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Abstract
Generalizing the well-known Shafarevich hyperbolicity conjecture, it has been con-
jectured by Viehweg that a quasi-projective manifold that admits a generically finite
morphism to the moduli stack of canonically polarized varieties is necessarily of log
general type. Given a quasi-projective threefold Y ◦ that admits a nonconstant map to
the moduli stack, we employ extension properties of logarithmic pluriforms to establish
a strong relationship between the moduli map and the minimal model program of Y ◦:
in all relevant cases the minimal model program leads to a fiber space whose fibration
factors the moduli map. A much-refined affirmative answer to Viehweg’s conjecture for
families over threefolds follows as a corollary. For families over surfaces, the moduli
map can often be described quite explicitly. Slightly weaker results are obtained for
families of varieties with trivial or more generally semiample canonical bundle.
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1. Introduction and main results

1.A. Introduction
Let Y ◦ be a quasi-projective manifold that admits a morphism µ : Y ◦ → M to the
moduli stack of canonically polarized varieties. Generalizing the classical Shafarevich
hyperbolicity conjecture (see [S1]), Viehweg conjectured in [V, Problem 6.3] that Y ◦ is
necessarily of log general type if µ is generically finite. Equivalently, if f ◦ : X◦ → Y ◦

is a smooth family of canonically polarized varieties, then Y ◦ is of log general type if
the variation of f ◦ is maximal, that is, Var(f ◦) = dim Y ◦. We refer to [KK] for the
relevant notions, for detailed references, and for a brief history of the problem, but see
also [KS].

Viehweg’s conjecture was confirmed for two-dimensional manifolds Y ◦ in [KK]
by using explicit surface geometry. Here, we employ recent extension theorems for
logarithmic forms to study families over threefolds. If dim Y ◦ ≤ 3, we establish a
strong relationship between the moduli map µ and the logarithmic minimal model
program of Y ◦: in all relevant cases, any logarithmic minimal model program (MMP)
necessarily terminates with a fiber space whose fibration factors the moduli map. This
allows us to prove a much-refined version of Viehweg’s conjecture for families over
surfaces and threefolds and give a positive answer to the conjecture even for families
of varieties with only semiample canonical bundle. If Y ◦ is a surface, we recover the
results of [KK] in a more sophisticated manner. In fact, going far beyond those results,
we give a complete geometric description of the moduli map in those cases when the
variation cannot be maximal.

The proof of our main result is rather conceptual and independent of the arguments
in [KK], which essentially relied on a combinatorial analysis of curve arrangements on
surfaces and on Keel-McKernan’s solution to the Miyanishi conjecture in dimension
two (see [KeMc]). Many of the techniques introduced here generalize well to higher
dimensions, most others at least conjecturally.

Throughout the present article we work over the field of complex numbers.

1.B. Main results
The main results of this article are summarized in the following theorems which
describe the geometry of families over threefolds under increasingly strong hypothesis.

THEOREM 1.1 (Viehweg’s conjecture for families over threefolds)
Let f ◦ : X◦ → Y ◦ be a smooth projective family of varieties with semiample canonical
bundle over a quasi-projective manifold Y ◦ of dimension dim Y ◦ ≤ 3. If f ◦ has
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maximal variation, then Y ◦ is of log general type. In other words,

Var(f ◦) = dim Y ◦ ⇒ κ(Y ◦) = dim Y ◦.

Remark 1.1.1
The definition of Kodaira dimension κ(Y ◦) for quasi-projective manifolds is recalled
in Notation 2.3 below.

For families of canonically polarized varieties, we can say much more. The following
much stronger theorem gives an explicit geometric explanation of Theorem 1.1.

THEOREM 1.2 (Relationship between the moduli map and the MMP)
Let f ◦ : X◦ → Y ◦ be a smooth projective family of canonically polarized varieties
over a quasi-projective manifold Y ◦ of dimension dim Y ◦ ≤ 3. Let Y be a smooth
compactification of Y ◦ such that D := Y \Y ◦ is a divisor with simple normal crossings.

Then any run of the MMP of the pair (Y, D) will terminate in a Kodaira or Mori
fiber space whose fibration factors the moduli map birationally.

Remark 1.2.1
If κ(Y ◦) = 0 in the setup of Theorem 1.2, then any run of the MMP will terminate
in a Kodaira fiber space that maps to a single point. Since this map to a point factors
the moduli map birationally, Theorem 1.2 asserts that the family f ◦ is necessarily
isotrivial if κ(Y ◦) = 0.

Remark 1.2.2
Neither the compactification Y nor the MMP discussed in Theorem 1.2 is unique.
When running the MMP, one often needs to choose the extremal ray that is to be
contracted.

In the setup of Theorem 1.2, if κ(Y ◦) ≥ 0, then the MMP terminates in a Kodaira fiber
space whose base has dimension κ(Y ◦). The following refined version of Viehweg’s
conjecture is therefore an immediate corollary of Theorem 1.2.

COROLLARY 1.3 (Refined Viehweg’s conjecture for families over threefolds [KK,
Conjecture 1.6])
Let f ◦ : X◦ → Y ◦ be a smooth projective family of canonically polarized varieties
over a quasi-projective manifold Y ◦ of dimension dim Y ◦ ≤ 3. Then either
(i) κ(Y ◦) = −∞ and Var(f ◦) < dim Y ◦, or
(ii) κ(Y ◦) ≥ 0 and Var(f ◦) ≤ κ(Y ◦). �
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As a further application of Theorem 1.2, we describe the family f ◦ : X◦ → Y ◦

explicitly if the base manifold Y ◦ is a surface and the variation is not maximal.

THEOREM 1.4 (Description of the family in case of Var(f ◦) = 1)
Let f ◦ : X◦ → Y ◦ be a smooth projective family of canonically polarized varieties
over a quasi-projective manifold Y ◦ of dimension dim Y ◦ = 2. If κ(Y ◦) < 2 and
Var(f ◦) = 1, then one of the following holds.
(1.4.1) κ(Y ◦) = 1, and there exists an open set U ⊆ Y ◦ and a Cartesian diagram

of one of the following two types

Ũ

γ

étale

��

π̃

elliptic

fibration ��

U
π

elliptic

fibration��

Ṽ
étale

�� V

or

Ũ

γ

étale

��
π̃

smooth

algebraic

C
∗-bundle

��

U
π

smooth

algebraic

C
∗-bundle��

Ṽ V

such that f ◦
Ũ

: X◦ ×U Ũ → Ũ is the pullback of a family over Ṽ , or
(1.4.2) κ(Y ◦) = −∞, and there exists an open set U ⊆ Y ◦ of the form U =

V × A1 such that X◦∣∣
U

is the pullback of a family over V .

To complete the description of families with nonmaximal variation over two-
dimensional bases, we include the following well-known statement.

THEOREM 1.5 (Description of the family in case of Var(f ◦) = 0)
Let f ◦ : X◦ → Y ◦ be a smooth projective family of canonically polarized varieties
over a quasi-projective manifold Y ◦. If Var(f ◦) = 0, then there exists an open set
U ⊆ Y ◦ such that X◦∣∣

U
is isotrivial, and further there exists a finite étale cover

Ũ → U such that f ◦
Ũ

: X◦ ×U Ũ → Ũ is trivial. �

Remark 1.5.1
Theorem 1.5 is not a deep result. Unlike Theorems 1.1–1.4, it follows from simple
abstract arguments, as illustrated in the proof of Lemma 7.4 below.

1.C. Outline of proof, outline of article
The main results of this article are shown in Sections 8–10, where we consider the
cases κ(Y ◦) = −∞, κ(Y ◦) = 0, and κ(Y ◦) > 0 separately, the most difficult case
being when κ(Y ◦) = 0. To keep the proofs readable, we have chosen to present many
of the more technical results separately in the preparatory Sections 2–7. These may
be of some independent interest. The reader who is primarily interested in a broad
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outline of the argument may likely want to take the technicalities on faith and move
directly to Sections 8–10 on the first reading.

Section 2 introduces notation used in the remainder of this article. In Section 3,
we discuss certain classes of singularities that appear in the MMP and recall the
Bogomolov vanishing result for log canonical threefolds. The standard construction
of the global index-one cover for good minimal models of Kodaira dimension zero is
recalled and summarized in Section 4.

Viehweg and Zuo have shown that the base of a family of positive variation often
carries an invertible sheaf of pluridifferentials whose Kodaira-Iitaka dimension is at
least the variation of the family. These Viehweg-Zuo sheaves, which play a crucial
role in our arguments, are introduced and discussed in Section 5. The existence of
a Viehweg-Zuo sheaf of positive Kodaira-Iitaka dimension has strong consequences
for the geometry of the underlying space: these are discussed in Section 6. We end
the preparatory part of the paper with Section 7, where we discuss how families
f ◦ : X◦ → Y ◦ over a fibered base π◦ : Y ◦ → C◦ that are isotrivial over the π◦-fibers
often come from a family over C◦, at least after passing to an étale cover.

Part I. Techniques

2. Notation and conventions

2.A. Reflexive tensor operations
When dealing with sheaves that are not necessarily locally free, we frequently use
square brackets to indicate taking the reflexive hull.

