (c). Since f : X → B is projective and B is affine, we may
factor f as X−→i Pn

B −→
π B. It then suffices to show that

%−i
:
(
h−i (R Hom •OPn

B
(IZ , ωπ [n]))

)
T → h−i (R Hom •OPn

T
(IZT , ωπ [n]))
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is an isomorphism. As in [Kollár and Kovács 2010, Theorem 7.9], we proceed by
descending induction on i (the base case where i � 0 is obvious). We observe that
IZ is flat since so are OX and OZ and assume that %−(i+1) is an isomorphism by
induction. Since h−i

(
R Hom •OPn

B
(IZ , ωπ [n])

)
is flat, by (a), we may apply [Altman

and Kleiman 1980, Theorem 1.9], which completes the proof. �

The following is the analog of [Kollár and Kovács 2010, Theorem 7.11] for pairs.

Theorem 5.3. Let f : X → B be a flat projective morphism between schemes of
finite type over C. Assume that B is smooth and let Z ⊆ X be a subscheme that is
flat over B. Let x ∈ X be a closed point and let b = f (x). Then IZb ⊆ OXb is Sk at
x if and only if (

h−i (R Hom •OX
(IZ , ω

•

f ))
)

y = 0 (5.3.1)

for i <min(k+dim {y}, dimx X) and for all y ∈ Xb such that x ∈ {y}. In particular,
IZb is Sk if and only if (5.3.1) holds for i <min(k+ dim {y}, dimx X) and for all
y ∈ Xb (not restricted to closed points).

First we prove a lemma.

Lemma 5.4. Let X be a scheme that admits a dualizing complex ω•X . Let x ∈ X
and let F be a coherent sheaf on X. Then F is Sk at x ∈ X if and only if(

h−i (R Hom •OX
(F , ω•X ))

)
y = 0

for i <min(k, dim Fy)+ dim {y} and for all y ∈ X such that x ∈ {y}.

Proof. This is a consequence of local duality [Hartshorne 1966] and the cohomo-
logical criterion for depth; see for instance [Kovács 2011b, Proposition 3.2]. �

Proof of Theorem 5.3. By the lemma, IZb ⊆ OXb is Sk at x if and only if(
h−i (R Hom •OXb

(IZb , ω
•

Xb
))
)

y = 0

for i <min(k, dim(IZb)y)+dim {y}=min(k+dim {y}, dimx X) and for all y ∈ Xb

such that x ∈ {y}. By Theorem 5.2,(
h−i (R Hom •OXb

(IZb , ω
•

Xb
))
)

y '
((

h−i (R Hom •OX
(IZ , ω

•

f ))
)
b

)
y

'
((

h−i (R Hom •OX
(IZ , ω

•

f ))
)

y

)
b.

But notice that the right side is zero if and only if
(
h−i (R Hom •OX

(IZ , ω
•

f ))
)

y is
zero by Nakayama’s lemma. This implies the desired statement. �

Finally, we describe how the Sk condition behaves for pairs in families where
the fibers are Du Bois.
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Theorem 5.5. Let f : (X, Z)→ B be a flat projective family with OZ (and hence
IZ ) flat over B as well. Assume that all the fiber pairs (Xb, Zb) are Du Bois.
Assume also that B is connected and the generic fibers (IZ )gen are Sk . Then all the
fibers (IZ )b are Sk .

Proof. By working with one component of B at a time, we may assume that B is
irreducible and hence that X is equidimensional. If (IZ )b'IZb (by flatness of OZ )
is not Sk at some point y ∈ Xb, then by Theorem 5.3, h−i (R Hom •OX

(IZ , ω
•

f )) 6= 0
near y for some i < min(k + dim {y}, dim X). Fix an irreducible component
W ⊆ supp

(
h−i (R Hom •OX

(IZ , ω
•

f ))
)

and observe that dim Wb is constant for b ∈ B
since h−i (R Hom •OX

(IZ , ω
•

f )) is flat by Theorem 5.2(a). However, in that case it
follows that h−i (R Hom •OX

(IZ , ω
•

f )) is nonzero near some point η ∈ Xgen such that
dim {η} = dim {y}, which contradicts the assumption that the generic fiber is Sk by
Theorem 5.3. �

Corollary 5.6. Let f : (X, Z)→ B be a flat projective family with OZ (and hence
IZ ) flat over B as well. Assume that all the fiber pairs (Xb, Zb) are Du Bois. As-
sume also that B is connected and the generic fibers (IZ )gen are Cohen–Macaulay.
Then all the fibers (IZ )b are Cohen–Macaulay. �

At this point it is natural to ask the next question.

