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Abstract. Shafarevich’s hyperbolicity conjecture asserts that a family of
curves over a quasi-projective 1-dimensional base is isotrivial unless the
logarithmic Kodaira dimension of the base is positive. More generally it
has been conjectured by Viehweg that the base of a smooth family of
canonically polarized varieties is of log general type if the family is of
maximal variation. In this paper, we relate the variation of a family to the
logarithmic Kodaira dimension of the base and give an affirmative answer
to Viehweg’s conjecture for families parametrized by surfaces.
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1 Introduction

Let B◦ be a smooth quasi-projective complex curve and q > 1 a positive
integer. Shafarevich conjectured [18] that the set of non-isotrivial families
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of smooth projective curves of genus q over B◦ is finite. Shafarevich further
conjectured that if the logarithmic Kodaira dimension, for a definition see
below, satisfies κ(B◦) ≤ 0, then no such families exist. This conjecture,
which later played an important role in Faltings’ proof of the Mordell con-
jecture, was confirmed by Parshin [17] for B◦ projective and by Arakelov [1]
in general. We refer the reader to the survey articles [19] and [15] for a his-
torical overview and references to related results.

It is a natural and important question whether similar statements hold
for families of higher dimensional varieties over higher dimensional bases.
Families over a curve have been studied by several authors in recent years
and they are now fairly well understood—the strongest results known were
obtained in [20,21], and [14]. For higher dimensional bases, however, a com-
plete picture is still missing and subvarieties of the corresponding moduli
stacks are not well understood. As a first step toward a better understanding,
Viehweg proposed the following:

Conjecture 1.1 [19, 6.3]. Let f ◦ : X◦ → S◦ be a smooth family of canon-
ically polarized varieties. If f ◦ is of maximal variation, then S◦ is of log
general type.

We briefly recall the relevant definitions, as they will also be important
in the statement of our main result. The first is the variation, which measures
the birational non-isotriviality of a family.

Definition 1.2. Let f : X → S be a projective family over an irreducible
base S defined over an algebraically closed field k and let k(S) denote the
algebraic closure of the function field of S. The variation of f , denoted by
Var f , is defined as the smallest integer ν for which there exists a subfield K
of k(S), finitely generated of transcendence degree ν over k and a K-variety
F such that X×S Spec k(S) is birationally equivalent to F×Spec K Spec k(S).

Remark 1.2.1. In the setup of Definition 1.2, if the fibers are canonically
polarized complex varieties, moduli schemes are known to exist, and the
variation is the same as either the dimension of the image of S in moduli,
or the rank of the Kodaira–Spencer map at the general point of S.

Definition 1.3. Let S◦ be a smooth quasi-projective variety and S a smooth
projective compactification of S◦ such that D := S \ S◦ is a divisor with
simple normal crossings. The logarithmic Kodaira dimension of S◦, denoted
by κ(S◦), is defined to be the Kodaira–Iitaka dimension, κ(S, D), of the line
bundle OS(KS + D) ∈ Pic(S). The variety S◦ is called of log general type
if κ(S◦) = dim S◦, i.e., the divisor KS + D is big.

Remark 1.3.1. It is a standard fact in logarithmic geometry that a compact-
ification S with the described properties exists, and that the logarithmic
Kodaira dimension κ(S◦) does not depend on the choice of the compacti-
fication S.
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1.A Statement of the main result. Our main result describes families of
canonically polarized varieties over quasi-projective surfaces. We relate the
variation of the family to the logarithmic Kodaira dimension of the base and
give an affirmative answer to Viehweg’s Conjecture 1.1 for families over
surfaces.

Theorem 1.4. Let S◦ be a smooth quasi-projective complex surface and
f ◦ : X◦ → S◦ a smooth family of canonically polarized complex varieties.
Then the following holds.

(1.4.1) If κ(S◦) = −∞, then Var( f ◦) ≤ 1.
(1.4.2) If κ(S◦) ≥ 0, then Var( f ◦) ≤ κ(S◦).

In particular, Viehweg’s conjecture holds for families over surfaces.

For the special case of κ(S◦) = 0, this statement was proved by
Kovács [12, 0.1] when S◦ is an abelian variety and more generally by
Viehweg and Zuo [21, 5.2] when TS(− log D) is weakly positive.