Notation 2.1 (Reflexive tensor product)
Let Z be a normal variety, and let A be a coherent sheaf of OZ-modules. Given a
number n ∈ N, set A[n] := (A⊗n)∗∗. In a similar vein, we write �

[p]
Z := (

�
p

Z

)∗∗
and

�
[p]
Z (log �) := (

�
p

Z(log �)
)∗∗

whenever � ⊂ Z is a reduced divisor. Likewise, if
π : Z′ → Z is a morphism of normal varieties, set π [∗](A) := (

π∗(A)
)∗∗

.
If A is reflexive of rank one, we say that A is Q-Cartier if there exists a number

n such that A[n] is invertible.

Remark 2.1.1
Recall from [K1, Section 16] that a Weil divisorial sheaf on a normal variety Z is a
reflexive subsheaf L ⊆ K(Z) of rank one, where K is the sheaf of total quotient rings
introduced in [H, p. 176f]. These sheaves are in one-to-one correspondence with Weil
divisors, and addition of Weil divisors corresponds to reflexive tensor products. This
justifies Notation 2.1, where we extend the notion of Q-Cartier to reflexive sheaves.
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We later discuss the Kodaira dimension of singular pairs and the Kodaira-Iitaka
dimension of reflexive sheaves on normal spaces. Since this is perhaps not quite
standard, we recall the definition here.

Notation 2.2 (Kodaira-Iitaka dimension of a sheaf)
Let Z be a normal projective variety, and let A be a reflexive sheaf of rank one on Z.
If h0

(
Z, A[n]

) = 0 for all n ∈ N, then we say that A has Kodaira-Iitaka dimension
κ(A) := −∞. Otherwise, set

M := {
n ∈ N

∣∣h0(Z, A[n]) > 0
}
,

recall that the restriction of A to the smooth locus of Z is locally free and consider
the natural rational mapping

φn : Z ��� P
(
H 0(Z, A[n])∗

)
, ∀n ∈ M.

The Kodaira-Iitaka dimension of A is then defined as

κ(A) := max
n∈M

(
dim φn(Z)

)
.

Notation 2.3 (Kodaira dimension of a quasi-projective variety)
If Z◦ is a quasi-projective manifold and if Z is a smooth compactification such that
� := Z \ Z◦ is a divisor with at most simple normal crossings, define the Kodaira
dimension of Z◦ as κ(Z◦) := κ

(
OZ(KZ + �)

)
. Recall the standard fact that this

number is independent of the choice of the compactification.

2.B. Reduced pairs
The following fundamental definitions of logarithmic geometry are used in the re-
mainder of the article.

Definition 2.4 (Reduced pair)
A reduced pair or logarithmic pair (Z, �) consists of a normal variety Z and a
reduced, but not necessarily irreducible Weil divisor � ⊂ Z. A morphism of reduced
pairs, written as γ : (Z̃, �̃) → (Z, �), is a morphism γ : Z̃ → Z such that
γ −1(�) = �̃ set-theoretically.

Definition 2.5 (Snc pairs)
Let (Z, �) be a reduced pair, and let z ∈ Z be a point. We say that (Z, �) is snc at
z, if there exists a Zariski open neighborhood U of z such that U is smooth and such
that � ∩ U has only simple normal crossings. The pair (Z, �) is snc if it is snc at all
points.
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Given a reduced pair (Z, �), let (Z, �)reg be the maximal open set of Z where
(Z, �) is snc, and let (Z, �)sing be its complement, with the induced reduced sub-
scheme structure.

Definition 2.6 (Log resolution)
A log resolution of (Z, �) is a birational morphism of pairs π : (Z̃, �̃) → (Z, �) such
that the π -exceptional set Exc(π) is of pure codimension one, such that

(
Z̃, supp(�̃+

Exc(π))
)

is snc and such that π is isomorphic along (Z, �)reg.

If (Z, �) is a reduced pair, a log resolution is known to exist (see [K2]).

2.C. Minimal model program
We use the definitions and apply the techniques of the MMP frequently, sometimes
without explicit references. On these occasions, the reader is referred to [KM] for
background and details.

In particular, we use the fact that the MMP asserts the existence of extremal
contractions (see [KM, Theorem 3.7 (3.31)]) on nonminimal varieties. These extremal
contractions come in three different kinds: divisorial, small, and of fiber type. The first
gives a birational morphism that contracts a divisor, the second leads to a flip (see [KM,
Definition 2.8]), and the third gives a fiber space. Recall that a fiber space π : Y → Z

is called proper if the general fiber F is of dimension 0 < dim F < dim Y . We call
an extremal contraction of fiber type nontrivial if the resulting fiber space is proper.
Finally, recall that extremal contractions of divisorial or fiber type have relative Picard
number one (see [KM, Proposition 3.36]).

Further note that since we are working in dimension at most three, we do not need
to appeal to the recent phenomenal advances in the MMP by Hacon-McKernan and
Birkar-Cascini-Hacon-McKernan (see [C], [BCHM]). However, these results give us
reasonable hope that the methods here may extend to all dimensions.

3. Singularities of the MMP

3.A. Dlt singularities of index one
If (Z, �) is an snc pair of dimension dim Z ≤ 3, the MMP yields a birational map
to a pair (Zλ, �λ), where Zλ is Q-factorial and where (Zλ, �λ) is dlt (see [KM,
Definition 2.37] for the definition of dlt). We remark for later use that dlt pairs of
index one are snc in codimension two.

LEMMA 3.1
Let (Z, �) be a dlt pair of index one, that is, a pair where KZ + � is Cartier. Then

codimZ

(
(Z, �)sing ∩ �

) ≥ 3. (3.1.1)
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Remark 3.1.2
It is important to note that (Z, �) has simple normal crossings away from (Z, �)sing,
whereas having only normal crossings would give a much weaker result. This, for
example, implies that the components of � are smooth in codimension one, which is
not true for a boundary with only normal crossings (see [KM, Remark 2.38]).

Proof
We prove the statement by induction on the dimension.

Start of induction. First assume that dim Z = 2. Then by definition of dlt singularities
(see [KM, Definition 2.37]), there exists a finite subset T ⊂ Z such that (Z, �)sing ⊆ T

and such that Z is log terminal at the points of T ; that is, the discrepancy of any divisor
E that lies over T is a(E, Z, �) > −1. But since KZ +� is Cartier, this number must
be an integer, so a(E, Z, �) ≥ 0. This shows that (Z, �) is canonical at the points of
T . Therefore, it follows by [KM, Theorem 4.5] that T ∩ � = ∅. In particular, (3.1.1)
holds.

Inductive step. Now let Z be of arbitrary dimension, and let H ⊆ Z be a general
hyperplane section. Set �H := � ∩ H . Since a Cartier divisor being smooth at a
point implies that the ambient space is also smooth at that point, it follows that for any
z ∈ H , the pair (H, �H ) is snc at z if and only if (Z, �) is snc at z. In other words,
(H, �H )sing = (Z, �)sing ∩ H and

codimH

(
(H, �H )sing ∩ �H

) = codimZ

(
(Z, �)sing ∩ �

)
.

Notice further that (H, �H ) is dlt of index one. The claim thus follows by
induction. �

3.B. Dlc singularities
Given an snc pair of Kodaira dimension zero, the MMP terminates with a dlt pair
(Z, �), where � is Q-Cartier and where KZ + � is torsion. Many of the arguments
in Section 9 are based on the following observation.

If � �= ∅ and if ε ∈ Q+ sufficiently small, then
(
Z, (1 − ε)�

)
is a dlt pair

of Kodaira dimension −∞. Therefore, it admits at least one further
extremal contraction.

Using the thinned down boundary to push the MMP further, we end with a reduced
pair (Z′, �′) that might no longer be dlt, but still has manageable singularities.
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Definition 3.2 (Dlc pairs)
A reduced pair (Z′, �′) is called dlc if (Z′, �′) is log canonical, �′ is Q-Cartier, and
for any sufficiently small positive number ε ∈ Q+, the pair

(
Z′, (1 − ε)�′) is dlt.

Dlc singularities are of interest to us because sheaves of reflexive differentials on
dlc surface pairs enjoy good pullback properties (see Theorem 5.3 below). For future
reference, we recall the relationship between dlc and another notion of singularity.

Definition 3.3 (Boundary-lc pair [GKK, Definition 3.6])
A reduced pair (Z, �) is called boundary-lc if (Z, �) is log canonical and if (Z\�, ∅)
is log terminal.

Remark 3.4 (Relationship between dlc and boundary-lc pairs)
By definition, a dlc pair (Z, �) is boundary-lc. If dim Z = 2, then this implies that
(Z, �) is finitely dominated by analytic snc pairs (see [GKK, Lemma 3.9]). In other
words, every point z ∈ Z admits an analytic neighborhood and a finite, surjective
morphism of reduced pairs (Ũ , D) → (U, �∩U ), where Ũ is smooth and where the
divisor D has only simple normal crossings.

3.C. Bogomolov-Sommese vanishing on singular spaces
If (Z, �) is an snc pair, the well-known Bogomolov-Sommese vanishing theorem as-
serts that for any number 1 ≤ p ≤ dim Z, any invertible subsheaf C ⊆ �

p

Z(log �) has
Kodaira-Iitaka dimension at most p. (See [EV, Section 6] for a thorough discussion.)
Many of the arguments in this article are deeply based on the fact that similar results
also hold for reflexive sheaves of differentials on pairs with dlc, or more generally log
canonical singularities.

The formulation of the general result we expect to be true is the following.