Question 5.7. Assume that (X, Z) is a pair and that H ⊆ X is a Cartier divisor
such that (H, Z ∩ H) is a Du Bois pair. If IZ |X\H is Cohen–Macaulay, does it
follow that IZ is Cohen–Macaulay?

In the case that Z = ∅, the analogous result holds in characteristic p > 0 for
F-injective singularities by [Horiuchi et al. 2014, Appendix by K. Schwede and
A. K. Singh].

6. Generalizing Kovács–Schwede–Smith to pairs

The goal of this section is to prove the analog of the main result of [Kovács et al.
2010] for pairs (X, Z).

Lemma 6.1. Let X be a normal d-dimensional variety, Z ( X a reduced closed
subscheme and 6 ( X a codimension ≥ 2 subset containing the singular locus of X.
Let π : X̃→ X be a log resolution of (X, 6 ∪ Z) with E = π−1(6 ∪ Z)red. Then

(a) �0
X,6∪Z ' R π∗OX̃ (−E), and

(b) h−d(ω•X,Z )' π∗ωX̃ (E).

Proof. First we claim that both R π∗OX̃ (−E) and π∗ωX̃ (E) are independent of
the choice of π . This was proved for R π∗OX̃ (−E) on pages 67–68 in the proof
of [Kovács and Schwede 2011b, Theorem 6.4] and for π∗ωX̃ (E) in [Kovács et al.
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2010, Lemma 3.12]. Therefore we are free to choose π and hence we may assume
that it is an isomorphism outside of 6 ∪ Z . We have the distinguished triangle

�0
X

//

'

��

R π∗�0
X̃
⊕�0

6∪Z

'

��

// R π∗�0
E

'

��

+1
//

�0
X

// R π∗OX̃ ⊕�
0
6∪Z

// R π∗OE
+1
//

The isomorphisms follow since X̃ and E are Du Bois. In the next diagram the first
two rows are distinguished triangles by definition; see (2.7.1). The third row is
simply the pushforward of a natural short exact sequence from X̃ . The previous
diagram and [Kollár and Kovács 2010, Lemma 2.1] (or simply the octahedral axiom)
imply that α below is an isomorphism. The other two isomorphisms again follow
since X̃ and E are Du Bois. Note that the columns are not exact.

�0
X,6∪Z

//

' α

��

�0
X

//

��

�0
6∪Z

��

+1
//

R π∗�0
X̃ ,E

//

��

R π∗�0
X̃

//

'

��

R π∗�0
E
+1
//

'

��

R π∗OX̃ (−E) // R π∗OX̃
// R π∗OE

+1
//

It follows that the dotted arrow, and hence its composition with α, are also isomor-
phisms. This proves (a).

In order to prove (b), consider the map �0
X,6∪Z →�0

X,Z obtained in

�0
X,6∪Z

��

// �0
X

// �0
6∪Z

+1
//

��

�0
X,Z

// �0
X

// �0
Z

+1
//

Now we have a distinguished triangle

�0
X,6∪Z →�0

X,Z → C •
+1
−→ . (6.1.1)

Claim 6.2. With the above notation, 0= h−d(D(C •))= h−d+1(D(C •)).

Proof of claim. Consider the following diagram with distinguished triangles as rows
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and columns:

�0
6∪Z [−1]

��

// �0
Z [−1]

��

// �0
6∪Z ,Z

+1
//

�0
X,6∪Z

��

// �0
X,Z

��

// C •
+1

//

�0
X

+1
��

�0
X

+1
��

It follows from [Kovács 2013, Theorem B.1] that C • '�0
6∪Z ,Z . On the other hand,

by Lemma 2.17(d), �0
6∪Z ,Z '�

0
6,6∩Z and hence C • '�0

6,6∩Z .
Next recall that by Theorem 3.2 there exists a natural injective map

h− j(D(�0
6,6∩Z )

)
↪→ h− j(R Hom •O6 (I(6∩Z)⊆6, ω

•

6)
)
. (6.2.1)

Since dim6≤ d−2, the right hand side of (6.2.1) is zero for j ≥ d−1, establishing
the claim. �

Grothendieck duality and part (a) imply that h−d(ω•X,6∪Z ) ' π∗ωX̃ (E) and it
follows from Claim 6.2 that h−d(ω•X,6∪Z ) ' h−d(ω•X,Z ), which in turn implies
part (b). �

Theorem 6.3. Let X be a normal variety and Z ⊆ X a divisor. Let π : X̃→ X be a
log resolution of (X, Z) with E = π−1(Z)red ∨ exc(π). If IZ is Cohen–Macaulay,
then (X, Z) is Du Bois if and only if

π∗ωX̃ (E)' ωX (Z).