A slightly weaker statement holds for families of minimal varieties, see
Sect. 8 below. In a forthcoming paper we will give a more precise geometric
description of f ◦ in the case of κ(S◦) ≤ 1.

Remark 1.5. Notice that in the case of κ(S◦) = −∞ one cannot expect
a stronger statement. For an easy example take any non-isotrivial smooth
family of canonically polarized varieties over a curve g : Z → C, set
X := Z × P1, S◦ := C × P1, and let f ◦ := g × idP1 be the obvious
morphism. Then we clearly have κ(S◦) = −∞ and Var( f ) = 1.

In view of Theorem 1.4, we propose the following generalization of
Viehweg’s conjecture.

Conjecture 1.6. Let f ◦ : X◦ → S◦ be a smooth family of canonically
polarized varieties. Then either κ(S◦) = −∞ and Var( f ◦) < dim S◦, or
Var( f ◦) ≤ κ(S◦).

1.B Outline of the paper. Throughout the paper we work over C, the field
of complex numbers.

The paper is divided into two parts. In the first part comprising Sects. 2
and 3 we recall and establish techniques that might be of independent inter-
est. Section 2 summarizes results in logarithmic geometry and logarithmic
deformation theory. In Sect. 3 we consider logarithmic pairs (S, D) where
S is a birationally ruled surface, and construct a sequence of blowing down
(−1)-curves that can be used to simplify the self-intersection graph of the
boundary D.

In the second part of the paper we employ these techniques in order
to prove Theorem 1.4. After the notation is set up in Sect. 4, we consider
the cases where the logarithmic Kodaira dimension of S◦ is 1, 0 or −∞ in
Sects. 5–7, respectively.
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2 Logarithmic geometry

Throughout the current section, let S be a smooth projective variety and
D ⊂ S a reduced divisor with simple normal crossings. As follows, we
recall a number of facts concerning this setup and include proofs wherever
we could not find an adequate reference.

2.A The logarithmic minimal model program. If S is a surface and the
logarithmic Kodaira dimension κ(KS + D) is non-negative, we will fre-
quently need to consider the (S, D)-logarithmic minimal model program,
which is briefly recalled here. The reader is referred to [10] for the relevant
definitions, for proofs and for a full discussion.

Fact 2.1 (Logarithmic minimal model program, [10, (3.47)]). If dim S = 2
and κ(KS + D) ≥ 0, there exists a birational morphism φ : S → Sλ from S
to a normal surface Sλ such that

(2.1.1) The morphism φ is the composition of finitely many log contrac-
tions.

(2.1.2) If we set Dλ := φ(D) to be the cycle-theoretic image divisor, then
(a) The pair (Sλ, Dλ) has only dlt singularities and Sλ itself is
Q-factorial [10, (3.36), (3.44)]. In particular, Sλ has only quo-
tient singularities.

(b) The log canonical divisor KSλ
+ Dλ is nef.

(c) The log Kodaira dimension remains unchanged,

κ(KSλ
+ Dλ) = κ(KS + D).

Remark 2.2. We remark that the support of Dλ is generally not equal to
the image φ(D), as it may well happen that φ(D) contains isolated points
which do not appear in the cycle-theoretic image. This observation will later
become important in Sect. 6.C and in the proof of Proposition 6.6.

Fact 2.3 (Logarithmic abundance theorem in dimension 2, [10, (3.3)]). The
linear system |n(KSλ

+ Dλ)| is basepoint-free for sufficiently large and
divisible n ∈ N.

2.B Logarithmic deformation theory. In Sects. 6 and 7 we will have to deal
with families of curves on S that intersect the boundary divisor D in one or
two points. In counting these points, intersection multiplicity does not play
any role, but the number of local analytic branches of the curves does. More
precisely, we use the following definition.

Definition 2.4. Let X be an algebraic variety, E ⊂ X an algebraic set, and
� ⊂ X a reduced proper curve with normalization ν : ˜� → �. We say that
“� intersects E in d points” if the preimage ν−1(E) is supported on exactly
d closed points of ˜�.
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Remark 2.5. Suppose we are given a proper birational morphism φ : X → X ′ ,
an algebraic set E ⊂ X and a family of curves �′

t ⊂ X ′ that intersect φ(E)
in exactly d points. Assume further that none of the �′

t is contained in the
set of fundamental points of φ−1. Then the strict transforms give a (possibly
disconnected) family �t of curves on X that intersect E in no more than
d points. If E contains the φ-exceptional locus, then the strict transforms
intersect E in exactly d points.