CONJECTURE 3.5 (Bogomolov-Sommese vanishing for log canonical varieties)
Let (Z, �) be a reduced pair, and assume that (Z, �) is log canonical. Let A ⊆
�

[p]
Z (log �) be any reflexive subsheaf of rank one. If A is Q-Cartier, then κ(A) ≤ p.

At this time, Conjecture 3.5 has been verified with the additional assumption dim Z ≤
3 in [GKK] (see also [GKKP]).

THEOREM 3.6 (Bogomolov-Sommese vanishing for log canonical threefolds [GKK,
Theorem 1.4])
Let (Z, �) be a reduced pair of dimension dim Z ≤ 3, and assume that (Z, �) is
log canonical. Let A ⊆ �

[p]
Z (log �) be any reflexive subsheaf of rank one. If A is

Q-Cartier, then κ(A) ≤ p. �
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4. Global index-one covers for varieties of Kodaira dimension zero
In this section, we consider good minimal models of pairs with Kodaira dimension
zero. We briefly recall the main properties of the global index-one cover, as described
in [KM, Definition 2.52] or [R, Section 3.6f].

PROPOSITION 4.1
Let (Z, �) be a reduced pair. Assume that the log canonical divisor KZ + � is
torsion (in particular, that it is Q-Cartier); that is, assume that there exists a number
m ∈ N+ such that OZ

(
m · (KZ + �)

) ∼= OZ . Then there exists a morphism of pairs
η : (Z′, �′) → (Z, �), called the index-one cover, with the following properties.
(4.1.1) The morphism η is finite. It is étale wherever Z is smooth. In particular,

η is étale in codimension one.
(4.1.2) KZ′ + �′ is Cartier and OZ′(KZ′ + �′) � OZ′ .
(4.1.3) If (Z, �) is dlt, then (Z′, �′) is dlt as well. If, furthermore, z′ ∈ Z′ is a

point where (Z′, �′) is not snc, then (Z′, �′) is canonical at z′.

Proof
Properties (4.1.1) and (4.1.2) follow directly from the construction (see [KM, 2.50–
53]). To prove (4.1.3), assume for the remainder of the proof that (Z, �) is dlt. We need
to show that (Z′, �′) is dlt as well. Observe that if z′ ∈ Z′ is a point such that (Z, �)
is snc at η(z′), then (Z′, �′) is snc at z′. The definition of dlt, together with the fact
that discrepancies only increase under finite morphisms (see [KM, Proposition 5.20]),
then immediately yields the claim.

Finally, if z′ ∈ Z′ is any point where (Z′, �′) is not snc, then the discrepancy of
any divisor E that lies over z′ is a(E, Z′, �′) > −1. But, since KZ′ + �′ is Cartier,
this number must be an integer, so a(E, Z′, �′) ≥ 0. It follows that the pair (Z′, �′)
is canonical at z′; hence, (4.1.3) is shown. �

COROLLARY 4.2
Under the conditions of Proposition 4.1, if γ : (Z̃, �̃) → (Z′, �′) is any log resolu-
tion, then κ(KZ̃ + �̃) = 0.

Proof
Since (Z′, �′) is canonical wherever it is not snc, the definition of canonical singular-
ities (see [KM, Notation 2.26, Definition 2.34]), implies that KZ̃ + �̃ is represented
by an effective, γ -exceptional divisor. �
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5. Viehweg-Zuo sheaves

5.A. Definition of Viehweg-Zuo sheaves
In the setup of Theorem 1.2 and in a few other cases, Viehweg and Zuo have shown
in [VZ1, Theorem 1.4] that there exists a number n � 0 and an invertible sheaf
A ⊆ Symn �1

Y (log D) whose Kodaira-Iitaka dimension is at least the variation of f ◦;
that is, κ(A) ≥ Var(f ◦). The existence of a sheaf like this is a cornerstone of many
of our arguments.

For technical reasons, it turns out to be more convenient to view A as a subsheaf
of the tensor product via the injection Symn �1

Y (log D) ↪→ (
�1

Y (log D)
)⊗n

. It is also
advantageous to extend the study of these sheaves on singular varieties, and then it is
natural to allow rank one reflexive sheaves instead of restricting to line bundles. These
considerations give rise to the following definition.

Definition 5.1 (Viehweg-Zuo sheaf)
Let (Z, �) be a reduced pair. A reflexive sheaf A of rank one is called a Viehweg-Zuo
sheaf if there exists a number n ∈ N and an embedding A ⊆ (

�1
Z(log �)

)[n]
.

5.B. Pushing forward and pulling back
We often need to compare Viehweg-Zuo sheaves on different birational models of a
pair. The following elementary statement shows that the pushforward of a Viehweg-
Zuo sheaf under a birational map of pairs is often again a Viehweg-Zuo sheaf.

LEMMA 5.2 (Pushforward of Viehweg-Zuo sheaves)
Let (Z, �) be a reduced pair, and assume that there exists a Viehweg-Zuo sheaf
A ⊆ (

�1
Z(log �)

)[n]
. If λ : Z ��� Z′ is a birational map whose inverse does not

contract any divisor, if Z′ is normal, and if �′ is the (necessarily reduced) cycle-
theoretic image of �, then there exists a Viehweg-Zuo sheaf A′ ⊆ (

�1
Z′(log �′)

)[n]
of

Kodaira-Iitaka dimension κ(A′) ≥ κ(A).

Proof
The assumption that λ−1 does not contract any divisors and the normality of Z′

guarantee that λ−1 : Z′ ��� Z is a well-defined embedding over an open subset
U ⊆ Z′ whose complement has codimension codimZ′(Z′ \U ) ≥ 2 (see Zariski’s main
theorem in [H, Theorem V 5.2]). In particular, �′∣∣

U
= (

λ−1
∣∣

U

)−1
(�). Let ι : U ↪→ Z′

denote the inclusion, and set A′ := ι∗
(
(λ−1

∣∣
U
)∗A

)
. We obtain an inclusion of sheaves,

A′ ⊆ (
�1

Z′(log �′)
)[n]

. By construction, we have that h0(Z′, A′[m]) ≥ h0(Z, A[m])
for all m > 0; hence, κ(A′) ≥ κ(A). �
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If Z is a singular space with desingularization π : Z̃ → Z, it follows almost by
definition that any differential σ ∈ H 0

(
Z, �

p

Z

)
pulls back to a differential π∗(σ ) ∈

H 0
(
Z̃, �

p

Z̃

)
[H, II Proposition 8.11]. However, if σ is a reflexive differential, that

is, if σ ∈ H 0
(
Z, �

[p]
Z

)
, it is not all clear (and generally false) that π∗(σ ) can be

interpreted as a differential on Z̃. Likewise, if (Z, �) is a reduced pair with log
resolution π : (Z̃, �̃) → (Z, �) and if A ⊆ (

�1
Z(log �)

)[n]
is a Viehweg-Zuo sheaf,

it is generally not possible to interpret the reflexive pullback π [∗](A) as a Viehweg-Zuo
sheaf on (Z̃, �̃). However, if the pair (Z, �) is log canonical, the extension theorems
for differential forms studied in [GKK] show that an interpretation of π [∗](A) as a
Viehweg-Zuo sheaf often exists. The following theorem is an immediate consequence
of Remark 3.4 and [GKK, Theorem 8.1]. It summarizes the results of [GKK] that are
relevant for our arguments.

THEOREM 5.3 (Extension of Viehweg-Zuo sheaves [GKK, Theorem 8.1])
Let (Z, �) be a dlc pair of dimension dim Z ≤ 2, and assume that there exists a
Viehweg-Zuo sheaf A with inclusion ι : A ↪→ (

�1
Z(log �)

)[n]
. If π : (Z̃, �̃) →

(Z, �) is a log resolution and if

E := largest reduced divisor contained in π−1(�) ∪ Exc(π),

then there exists an invertible Viehweg-Zuo sheaf C ⊆ (
�1

Z̃
(log E)

)[n]
with the fol-

lowing property. For an arbitrary m ∈ N, the inclusion pulls back to give a sheaf
morphism that factors through C⊗m,

ῑ[m] : π [∗](A[m]) ↪→ C⊗m ⊆ (
�1

Z̃
(log E)

)[m·n]
,

where π [∗] is the reflexive pullback introduced in Notation 2.1 above. In particular,
κ(C ) ≥ κ(A). �

5.C. The reduction lemma
Like regular differentials, logarithmic differentials come with a normal bundle, and
the corresponding restriction sequences (see [EV, Properties 2.3], [KK, Lemma 2.13],
and their respective references). Since Viehweg-Zuo sheaves live in tensor products
of the sheaf of differentials, this does not immediately translate into a sequence for a
given Viehweg-Zuo sheaf. This makes the following lemma useful in the remainder
of this article.

LEMMA 5.4 (Reduction lemma)
Let Z be an irreducible variety, let E , F , G , H be locally free sheaves, and let A be
a rank one torsion-free sheaf on Z. Assume that there exists a short exact sequence

0 −→ F −→ E −→ G −→ 0. (5.4.1)
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Then
(5.4.2) If there exists an inclusion A ↪→ E , then either A ↪→ F or A ↪→ G .
(5.4.3) If for some m ∈ N, there exists an inclusion A ↪→ H ⊗ E⊗m, then there

exists a p ∈ N, 0 ≤ p ≤ m such that A ↪→ H ⊗ F ⊗p ⊗ G ⊗m−p.
(5.4.4) If for some m ∈ N, there exists an inclusion A ↪→ E⊗m and F � OZ

(respectively, G � OZ), then there exists a p ∈ N, 0 ≤ p ≤ m such that
A ↪→ G ⊗p (respectively, A ↪→ F ⊗p).