Proof. Since IZ is Cohen–Macaulay, R Hom •OX
(IZ ,ω

•

X )'HomOX(IZ ,ωX )[dim X]
by the local dual of the local cohomology criterion for Cohen–Macaulayness.
Because the map

ω•X,Z → R Hom •OX
(IZ , ω

•

X ) (6.3.1)

is injective on cohomology by Theorem 3.2, it follows that hi (ω•X,Z ) = 0 for
i 6= − dim X and hence (X, Z) is Du Bois if and only if

h− dim X (ω•X,Z )→HomOX(IZ , ωX )' ωX (Z)

is an isomorphism. But h− dim X (ω•X,Z )'π∗ωX̃ (E) by Lemma 6.1, so the statement
follows. �
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7. An inversion of adjunction for rational and Du Bois pairs

In this final section of the paper, we will prove the following theorem.

Theorem 7.1. Let f : X → B be a flat projective family with geometrically inte-
gral fibers over a smooth connected base B, A ⊆ B a smooth closed subscheme
containing no component of B and H = f −1(A) = X ×B A (with the induced
scheme-theoretic structure). Let D be a reduced codimension-1 subscheme of X
which is flat over B. Assume that for every s ∈ A, (Xs, Ds) is Du Bois and that
(X \ H, D \ H) is a rational pair. Then (X, D) is a rational pair.

Remark 7.2. In the introduction, A was assumed to be a closed point. This version
is more general and more convenient for our proof.

Remark 7.3. The assumptions also imply the following auxiliary conditions:

(a) Since X → B has geometrically integral fibers and H is obtained by base
change with a smooth subscheme, H is reduced.

(b) ID is flat over B and no component of D contains a fiber of f. In particular
D and H have no common components.

(c) As for any s ∈ A, Hs = Xs , it follows that (H, D ∩ H) is Du Bois by
Corollary 4.4.

(d) X \ H is normal by the definition of a rational pair.

Before embarking on proving the theorem, we will first prove several lemmas
that show that our situation is simpler than it might first appear.

First we show that we may assume that A is a divisor in B.

Lemma 7.4. In order to prove Theorem 7.1 it is sufficient to assume that A is a
smooth Cartier divisor in B.

Proof. The statement is local over the base so we may assume that B is affine.
Additionally, since we only need to work in a neighborhood of a point a∈ A, we may
assume that (X, D) is Du Bois and all the fibers (Xb, Db) for all b ∈ B are Du Bois
by Corollaries 4.4 and 4.6. Choose a general hypersurface G containing A and note
that since A is smooth we may assume that G is smooth. Then the hypotheses of
the theorem are satisfied for G replacing A as well since X \ f −1(G)⊆ X \ f −1(A)
and since we already assumed that all the fibers (Xb, Db) over all points b ∈ B
were Du Bois. �

From this point forward, we will assume that B is a smooth affine scheme, A is
a smooth hypersurface in B and H = f ∗A.

Lemma 7.5. Under the assumptions of Theorem 7.1, X is normal and thus D is
also a divisor.
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Proof. Since H is reduced, every point η ∈ H has depth at least min(1, dim OH,η).
Because f : X→ B is flat, the local defining equation of H is a regular element in
OX , so any point η ∈ X that lies in H has depth at least min(2, dim OX,η). Since
X \ H is normal it is S2 and so X is S2 everywhere. Finally observe that H is
reduced, hence generically regular and X \ H is R1. As H is Cartier, this implies
that X is also R1 and therefore normal. �

Now observe that the fact that (H, D ∩ H) is Du Bois (see Remark 7.3(b)) says
something about the structure of D on X .

Lemma 7.6. With notation as in Theorem 7.1, no stratum of the snc locus of (X, D)
can be contained inside H.

Proof. Assume to the contrary that there exists a stratum Z of the snc locus of
(X, D) contained in H . Let η be the generic point of Z . By assumption η ∈ H
and (X, D) is snc at η, so OX,η is a regular ring. Let n = dim OX,η. Replace X by
Spec OX,η and H and D by their pullbacks to this local scheme (in this step we lose
projectivity, but we will not need that for now). Note that D is now Cartier and in
fact snc. Furthermore D+ H has n+ 1 irreducible components containing η, so
(X, D+H) cannot be Du Bois (or equivalently log canonical since X is Gorenstein).
But as we observed, (H, D∩ H) is a Du Bois pair. Then by Theorem 4.2 again we
see that (X, D+ H) is Du Bois as well. This is a contradiction. �

Next we setup the notation for the proof of Theorem 7.1. Let 6 denote the
non-snc locus of (X, D). Observe that as X is normal and D is a reduced divisor
by Lemma 7.5, we have that codimX (6)≥ 2.