For our applications, we need to consider a family �t of rational curves
in S that intersect D in two points. Our aim in this section is to discuss
an algebraic parameter space for such curves. The construction is based
on the observation that for any such curve �t there exists a morphism
νt : P1 → �t ⊂ S such that ν−1

t (D) is supported exactly on the points
x0 := [0 : 1] and x∞ := [1 : 0]. Therefore, it makes sense to consider the
space

H := {

f ∈ Hombir(P
1, S) | f −1(D) is supported exactly on x0 and x∞

}

with the obvious structure as a closed, but possibly non-reduced subscheme
of Hombir(P

1, S), the space of generically injective morphisms P1 → S.
The space H , and its infinitesimal structure has been studied in [8] using

a slightly different language. We recall some of their results here and include
proofs wherever we had difficulties to follow the original arguments.

Proposition 2.6. If f ∈ H is any closed point, then the Zariski tangent
space to H at f is canonically isomorphic to

TH | f 	 H0(
P

1, f ∗(TS(− log D))
)

.

Proof. Let D = {D1, . . . , Dn} be the set of irreducible components of D,
Ei := f ∗(Di) the associated Cartier divisors onP1 , and let E ={E1, . . . , En}.
Notice that all of the Ei are supported on x0 and x∞. If H f ⊂ H is the con-
nected component that contains f , then H = Hom(P1, S,E ⊂ D), defined
in [8, Sect. 5], is a subscheme of H that contains H f . Hence, the claim
follows from [8, (5.3)]. ��

It is well known in the theory of rational curves on algebraic varieties
that if S is a uniruled manifold and � is a rational curve that passes through
a very general point of S, then � is free, and its deformations avoid any given
subset of codimension ≥ 2. More precisely, for any given subset E ⊂ S with
codimS E ≥ 2 there exists a deformation �′ of � that does not intersect E.
We show that a similar property holds for H .

Proposition 2.7 (Small set avoidance). Let H ′ ⊂ H be an irreducible
component such that the associated curves dominate S. If M ⊂ S \ D is
any closed set of codimS M ≥ 2, then there exists a non-empty open set
H ′

0 ⊂ H ′ such that for all f ′ ∈ H ′
0 the image does not intersect M, i.e.

M ∩ f ′(P1) = ∅.
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The proof of Proposition 2.7, which we give on p. 664 at the end of this
section is based on a number of results that we prove first. We start with an
estimate for the dimension of H that we formulate and prove in the next
two lemmata.

Definition 2.8. Let π : X → Y be a finite surjective morphism of degree d.
The set-theoretic branch locus of π is the set of points in Y whose set-
theoretic preimage contains strictly less than d points.

Lemma 2.9. Let H be an irreducible variety and D ⊂ P1×H an irreducible
subvariety such that π2|D : D → H is a finite surjective morphism of de-
gree d with set-theoretic branch locus B. Then either B = ∅, or B is a closed
subvariety of pure codimension 1.

Proof. Performing a base change, if necessary, we can assume without loss
of generality that H is normal. The variety D is then a well-defined family of
algebraic cycles in the sense of [9, I.3.10], and therefore yields a morphism

γ : H → Chowd(P1) = P1 × · · · × P1
/

permutation 	 P(Symd
A

2).

If ∆ ⊂ P(Symd
A

2) is the discriminant divisor, i.e. the branch locus of the
morphism

P
1 × · · · × P1 −→ P

1 × · · · × P1
/

permutation 	 P(Symd
A

2),

then the morphism D → H is branched at a point η ∈ H iff γ(η) ∈ ∆. But
since ∆ ⊂ P(Symd

A
2) is Cartier, the claim follows. ��

The proof of Lemma 2.9 shows, after passing to the normalization, that
the branch locus B is even a Cartier-divisor, but we will not need this
observation here. The proposed estimate for the dimension of H then goes
as follows.