Proof
Suppose that A ↪→ E , and let K = ker[A → G ] ⊆ A. If A → G is injective at
the general point of Z, then K is a torsion sheaf and hence zero, so A ↪→ G . Since
rk A = 1, if A → G is not injective at the general point, then it is zero. However,
then A

/
K ⊆ G is a torsion sheaf and hence zero, so A ↪→ F . This proves (5.4.2).

Taking H = OZ , it is easy to see that (5.4.4) is a special case of (5.4.3). To prove
(5.4.3), we use induction.

Start of induction. If m = 1, assertion (5.4.3) follows from applying (5.4.2) to the
short exact sequence obtained by tensoring (5.4.1) with H ,

0 → H ⊗ F → H ⊗ E → H ⊗ G → 0.

Note that if m = 1, then either p = 0 or m − p = 0.

Induction step. Now assume that the statement is true for all numbers m′ < m.
Consider the short exact sequence obtained by tensoring (5.4.1) with H ⊗ E⊗(m−1),

0 → H ⊗ F ⊗ E⊗(m−1) → H ⊗ E⊗m → H ⊗ G ⊗ E⊗(m−1) → 0.

Applying (5.4.2) for this short exact sequence yields that either A ↪→ (H ⊗ F ) ⊗
E⊗(m−1) or A ↪→ (H ⊗ G ) ⊗ E⊗(m−1). Setting H ′ := H ⊗ F or H ′ := H ⊗ G ,
respectively, and applying the induction hypothesis to the sequence

0 → H ′ ⊗ F ⊗ E⊗(m−2) → H ′ ⊗ E⊗(m−1) → H ′ ⊗ G ⊗ E⊗(m−2) → 0,

we obtain a number p ∈ N, 0 ≤ p ≤ m − 1 such that either A ↪→ (H ⊗ F ) ⊗
F ⊗p ⊗ G ⊗m−1−p or A ↪→ (H ⊗ G ) ⊗ F ⊗p ⊗ G ⊗m−1−p. This proves (5.4.3). �

6. Viehweg-Zuo sheaves on minimal models
The existence of a Viehweg-Zuo sheaf of positive Kodaira-Iitaka dimension clearly has
consequences for the geometry of the underlying space. In case the underlying space
is the end product of the MMP, we summarize the two most important consequences
below: when κ = −∞ and when κ = 0.
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6.A. The Picard number of minimal models with nonpositive Kodaira dimension
The following theorem is used later to show that a given pair is a Mori-Fano fiber
space. This turns out to be a crucial step in the proof of our main results.

THEOREM 6.1
Let (Z, �) be a log canonical reduced pair, where Z is a projective Q-factorial variety
of dimension at most three. Assume that the following holds:
(6.1.1) there exists a Viehweg-Zuo sheaf A ⊆ (

�1
Z(log �)

)[n]
of positive

Kodaira-Iitaka dimension, and
(6.1.2) the antilog canonical divisor −(KZ + �) is nef.
Then the Picard number of Z is greater than one, ρ(Z) > 1.

Proof
We argue by contradiction and assume that ρ(Z) = 1. Let C ⊆ Z be a general
complete intersection curve. Since C is general, it avoids the singular locus (Z, �)sing.
By (6.1.2), the restriction �1

Z(log �)
∣∣

C
is a vector bundle of nonpositive degree

deg �1
Z(log �)

∣∣
C

= (KZ + �) · C ≤ 0. (6.1.3)

We claim that the restriction �1
Z(log �)

∣∣
C

is not anti-nef, that is, that the dual
vector bundle TZ(− log �)

∣∣
C

is not nef. Equivalently, we claim that �1
Z(log �)

∣∣
C

admits an invertible subsheaf of positive degree. Indeed, if �1
Z(log �)

∣∣
C

was anti-

nef, then none of its products
(
�1

Z(log �)
∣∣

C

)[n]
could contain a subsheaf of positive

degree. However, since C is general, the restriction of the Viehweg-Zuo sheaf to C is
a locally free subsheaf A

∣∣
C

⊆ (
�1

Z(log �)
∣∣

C

)[n]
of positive Kodaira-Iitaka dimension,

and hence of positive degree. This proves the claim.
As a consequence of the claim and of (6.1.3), we obtain that �

[1]
Z (log �) is not

semistable, and that if B ⊆ �
[1]
Z (log �) denotes the maximal destabilizing subsheaf,

then its slope µ(B) is positive. The assumption that ρ(Z) = 1 and the Q-factoriality
of Z then guarantee that det B is a Q-Cartier and Q-ample sheaf of p-forms. Notice
that by its choice the rank of B has to be strictly less than the rank of �

[1]
Z (log �);

hence, p < dim Z. However, this leads to a contradiction. Because B is Q-ample,
it follows that κ(det B) = dim Z, violating the Bogomolov-Sommese vanishing
theorem (Theorem 3.6). �

In the case when Z is a surface, this theorem immediately gives a criterion to guarantee
that Viehweg-Zuo sheaves of positive Kodaira-Iitaka dimension cannot exist.
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COROLLARY 6.2
Let (Z, �) be a projective reduced dlt pair of dimension two, and assume that −(KZ +
�) is Q-ample. If A is any Viehweg-Zuo sheaf on Z, then its Kodaira-Iitaka dimension
is nonpositive; that is, κ(A) ≤ 0.

Proof
First recall from [KM, Proposition 4.11] that Z is Q-factorial. The MMP then yields
a morphism λ : (Z, �) → (Zλ, �λ) to a Q-Cartier model that does not admit any
divisorial contractions. Note that the MMP for surfaces does not involve flips. Let Aλ

be the associated Viehweg-Zuo sheaf on Zλ, as given by Lemma 5.2. It suffices to
show that κ(Aλ) ≤ 0.

To this end, observe that −(KZλ
+�λ) is still Q-ample. Theorem 6.1 and the cone

theorem [KM, Theorem 3.7] then imply that there are at least two distinct contractions
of fiber type, say π1 : Zλ → C1 and π2 : Zλ → C2. If F is a general fiber of π1,
then F ∼= P1, the fiber F is entirely contained inside the snc locus of (Zλ, �λ), and F

intersects the boundary divisor �λ transversely in no more than one point. It follows
from standard short exact sequences (see [KK, Lemma 2.13]) that

�
[1]
Zλ

(log �λ)|F ∼= OP1 ⊕ OP1 (a), with a ≤ 0.

In particular, �
[1]
Zλ

(log �λ)|F is anti-nef, and Aλ|F is necessarily trivial. But the same
holds for the restriction of Aλ to general fibers of π2. It follows that κ(Aλ) ≤ 0, as
claimed. �

6.B. Viehweg-Zuo sheaves on good minimal models for varieties of logarithmic
Kodaira dimension zero

Recall that a log canonical pair (Z, �) is called a good minimal model if there exists
a number m such that m(KZ + �) is Cartier and has a base-point-free linear system.
If (Z, �) is a good minimal model of Kodaira dimension zero, the existence of a
Viehweg-Zuo sheaf of positive Kodaira-Iitaka dimension implies that Z is uniruled.
This is shown next.

THEOREM 6.3
Let (Z, �) be a reduced pair where Z is projective. Assume that the following holds:
(6.3.1) there exists a Viehweg-Zuo sheaf A ⊆ (

�1
Z(log �)

)[n]
of positive

Kodaira-Iitaka dimension, and
(6.3.2) the log canonical divisor KZ + � is Q-Cartier and numerically trivial.
Then Z is uniruled.
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Proof
We argue by contradiction and assume that Z is not uniruled. If π : (Z̃, �̃) → (Z, �)
is any log resolution, this is equivalent to assuming that KZ̃ is pseudoeffective (see
[BDPP, Corollary 0.3]). (See also [L, Section 11.4.C].) Again by [BDPP, Theo-
rem 0.2], this is in turn equivalent to the assumption that KZ̃ · C̃ ≥ 0 for all moving
curves C̃ ⊂ Z̃.

As a first step, we show that the assumption implies that the (Weil) divisor �

is zero. To this end, choose a polarization of Z and consider a general complete
intersection curve C ⊂ Z. Because C is a complete intersection curve, it intersects
the support of the effective divisor � nontrivially if the support is not empty. By the
generality of the complete intersection, the curve C is contained in the snc locus of
(Z, �) and avoids the indeterminacy locus of π−1. Its preimage C̃ := π−1(C) is then
a moving curve in Z̃ which intersects �̃ positively if and only if the Weil divisor � is
not zero. But

0 = (KZ + �)︸ ︷︷ ︸
num. triv.

· C = (KZ̃ + �̃) · C̃ = KZ̃ · C̃︸ ︷︷ ︸
≥0, as C̃ is moving

+ �̃ · C̃︸ ︷︷ ︸
≥0, as C̃ �⊆ �̃

,

so �̃ · C̃ = 0, and then � = ∅ as claimed. Combined with Assumption (6.3.2),
this implies that the canonical divisor KZ is itself numerically trivial. The restrictions
�1

Z

∣∣
C

and TZ

∣∣
C

are locally free sheaves of degree zero, and so is the product
(
�1

Z

∣∣
C

)⊗n
.