Additionally assume that π : Y → X is a log resolution of (X, D ∪ H ∪6) that
simultaneously gives a thrifty resolution of (X, D). To see that such a π exists,
first take a thrifty resolution (U, DU ) of (X, D) and then perform a log resolution
of the scheme-theoretic preimages of H and 6 on U (while keeping the strict
transform DU snc). The result can be assumed to be a thrifty resolution of (X, D)
since the preimages of6 and H do not contain any strata of (U, DU ) by Lemma 7.6.

Set H and D to be the reduced total transforms of H and D respectively, set DY

to be the strict transform of D and set E to be (π−1(6))red.

Proof of Theorem 7.1. Clearly (X, D) is a Du Bois pair and all the fibers (Xb, Db)

are Du Bois by Corollaries 4.4 and 4.6 (possibly after shrinking the base B around
A). By Corollary 5.6, we know that OX (−D) is Cohen–Macaulay. Thus by the
local dual version of the local cohomological criterion for Cohen–Macaulayness,
R Hom •OX

(OX (−D), ω•X ) has cohomology only in one term. In particular,

R Hom •OX
(OX (−D), ω•X )'HomOX(OX (−D), ωX )[dim X ]

' ωX (D)[dim X ]. (7.6.1)



Inversion of adjunction for rational and Du Bois pairs 997

Therefore by Proposition 2.7 it suffices to show that ωX (D)' π∗ωY (DY ).
Next observe that (H, D|H ) is a Du Bois pair by Corollary 4.4 and hence by

Lemma 2.18 we see that (X, D ∪ H)= (X, D+ H) is a Du Bois pair.

Claim 7.7. With notation as above, π∗ωY (DY ∨ H ∨ E)' π∗ωY (DY + H).

Note that DY + H = DY ∨ H since the divisors have no common components.

Proof of claim. The containment ⊇ is obvious since D and H do not share a
component (see Remark 7.3(a)), so choose f ∈ π∗ωY (DY ∨ H ∨ E). We observe
that

divY ( f )+ KY + DY ∨ H ∨ E = divY ( f )+ KY + DY + H ∨ E ≥ 0.

Working on U =Y \H =π−1(X \H) we see that divU ( f )+KU+DY |U+E |U ≥ 0.
But since (X \ H, D \ H) is a rational pair,

π∗ωU (DY |U )= π∗ωU (DY |U + E)= ωX\H (D|X\H ),

so divU ( f )+ KU + DY |U + E |U ≥ 0 is equivalent to divU ( f )+ KU + DY |U ≥ 0.
Because the components of E that lie over H are also components of H , it follows
that divY ( f )+ KY + DY + H ≥ 0, proving the claim. �

By Lemma 6.1 we see that h− dim X (ω•X,D+H ) ' π∗ωY (DY ∨ H ∨ E), which
agrees with π∗ωY (DY + H) by the claim. Since (X, D + H) is a Du Bois pair,
h− dim X (ω•X,D+H )' ωX (D+ H) and so in conclusion we have that

ωX (D+ H)' π∗ωY (DY + H).

Twisting both sides by −H and using the projection formula we see that

ωX (D)' π∗ωY (DY − (π
∗H − H))⊆ π∗ωY (DY ),

since π∗H − H is effective. But π∗ωY (DY )⊆ ωX (D) for any normal pair (X, D)
and so ωX (D)' π∗ωY (DY ) as desired. �

Setting D = 0 we obtain the following.

Corollary 7.8. Let f : X → B be a flat projective family over a smooth base B
and H = f −1(0) a special fiber. Assume that H has Du Bois singularities and that
X \ H has rational singularities. Then X has rational singularities.

There is a variant of our inversion of adjunction theorem that we would also like
to prove (even in the D = 0 case).

Conjecture 7.9. Assume (X, D) is a pair with D a reduced Weil divisor. Further
assume that H is a Cartier divisor on X , not having any components in common
with D, such that (H, D∩H) is Du Bois and such that (X \H, D \H) is a rational
pair. Then (X, D) is a rational pair.



998 Sándor J. Kovács and Karl Schwede

The only place where our proof above does not work in this situation is when
we prove that OX (−D) is Cohen–Macaulay. In particular, to accomplish this
generalization, we would simply need a version of Corollary 5.6 that is not tied
to a projective or proper family. What is missing is exactly a positive answer to
Question 5.7.
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