Lemma 2.10 ([8, 5.1, 5.3]). If η ∈ H is any point, then

dimη H ≥ dimη Hombir(P
1, S) − deg

P1 η∗(OS(D))
︸ ︷︷ ︸

=:d
.

Proof. Let H ⊂ Hombir(P
1, S) be an irreducible component through η

which is of maximal dimension. We will prove Lemma 2.10 by an inductive
construction of a subvariety that contains η, satisfies the dimension bound,
and is contained in H . More precisely, we claim the following.

Claim 2.10.1. There exists a sequence of subvarieties

H = H (0) ⊃ H (1) ⊃ · · · ⊃ H (d−2) � η

such that codimH H (i) = i, and such that for general closed points f (i) ∈ H (i),
we have #( f (i))−1(D) ≤ d − i.
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Proof. We prove the claim inductively, using the index i of H(i). To start
the induction, consider i = 0. It is clear from intersection theory that if
f (0) ∈ H is a general closed point, then #( f (0))−1(D) ≤ d. For the inductive
step, assume that the subvariety H (i) is already constructed. Consider the
universal morphism µi : P1 × H (i) → S and the reduced preimage

D(i) := µ−1
i (D)red ⊂ P1 × H (i).

By induction there exists an open set η ∈ H (i)◦ ⊆ H (i) such that D(i)◦ =
D(i) ∩π−1

2 H (i)◦ surjects finitely onto H (i)◦ with at most d − i sheets. Observe,
that as long as d − i > 2, η will be in the set-theoretic branch locus of
π2|D(i)◦ : D(i)◦ → H (i)◦ . If we set

H (i+1) := closure of one component of the set-theoretic branch locus
of π2|D(i)◦ ,

then by Lemma 2.9 dim H (i+1) = dim H (i)−1, and a general point of H (i+1)

has at most d − (i + 1) preimages on D(i). Claim 2.10.1 then follows. ��
According to Claim 2.10.1 there exists a subvariety containing η,

H (d−2) ⊆ H , of dimension dim H (d−2) = dimη H − d + 2. Since µ−1
d−2(D)

is a Cartier divisor on P1 × H (d−2), the non-empty subvarieties

H (d−2)
0 := π2

(

µ−1
d−2(D)red ∩ {x0} × H (d−2)

) ⊆ H (d−2), and

H (d−2)
0,∞ := π2

(

µ−1
d−2(D)red ∩ {x∞} × H (d−2)

0

) ⊆ H (d−2)
0

each contain η and have codimension at most 1 in one another. In other
words, we have

dim H (d−2)

0,∞ ≥ dim H (d−2) − 2 = dimη H − d. (2.10.2)

It follows from Claim 2.10.1 that for all closed points f ∈ H(d−2), the
associated morphism f : P1 → S satisfies # f −1(D) ≤ 2. Because f is
contained in H (d−2)

0,∞ ⊆ H (d−2)
0 , we also have f(x0) ∈ D and f(x∞) ∈ D,

respectively. In summary, we have seen that H (d−2)
0,∞ ⊆ H , which combined

with (2.10.2) proves Lemma 2.10. ��
We note that a more detailed analysis of the construction could be used

to show that H is a local complete intersection. To continue the preparation
for the proof of Proposition 2.7 we discuss the pull-back of the logarithmic
tangent sheaf via a general morphism in H ′.

Lemma 2.11. Under the assumptions of Proposition 2.7, let f ∈ H ′ be
a general element. Then f ∗(TS(− log D)) is globally generated on P1.
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Proof. Set n := dim S. Working on P1, it suffices to show that
f ∗(TS(− log D)) is generated by global sections at a general point y ∈ P1,
i.e., that there exist sections σ1, . . . σn ∈ H0(P1, f ∗(TS(− log D))) that are
linearly independent at y.

To construct σ1, observe that the natural action of C∗ on P1 that fixes
x0 = [0 : 1] and x∞ = [1 : 0] yields a non-trivial deformation of f in H .
Let σ1 be an associated infinitesimal deformation which, by general choice
of y, does not vanish at y.