On the other hand, the restriction A
∣∣

C
⊆ (

�1
Z

∣∣
C

)⊗n
has positive degree. In particular,(

�1
Z

∣∣
C

)[n]
is not semistable. Since products of semistable vector bundles are again

semistable (see [HL, Corollary 3.2.10]), this implies that �1
Z

∣∣
C

and TZ

∣∣
C

are likewise
not semistable. In particular, the maximal destabilizing subsheaf of TZ

∣∣
C

is semistable
and of positive degree, hence ample. In this setup, a variant (see [KST, Corollary 5])
of Miyaoka’s uniruledness criterion (see [Mi, Corollary 8.6]) applies to give the
uniruledness of Z, contrary to our assumption. For more details on this criterion, see
the survey [KS]. �

As a corollary, we obtain a criterion to guarantee that the boundary is not empty. This
allows us to apply the ideas in Section 3.B above.

COROLLARY 6.4
In the setup of Theorem 6.3, if (Z, �) is dlc, then the boundary divisor � is not empty.

Proof
We argue by contradiction and assume � = ∅. By the definition of dlc, the pair
(Z, ∅) is then dlt. Let η : (Z′, ∅) → (Z, ∅) be the index-one cover discussed in
Proposition 4.1. Since η is finite and étale in codimension one, there obviously exists
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an injection

η[∗](A) ⊆ (�1
Z′)[n].

An application of Theorem 6.3, using the sheaf η[∗](A) as a Viehweg-Zuo sheaf on
(Z′, ∅) then shows that Z′ is uniruled. If Z̃ → Z′ is a resolution, then Z′ is likewise
uniruled. But Corollary 4.2 would then assert that κ(KZ̃) = 0, in contradiction to
uniruledness. �

7. Unwinding families
We consider projective families g : Y → T , where the base T itself admits a fibration
� : T → B such that g is isotrivial on all �-fibers. It is of course generally false
that g is then the pullback of a family defined over B. However, we show that in
some situations the family g does become a pullback after a suitable base change.
Most results here are known to experts. We include full statements and proofs for the
reader’s convenience. We do not claim originality for any of the statements in this
section. The ideas here already appear in [Mu, Section 3], [CHM, Section 5.2], and in
the authoritative reference [DG, Exposé IV].

We use the following notation for fibered products that appear in our setup.

Notation 7.1
Let T be a scheme, let Y and Z be schemes over T , and let h : Y → Z be a T -
morphism. If t ∈ T is any point, let Yt and Zt denote the fibers of Y and Z over t .
Furthermore, let ht denote the restriction of h to Yt . More generally, for any T -scheme
T̃ , let

hT̃ : Y ×T T̃︸ ︷︷ ︸
=:YT̃

→ Z ×T T̃︸ ︷︷ ︸
=:ZT̃

denote the pullback of h to T̃ . The situation is summarized in the following commu-
tative diagram.

YT̃

���
��

��
��

�

��

hT̃

�� ZT̃

����
��

��
��

��
Y

���
��

��
��

� h

�� Z

����
��

��
��

T̃ �� T .

The setup of the current section is then formulated as follows.
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ASSUMPTION 7.2
For the remainder of this section, consider a sequence of morphisms between algebraic
varieties

Y
g

smooth, projective

�� T
�

smooth, rel. dim.=1
quasi-projective

�� B,

where T and B are irreducible, g is a smooth projective family, and � is smooth
quasiprojective of relative dimension one. Assume further that for all b ∈ B, there
exists a smooth variety Fb such that for all t ∈ Tb, there exists an isomorphism
Yt � Fb.

7.A. Relative isomorphisms of families over the same base
To start, recall the well-known fact that an isotrivial family of varieties of general type
over a curve becomes trivial after passing to an étale cover of the base. As we are not
aware of an adequate reference, we include a proof here.

LEMMA 7.3
Let b ∈ B and assume that Aut(Fb) is finite. Then the natural morphism ι : I =
IsomTb

(Yb, Tb × Fb) → Tb is finite and étale. Furthermore, pullback to I yields an
isomorphism of I -schemes YI � I × Fb.

Proof
Consider the Tb-scheme

H := HilbTb

(
Yb ×Tb

(Tb × Fb)
) � HilbTb

(
Yb × Fb

)
.

By Assumption 7.2, Ht � Hilb(Fb × Fb) for all t ∈ Tb. Similarly, It � Aut(Fb);
hence, I is one-dimensional, length(It ) is constant on Tb, and I → Tb is dominant.
Since I is open in H , the closure of I in H , denoted by HI , consists of a union
of components of H . Therefore, HI is also one-dimensional, and since HI → T is
dominant, it is quasifinite.

Recall that H → Tb is projective, so HI → Tb is also projective, hence finite.
Since H → Tb is flat, length(HI

t ) is constant. Furthermore, I ⊆ HI is open, so HI
t =

It and, hence, length(HI
t ) = length(It ) for a general t ∈ Tb. However, we observed

above that length(It ) is also constant, so we must have that length(HI
t ) = length(It )

for all t ∈ Tb, and since I ⊆ HI , this means that I = HI and ι : I → Tb is finite and
unramified, hence étale.
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To prove the global triviality of YI , consider IsomI (YI , I ×Fb). Recall that taking
Hilb and Isom commutes with base change, and so we obtain an isomorphism

IsomI (YI , I × Fb) � I ×Tb
IsomTb

(Yb, Tb × Fb) � I ×Tb
I.

This scheme admits a natural section over I , namely its diagonal, which induces an
I -isomorphism between YI and I × Fb. �

Lemma 7.3 above can be used to compare two families whose associated moduli
maps agree. In our setup, any two such families become globally isomorphic after
base change.

LEMMA 7.4
In addition to Assumption 7.2, suppose that there exists another projective morphism
Z → T with the following property: for any b ∈ B and any t ∈ Tb, we have
Yt � Zt � Fb. Then
(7.4.1) there exists a surjective morphism τ : T̃ → T such that the pullback

families of Y and Z to T̃ are isomorphic as T̃ -schemes; that is, we have
a commutative diagram as follows:

YT̃

���
��

��
��

�

����
T̃ −isom.

�� ZT̃

����
��

��
��

��
Y

���
��

��
��

�
Z

����
��

��
��

T̃
τ

�� T

�

��
B.

Furthermore, if for all b ∈ B, the group Aut(Fb) is finite, then T̃ can be chosen such
that the following holds. Let T̃ ′ ⊆ T̃ be any irreducible component. Then
(7.4.2) τ is quasifinite,
(7.4.3) the image set τ (T̃ ′) is a union of �-fibers, and
(7.4.4) if T̃ ′ dominates B, then there exists an open subset B◦ ⊆ (� ◦ τ )(T̃ ′)

such that τ
∣∣

T̃ ′ is finite and étale over B◦. More precisely, if we set T ◦ :=
�−1(B◦) and T̃ ◦ := τ−1(T ◦) ∩ T̃ ′, then the restriction τ

∣∣
T̃ ◦ : T̃ ◦ → T ◦

is finite and étale.

Remark 7.4.5
In Lemma 7.4, we do not claim that T̃ is irreducible or connected.
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Proof of Lemma 7.4
Set T̃ := IsomT (Y, Z), and let τ : T̃ → T be the natural morphism. Again, tak-
ing Isom commutes with base change, and we have an isomorphism T̃ ×T T̃ �
IsomT̃ (YT̃ , ZT̃ ). Similarly, for all b ∈ B and for all t ∈ Tb, there is a natural one-
to-one correspondence between T̃t and Aut(Fb). In particular, we obtain that τ is
surjective. As before, observe that T̃ ×T T̃ admits a natural section, the diagonal. This
shows (7.4.1).

If for all b ∈ B, Aut(Fb) is finite, then the restriction of τ to any �-fiber τb :
T̃b → Tb is finite étale by Lemma 7.3. This shows (7.4.2) and (7.4.3). Furthermore,
it implies that if T̃ ′ ⊆ T̃ is a component that dominates B, neither the ramification
locus of τ

∣∣
T̃ ′ nor the locus where τ

∣∣
T̃ ′ is not finite dominates B.

Let B̂ ⊆ T be a rational multisection of � : T → B, that is, a closed
subvariety that dominates B and is of equal dimension. In particular, the morphism
�
∣∣

B̂
: B̂ → B is quasifinite. The scheme IsomB̂(Y, Y ) is quasifinite and quasiprojec-

tive over B̂, hence, over B as well. Then there exists an open subset B◦ ⊆ B where
length

(
IsomB̂(Y, Y )

)
b

is constant for b ∈ B. It is easy to see that (7.4.4) holds for
B◦. �

7.B. Families where � has a section
In addition to Assumption 7.2, assume that the morphism � admits a section σ : B →
T . Using σ : B → T , define YB := Y ×T B and let Z := YB ×B T be the pullback
of YB to T . With these definitions, Lemma 7.4 applies to the families Y → T and
Z → T . As a corollary, we show below that in this situation T̃ contains a component
T̃ ′ such that the pullback family YT̃ ′ comes from B. Better still, the restriction τ

∣∣
T̃ ′ is

relatively étale in the sense that τ
∣∣

T̃ ′ is étale and that � ◦ τ
∣∣

T̃ ′ has connected fibers.

COROLLARY 7.5
Under the conditions of Lemma 7.4, assume that � admits a section σ : B → T and
that Z = YB ×B T . Then there exists an irreducible component T̃ ′ ⊆ T̃ such that
(7.5.1) T̃ ′ surjects onto B, and
(7.5.2) the restricted morphism �̃ := � ◦ τ

∣∣
T̃ ′ : T̃ ′ → B has connected fibers.

Proof
It is clear from the construction that YB � ZB . This isomorphism corresponds to a
morphism σ̃ : B → IsomT (Y, Z) = T̃ . Let T̃ ′ ⊆ T̃ be an irreducible component
that contains the image of σ̃ . Observe that σ̃ is a section of �̃ : T̃ ′ → B and that the
existence of a section guarantees that �̃ is surjective and its fibers are connected. �

One particular setup where a section is known to exist is when T is a birationally ruled
surface over B. The following becomes important later.
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COROLLARY 7.6
In addition to Assumption 7.2, suppose that B is a smooth curve and that the general
�-fiber is isomorphic to P1, A1, or (A1)∗ = A1 \ {0}. Then there exist nonempty
Zariski open sets B◦ ⊆ B, T ◦ := �−1(B◦) and a commutative diagram

T̃ ◦ τ

étale

��

conn. fibers ��

T ◦

�

��
B◦

such that
(7.6.1) the fibers of � ◦ τ are again isomorphic to P1, A1, or (A1)∗, respectively,

and
(7.6.2) the pullback family YT̃ ◦ comes from B◦, that is, there exists a projective

family Z → B◦ and a T̃ ◦-isomorphism

YT̃ ◦ � ZT̃ ◦ .

Remark 7.6.3
If the general �-fiber is isomorphic to P1 or A1, the morphism τ is necessarily an
isomorphism. Shrinking B◦ further, if necessary, � : T ◦ → B◦ then even becomes a
trivial P1- or A1-bundle, respectively.

Proof
Shrinking B, if necessary, we may assume that all �-fibers are isomorphic to P1, A1,
or (A1)∗, and hence that T is smooth. Then it is always possible to find a relative
smooth compactification of T , that is, a smooth B-variety T → B and a smooth
divisor D ⊂ T such that T \ D and T are isomorphic B-schemes.

By Tsen’s theorem (see [S2, p. 73]), there exists a section σ : B → T . In fact,
there exists a positive dimensional family of sections, so that we may assume without
loss of generality that σ (B) is not contained in D.

Let B◦ ⊆ B be the open subset such that for all b ∈ B◦, T b � P1, Tb is isomorphic
to P1, A1, or (A1)∗, respectively, and σ (b) �∈ D. Using that any connected finite étale
cover of Tb is again isomorphic to Tb, and shrinking B◦ further, Corollary 7.5 yields
the claim. �
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Part II. The proofs of Theorems 1.1, 1.2, and 1.4

8. The case κ(Y ◦) = −∞, the Kodaira dimension is minus infinity

8.A. Setup
Let f ◦ : X◦ → Y ◦ be a smooth projective family of varieties with semiample
canonical bundle, over a quasi-projective manifold Y ◦ of dimension dim Y ◦ ≤ 3 and
logarithmic Kodaira dimension κ(Y ◦) = −∞.

Consider a smooth compactification Y of Y ◦, where D := Y \ Y ◦ is a divisor
with simple normal crossings. Let λ : Y ��� Yλ be a sequence of extremal divisorial
contractions and flips given by the (Y, D)-MMP, and let Dλ ⊂ Yλ be the cycle-theoretic
image of D. We may assume that (Yλ, Dλ) satisfies the following properties.

8.1 Properties of (Yλ, Dλ)
(8.1.1) The variety Yλ is Q-factorial, and (Yλ, Dλ) is a reduced dlt pair.
(8.1.2) The pair (Yλ, Dλ) does not admit a divisorial or small extremal contrac-

tion.
(8.1.3) As κ(Y ◦) = −∞, either

(a) ρ(Yλ) = 1 and (Yλ, Dλ) is Q-Fano, or
(b) ρ(Yλ) > 1 and (Yλ, Dλ) admits a nontrivial extremal contraction of

fiber type.

8.B. Proof of Theorem 1.2
To prove Theorem 1.2, assume that f ◦ is a family of canonically polarized varieties and
that f ◦ has positive variation Var(f ◦) > 0. By [VZ1, Theorem 1.4] and Lemma 5.2,
this implies that there exists a Viehweg-Zuo sheaf Aλ of positive Kodaira-Iitaka
dimension κ(Aλ) ≥ Var(f ◦) > 0 on (Yλ, Dλ) . Since (Yλ, Dλ) is Q-factorial and dlt,
in particular log canonical, Theorem 6.1 implies that ρ(Yλ) > 1. Therefore by (8.1.3),
there exists an extremal contraction of fiber type π : Yλ → C. Let F ⊂ Yλ be a
general π -fiber, and let Dλ,F := Dλ

∣∣
F

be the restriction of the boundary divisor.
We now push the family f ◦ down to F , to the maximum extent possible. Since

the inverse map λ−1 does not contract any divisor, we may use λ−1 to pull the family
f ◦ : X◦ → Y ◦ back to obtain a smooth family of canonically polarized varieties

fλ : Xλ → Yλ \ (Dλ ∪ T ), where codimYλ
T ≥ 2.

Let fλ,F := fλ|F be the restriction of this family to F . To prove Theorem 1.2 in our
context, it suffices to show that the family fλ,F is isotrivial. We carry this out next.

8.B.1. Proof of Theorem 1.2 when F is a curve
If F is a curve, it is entirely contained inside the snc locus of (Yλ, Dλ) and does not
intersect T . Furthermore, it follows from the adjunction formula that F ∼= P1 and
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that Dλ,F contains no more than one point. In this situation, the isotriviality of fλ,F

is well known (see [Ko, Theorem 0.2] and [VZ2, Theorem 0.1]). This shows that the
variation Var(f ◦) cannot be maximal and finishes the proof of Theorem 1.2.

8.B.2. Proof of Theorem 1.2 when F is a surface
Again, we need to show that fλ,F is isotrivial. We argue by contradiction and assume
that this is not the case. By general choice of F , the pair (F, Dλ,F ) is again dlt and

codimF TF = codimYλ
T ≥ 2, where TF := T ∩ F.

We claim that there exists a Viehweg-Zuo sheaf Bλ on (F, Dλ,F ) which is of
positive Kodaira-Iitaka dimension. In fact, an embedded resolution of Dλ,F ∪TF ⊆ F

provides an snc pair (F̃ , D̃) and a proper morphism η : F̃ → F such that η(D̃) =
Dλ,F ∪ TF . The family fλ,F pulls back to a family on F̃ \ D̃, and [VZ1, Theorem 1.4]
asserts the existence of a Viehweg-Zuo sheaf B on (F̃ , D̃) with κ(B) > 0. The
existence of a Viehweg-Zuo sheaf Bλ on (F, Dλ,F ) with κ(Bλ) ≥ κ(B) > 0 then
follows from Lemma 5.2.

On the other hand, −(KF +Dλ,F ) is Q-ample because π is an extremal contraction
of fiber type. Corollary 6.2 thus asserts that κ(Bλ) ≤ 0, which is a contradiction. This
finishes the proof of Theorem 1.2 in case κ(Y ◦) = −∞. �

8.C. Proof of Theorem 1.4
We maintain the notation and assumptions made in Section 8.B above and assume in
addition that Y is a surface. The minimal model map λ is then a morphism. As we
have seen in Section 8.B.1, the general fiber F ′ of π ◦λ is again a rational curve which
intersects the boundary in at most one point and that then the restriction of the family
f ◦ to the fiber F ′ ∩ Y ◦ is necessarily isotrivial. The detailed descriptions of Y ◦ and of
the moduli map in case κ(Y ◦) = −∞ which are asserted in Theorem 1.4 then follow
from Corollary 7.6 and Remark 7.6.3. This finishes the proof of Theorem 1.4 in case
κ(Y ◦) = −∞. �

8.D. Proof of Theorem 1.1
To prove Theorem 1.1, we argue by contradiction and assume that κ(Y ◦) = −∞ and
that Var(f ◦) = dim Y ◦. Lemma 5.2 and [VZ1, Theorem 1.4] then give the existence
of a big Viehweg-Zuo sheaf Aλ on (Yλ, Dλ). The arguments of Section 8.B apply
verbatim and show the existence of a proper fibration of π : Yλ → C such that
the induced family is isotrivial when restricted to the general π -fiber. That, however,
contradicts the assumption that the variation is maximal. Theorem 1.1 is thus shown
in case κ(Y ◦) = −∞. �
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9. The case κ(Y ◦) = 0, the Kodaira dimension is zero

9.A. Setup
Let f ◦ : X◦ → Y ◦ be a smooth projective family of varieties with semiample
canonical bundle over a quasi-projective variety Y ◦ of dimension dim Y ◦ ≤ 3 and
logarithmic Kodaira dimension κ(Y ◦) = 0. To prove Theorems 1.1 and 1.2 in this
case, it suffices to show that f ◦ is not of maximal variation, and even isotrivial if
its fibers are canonically polarized. Since those families give rise to Viehweg-Zuo
sheaves of positive Kodaira-Iitaka dimension by [VZ1, Theorem 1.4], Theorems 1.1
and 1.2 immediately follow from the following proposition.

PROPOSITION 9.1
Let (Z, �) be a reduced dlt pair. Assume that Z is a Q-factorial variety of dimension
dim Z ≤ 3 and that κ(KZ + �) = 0. If A is any Viehweg-Zuo sheaf on (Z, �), then
κ(A) ≤ 0.

Observe that once Theorem 1.2 holds, the assertion of Theorem 1.4 is vacuous in our
case. Accordingly, we do not consider Theorem 1.4 here.

We show Proposition 9.1 in the remainder of the present section. The proof
proceeds by induction on dim Z. If dim Z = 1, the statement of Proposition 9.1
is obvious. We therefore assume throughout the proof that dim Z > 1 and that the
following holds.

Induction Hypothesis 9.2
Proposition 9.1 is already shown for all pairs (Z′, �′) of dimension dim Z′ < dim Z.

We argue by contradiction and assume the following.

Assumption 9.3
There exists a Viehweg-Zuo sheaf A of positive Kodaira-Iitaka dimension κ(A) > 0.

We run the MMP and obtain a birational map λ : Z ��� Zλ, where Zλ is Q-factorial.
If �λ is the cycle-theoretic image, the pair (Zλ, �λ) is dlt and KZλ

+�λ is semiample.
Since κ(KZλ

+ �λ) = 0, the divisor KZλ
+ �λ is Q-torsion; that is,

∃m ∈ N such that OZλ

(
m(KZλ

+ �λ)
) ∼= OZλ

. (9.3.1)

Lemma 5.2 guarantees the existence of a Viehweg-Zuo sheaf Aλ on (Zλ, �λ) with
κ(Aλ) > 0. Raising A and Aλ to a suitable reflexive power if necessary, we assume
without loss of generality that Aλ is invertible and that h0(Zλ, Aλ) > 0.
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9.B. Outline of the proof
Since the proof of Proposition 9.1 is slightly more complicated than most other proofs
here, we outline the main strategy for the convenience of the reader.

The main idea is to apply induction, using a component of the boundary divisor
�λ. For that, we show in Section 9.E that Aλ is not trivial on the boundary and that
there exists a component �′

λ ⊆ �λ such that κ(Aλ

∣∣
�′

λ

) > 0. Passing to the index-one
cover, in Section 9.F we then construct a Viehweg-Zuo sheaf of positive Kodaira-Iitaka
dimension on the associated boundary component and verify that this component with
its natural boundary satisfies all the requirements of Proposition 9.1. This clearly
contradicts Induction Hypothesis 9.2 and finishes the proof.

To find �′
λ, we need to analyze the geometry of Zλ in more detail. For that, in

Section 9.C we show that the minimal model Zλ admits further contractions if one is
willing to modify the coefficients of the boundary. A second application of the MMP
then brings us to a reduced dlc pair (Zµ, �µ) that shares many of the good properties
of (Zλ, �λ). In addition, it turns out in Section 9.D that Zλ has the structure of a Mori
fiber space. An analysis of the Viehweg-Zuo sheaf along the fibers is essential.

9.C. Minimal models of (Zλ, (1 − ε)�λ)
As a first step in the program outlined in Section 9.B, we need the following claim.

CLAIM 9.4
The boundary �λ is not empty, �λ �= ∅.

Proof
Using (9.3.1) and the existence of the Viehweg-Zuo sheaf Aλ of positive Kodaira-
Iitaka dimension, this follows immediately from Corollary 6.4. �

In particular, (9.3.1) implies that KZλ
≡ −�λ, and it follows that for any rational

number 0 < ε < 1,

κ
(
KZλ

+ (1 − ε)�λ

) = κ(εKZλ
) = κ(Zλ) = −∞. (9.4.1)

Now choose one ε and run the log MMP for the dlt pair
(
Zλ, (1 − ε)�λ

)
. This

way one obtains a birational map µ : Zλ ��� Zµ. Let �µ be the cycle-theoretic image
of �λ. The variety Zµ is Q-factorial and the pair

(
Zµ, (1 − ε)�µ

)
is then dlt.

CLAIM 9.5
The reduced pair (Zµ, �µ) is dlc.
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Proof
By (9.3.1), some positive multiples of KZλ

and −�λ are numerically equivalent.
For any two rational numbers 0 < ε′, ε′′ < 1, the divisors KZλ

+ (1 − ε′)�λ and
KZλ

+ (1 − ε′′)�λ are thus again numerically equivalent up to a positive rational
multiple.

The birational map µ is therefore an MMP for the pair
(
Zλ, (1 − ε)�λ

)
, inde-

pendently of the number ε chosen in its construction. It follows that
(
Zµ, (1 − ε′)�µ

)
has dlt singularities for all 0 < ε′ < 1, so (Zµ, �µ) is indeed dlc. �

9.D. The fiber space structure of Zµ

Since the Kodaira-dimension of
(
Zλ, (1−ε)�λ

)
is negative by (9.4.1), either ρ(Zµ) =

1 or ρ(Zµ) > 1, and the pair
(
Zµ, (1 − ε)�µ

)
admits an extremal contraction of fiber

type. We apply Theorem 6.1 to show that the Picard number cannot be one.

PROPOSITION 9.6
The Picard number of Zµ is not one. The pair

(
Zµ, (1 − ε)�µ

)
therefore admits a

nontrivial extremal contraction of fiber type, π : Zµ → W .

Proof
As the birational map µ is a sequence of extremal divisorial contractions and flips,
the inverse of µ does not contract any divisors. This has two consequences. First, the
divisor KZµ

+ �µ is torsion, and −(KZµ
+ �µ) is nef. On the other hand, Lemma 5.2

applies and shows the existence of a Viehweg-Zuo sheaf Aµ of positive Kodaira-Iitaka
dimension. Since we have seen in Claim 9.5 that (Zµ, �µ) is dlc, in particular log
canonical, and since we know that Zµ is Q-factorial, Theorem 6.1 then gives that
ρ(Zµ) > 1, as desired. �

Now let F ⊂ Zµ be a general fiber of π , and set �F := �µ ∩ F . Since normality
is preserved when passing to general elements of base-point-free systems (see [BS,
Theorem 1.7.1]), and since discrepancies only increase, the reduced pair (F, �F ) is
again dlc.

Remark 9.7
The adjunction formula gives that KF + �F is torsion. On the other hand, π is an
extremal contraction so −(

KF + (1 − ε)�F

)
is π -ample. It follows that the boundary

divisor of F cannot be empty, �F �= ∅. It is not clear to us whether in general F is
necessarily Q-factorial.
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9.E. Nontriviality of Aλ

∣∣
�λ

As in Section 9.A, Lemma 5.2 guarantees the existence of a Viehweg-Zuo sheaf Aµ

on (Zµ, �µ) with κ(Aµ) ≥ κ(Aλ) > 0. Again, passing to a suitable reflexive power,
we can assume that Aµ is invertible and that h0(Zµ, Aµ) > 0.

PROPOSITION 9.8
The restriction Aµ

∣∣
F

has Kodaira-Iitaka dimension zero, κ(Aµ

∣∣
F
) = 0.

Proof
Consider the open set F ◦ := (F, �F )reg ∩ (Zµ, �µ)reg. The fiber F being general,
it is clear that codimF (F \ F ◦) ≥ 2. On F ◦, the standard conormal sequence (see
[KK, Lemma 2.13]) for logarithmic differentials then gives a short exact sequence of
locally free sheaves

0 −→ π∗(�1
W

)∣∣
F◦︸ ︷︷ ︸

trivial

−→ �1
Zµ

(log �µ)
∣∣

F◦ −→ �1
F (log �F )

∣∣
F◦ −→ 0. (9.8.1)

By the definition of a “Viehweg-Zuo sheaf,” there exists a number n ∈ N and an
embedding Aµ

∣∣
F◦ → (

�1
Zµ

(log �µ)
∣∣

F◦
)⊗n

. The first term in (9.8.1) being trivial,
Lemma 5.4 gives a number m ≤ n and an injection

Aµ

∣∣
F◦ ↪→ (

�1
F (log �F )

∣∣
F◦

)⊗m
. (9.8.2)

Recall that Aµ is invertible. Then by (9.8.2), we obtain an injection between the

reflexive hulls Aµ

∣∣
F

↪→ (
�1

F (log �F )
)[m]

; that is, we realize Aµ

∣∣
F

as a Viehweg-Zuo
sheaf on (F, �F ).

The log canonical divisor KF +�F being torsion, Proposition 9.8 follows imme-
diately if F is a curve. We thus assume for the remainder of the proof that dim F = 2.

It remains to show that the Viehweg-Zuo sheaf Aµ

∣∣
F

on (F, �F ) has Kodaira-
Iitaka dimension κ(Aµ

∣∣
F
) ≤ 0. The fact that κ(Aµ) > 0 then implies that κ(Aµ

∣∣
F
) =

0, as claimed. To do this, consider a log resolution ψ : (F̃ , �̃F ) → (F, �F ). Setting

E := maximal reduced divisor in ψ−1(�F ) ∪ Exc(ψ),

it follows immediately from the definition of dlc that KF̃ + E is represented by
the sum of a torsion divisor and an effective, ψ-exceptional divisor. In particular,
κ(KF̃ + E) = 0, and Theorem 5.3 gives the existence of a Viehweg-Zuo sheaf C

on the snc pair (F̃ , E) with κ(C ) ≥ κ(Aµ

∣∣
F
). However, this contradicts Induction

Hypothesis 9.2, which asserts that κ(C ) ≤ 0. �

COROLLARY 9.9
The restriction Aµ

∣∣
F

is trivial; that is, Aµ

∣∣
F

∼= OF .
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Proof
Since Aµ is invertible and since h0(Zµ, Aµ) > 0, there exists an effective Cartier
divisor D on Zµ with Aµ

∼= OZµ
(D). Decompose D = Dh + Dv , where Dh consists

of those components that dominate W , and where Dv consists of those components
that do not. We need to show that Dh = 0. Again, we argue by contradiction and
assume that Dh is nontrivial.

Recall that π : Zµ → W is a contraction of an extremal ray and that the relative
Picard number ρ(Zµ/W ) is therefore one. The divisor Dh is thus relatively ample,
contradicting Proposition 9.8. �

COROLLARY 9.10
There exists a component �λ,1 ⊆ �λ such that κ(Aλ

∣∣
�λ,1

) > 0.

Proof
We have seen in Remark 9.7 that �F = �µ ∩ F is not empty. So, there exists
a component �µ,1 ⊆ �µ that intersects all π -fibers. Let �λ,1 ⊆ �λ be its strict
transform. Since the birational map µ does not contract �λ,1, and since µ−1 does not
contract any divisors, µ induces an isomorphism of open sets Uλ ⊆ Zλ and Uµ ⊆ Zµ

such that �◦
λ,1 := �λ,1 ∩ Uλ and �◦

µ,1 := �µ,1 ∩ Uµ are both nonempty.
For an arbitrary m ∈ N, we obtain a commutative diagram of linear maps

H 0
(
Zλ, A⊗m

λ

) α1

restr.

��

µ1

��

H 0
(
�λ,1, A⊗m

λ

∣∣
�λ,1

) α2

restr.

�� H 0
(
�◦

λ,1, A⊗m
λ

∣∣
�◦

λ,1

)

µ2

��

H 0
(
Zµ, A⊗m

µ

) β1

restr.

�� H 0
(
�µ,1, A⊗m

µ

∣∣
�µ,1

) β2

restr.

�� H 0
(
�◦

µ,1, A⊗m
µ

∣∣
�◦

µ,1

)
,

where the µi , i = 1, 2 are the obvious pushforward morphisms coming from the
construction of Aµ in Lemma 5.2. Since µ1 and β2 are clearly injective, Corollary 9.10
follows once we show that β1 is injective as well. Now let σ ∈ H 0

(
Zµ, A⊗m

µ

)
, and

assume that σ is in the kernel of β1. By choice of �µ,1, any general fiber F intersects
�µ,1 in at least one point. The triviality of Aµ

∣∣
F

asserted in Corollary 9.9 then implies
that σ vanishes along F . The fiber F being general, we obtain that σ = 0 on all of
Zµ. Corollary 9.10 follows. �

9.F. Existence of pluriforms on the boundary
Now consider the index-one cover γ : (Z′

λ, �
′
λ) → (Zλ, �λ), as described in

Proposition 4.1. The pair (Z′
λ, �

′
λ) is then dlt, the log canonical divisor is triv-

ial, OZ′
λ

(
KZ′

λ
+ �′

λ

) ∼= OZ′
λ
, and the pullback A′

λ := γ ∗(Aλ) is an invertible
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Viehweg-Zuo sheaf on (Z′
λ, �

′
λ) with κ(A′

λ) > 0. Better still, if �′
λ,1 ⊆ γ −1

(
�λ,1

)
is

any component, Corollary 9.10 immediately implies that κ(A′
λ

∣∣
�′

λ,1
) > 0.

Now recall from Lemma 3.1 that (Z′
λ, �

′
λ) is snc along the boundary away from

a closed subset W with codimZ(W ∩ �′
λ) ≥ 3. The divisor �′

λ is therefore Cartier in
codimension two and inversion of adjunction applies (see [KM, Section 5.4]). Setting

�′′
λ,1 := (�′

λ − �′
λ,1)

∣∣
�′

λ,1
,

this yields the following:
(9.10.1) the subvariety �′

λ,1 is normal [KM, Corollary 5.52], and
(9.10.2) the pair (�′

λ,1, �
′′
λ,1) is again reduced and dlt [KM, Proposition 5.59].

Observation 9.11
It follows from the adjunction formula that the log canonical divisor K�′

λ,1
+ �′′

λ,1 is
trivial.

PROPOSITION 9.12
The pair (�′

λ,1, �
′′
λ,1) admits a Viehweg-Zuo sheaf of positive Kodaira-Iitaka dimen-

sion.

Proof
Consider the standard conormal sequence for logarithmic differentials [KK,
Lemma 2.13] on the open subset �′◦

λ,1 := (�′
λ,1, �

′′
λ,1)reg,

0 −→ �1
�′◦

λ,1
(log �′′

λ,1) −→ �1
Z′

λ
(log �′

λ)
∣∣

�′◦
λ,1

−→ O�′◦
λ,1

−→ 0. (9.12.1)

The last term in (9.12.1) being trivial, Lemma 5.4 gives a number m ≤ n and an
injection

A′
λ

∣∣
�′◦

λ,1
↪→ (

�1
�′◦

λ,1
(log �′′

λ,1)
)⊗m

.

Using that A′
λ is invertible and that codim�′

λ,1
(W ∩ �′

λ,1) ≥ 2, we pass to reflexive
hulls and realize A′

λ as a Viehweg-Zuo sheaf on �′
λ,1,

A′
λ

∣∣
�′

λ,1
⊆ (

�1
�′

λ,1
(log �′′

λ,1)
)[m]

. �

9.G. Completion of the proof
Recall that we have seen that the pair (�′

λ,1, �
′′
λ,1) is dlt, has trivial log canonical

class, and admits a Viehweg-Zuo sheaf of positive Kodaira-Iitaka dimension. Since
dim �′

λ,1 ≤ 2, being dlt implies that the variety �′
λ,1 is Q-factorial [KM, Propo-

sition 4.11]. This clearly contradicts Induction Hypothesis 9.2. Assumption 9.3 is
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therefore absurd. This finishes the proof of Proposition 9.1. Consequently, Theo-
rems 1.1 and 1.2 are shown in case κ(Y ◦) = 0. �

10. The case κ(Y ◦) > 0, in case of positive Kodaira dimension

10.A. Setup
Let f ◦ : X◦ → Y ◦ be a smooth projective family of varieties with semiample
canonical bundle over a quasi-projective variety Y ◦ of dimension dim Y ◦ ≤ 3 and
logarithmic Kodaira dimension κ(Y ◦) > 0.

Again, let Y be a compactification of Y ◦, where D := Y \ Y ◦ is a divisor with
simple normal crossings, and let λ : (Y, D) ��� (Yλ, Dλ) be the map to a minimal
model. The divisor KYλ

+Dλ is then semiample by the log abundance theorem [KMM]
and defines a map π : Yλ → C with dim C = κ(Y ◦).

10.B. Proof of Theorem 1.2
To prove Theorem 1.2, assume f ◦ is a family of canonically polarized manifolds. We
may also assume without loss of generality that the family f ◦ is not isotrivial and that
κ(Y ◦) < dim Y . Blowing up Y and pulling back the family, we obtain a diagram as
follows:

X̃◦
f̃ ◦

family of canon. pol. var.

��

pullback

��

(Ỹ , D̃)

blow up

��

π̃

��
X◦

f ◦

family of canon. pol. var.

�� (Y, D)
λ

MMP

������������ (Yλ, Dλ)
π

�� C.

If F̃ ⊂ Ỹ is the general π̃ -fiber, recall the standard fact that κ(KF̃ + D̃|F̃ ) = 0 (see
[I, Section 11.6]). We saw in Section 9 that then the family f̃ ◦ must be isotrivial over
F̃ . This shows that the fibration π factors the moduli map birationally and proves
Theorem 1.2 in case κ(Y ◦) > 0. �

10.C. Proof of Theorem 1.4
It remains to prove Theorem 1.4 and give a detailed description of the moduli map if
Y is a surface.

To this end, we maintain the notation and assumptions made in Section 10.A above
and assume in addition that Y is a surface, that Var(f ◦) > 0, and that κ(Y ◦) = 1. As
there are no flipping contractions in dimension two, λ is a birational morphism, and
KYλ

+ Dλ is trivial on the general π -fiber Fλ ⊂ Yλ. In particular, one of the following
holds:
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(10.0.1) Fλ is an elliptic curve and no component of Dλ dominates C, or
(10.0.2) Fλ is isomorphic to P1 and intersects Dλ in exactly two points.
If the general fibers of π are isomorphic to (A1)∗, Corollary 7.6 gives the statement
of Theorem 1.4.

Otherwise, let V ⊆ C be an open subset such that π is a smooth elliptic fibration
over V . Let Ṽ ⊂ Yλ be a general hyperplane section. Restricting V further if necessary,
we may assume that Ṽ is étale over V . Taking a base change to Ṽ , we obtain a section
σ : Ṽ → Ũ := U ×V Ṽ . Finally, set X̃ := X ×U Ũ and Z := Ṽ ×σ X̃. Shrinking
V further if necessary, an application of Lemma 7.4 completes the proof. �

10.D. Proof of Theorem 1.1
To prove Theorem 1.1, we argue by contradiction and assume that 0 < κ(Y ◦) <

dim Y ◦ and that Var(f ◦) = dim Y ◦. The arguments of Section 10.B apply verbatim
and show the existence of a proper fibration of π̃ : Ỹ → C such that the family
f̃ ◦ is isotrivial when restricted to the general π̃ -fiber. That, however, contradicts
the assumption that the variation is maximal. Theorem 1.1 is thus shown in case
κ(Y ◦) > 0. �
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