In order to find σ2, . . . , σn, observe that the curves associated with H
dominate S. By general choice of f , we can therefore assume that the
universal morphism

µ : P1 × H → S

has rank n at (y, f ). The description [9, II.3.4] of the tangent morphism Tµ
then yields the existence of infinitesimal deformations σ2, . . . , σn whose
evaluations σi(y) along with σ1(y) are linearly independent and not tangent
to the image of f . ��
Corollary 2.12. Under the conditions of Lemma 2.11, both Hombir(P

1, S)
and H ′ are reduced and smooth at the point f .

Proof. Lemma 2.11 implies that f ∗(TS) is also globally generated on P1

since it contains the globally generated locally free subsheaf f ∗(TS(−log D))

of the same rank. Then H1(P1, f ∗(TS)) = 0, so Hombir(P
1, S) is reduced

and smooth of dimension h0(P1, f ∗(TS)) by [9, I.2.16]. This, combined
with Lemma 2.10 implies that

h0
(

P
1, f ∗(TS)

) − d ≤ dim f H ′ ≤ dim TH ′ | f . (2.12.1)

Proposition 2.6 and the fact that deg
P1 f ∗(TS) = deg

P1 f ∗(TS(− log D))+d
imply that

h0
(

P
1, f ∗(TS)

) − d = h0
(

P
1, f ∗(TS(− log D))

) = dim TH ′ | f . (2.12.2)

The (In)equalities (2.12.1) and (2.12.2) together imply that dim TH ′ | f =
dim f H ′. Therefore, we obtain that H ′ is reduced and smooth at the point f .

��
Proof of Proposition 2.7. Consider the standard diagram

P
1 × H ′ ��

µ

univ. morphism

��

π projection

S

H ′,

and let M := (µ−1(M))red be the set-theoretic preimage of M via µ. Since
π is proper, it is enough to prove that π(M) �= H ′. Assume to the contrary,



Families of canonically polarized varieties over surfaces 665

i.e., assume that M surjects onto H ′ and choose a point y ∈ (π|M)−1( f ).
Since H ′ is smooth at f , the general choice of f implies that π|M is ètale
at (y, f ). Then the global generation of f ∗(TS(− log D)) and the standard
description of the tangent morphism Tµ, [9, II.3.4], yield that the rank of
Tµ|M at (y, f ) is at least n−1. In particular, codimS M ≤ 1, a contradiction.

��

2.C Logarithmic differentials. Throughout the proof of the main theorem
we need to use the sheaf Ω1

S(log D) of 1-forms with logarithmic poles
along D. For the definition and detailed discussion of this notion the reader is
referred to either [2, Chap. 3] or [3, §2]. We will need to describe Ω1

S(log D)
in terms of its restriction to curves in S.

Lemma 2.13. Let F ⊂ S be a smooth curve that intersects D transversally.
Then the restriction Ω1

S(log D)|F is an extension of line bundles, as follows:

0 → N∨
F/S → Ω1

S(log D)|F → Ω1
F(log D|F ) → 0. (2.13.1)

If D = ∑r
i=1 Di is the decomposition of D to irreducible components, then

the restriction Ω1
S(log D)|D1 is an extension of line bundles, as follows:

0 → Ω1
D1

(log(D − D1)|D1) → Ω1
S(log D)|D1 → OD1 → 0. (2.13.2)

Furthermore, if dim S = 2, then

Ω1
D1

(log(D − D1)|D1) 	 Ω1
D1

⊗ OD1((D − D1)|D1). (2.13.3)

Proof. Equations (2.13.1) and (2.13.2) follow from [3, 2.3a, 2.3c] using the
Snake lemma.

If dim S = 2, then D1 is a smooth curve, and (2.13.3) follows from the
definition. ��

3 Controlled minimal models of birationally ruled surfaces

In this section, we consider log pairs (S, D), where S is a birationally ruled
surface whose boundary intersects the ruling with multiplicity two. More
precisely, we make the following assumption throughout the present section.

Assumption 3.1. Let S be a smooth projective surface and D ⊂ S a simple
normal crossing divisor. Assume that there exists a morphism π : S → C
whose general fiber is isomorphic to P1. If t ∈ C is any point, set St :=
π−1(t) and assume that D · St = 2.

Our principle aim in this section is to relate the logarithmic Kodaira
dimension κ(S \ D) with the genus of the base curve C and with the number
and type of fiber components contained in D.
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The relation in question is formulated in Propositions 3.5 and 3.6 using
a certain sequence of blowing down vertical (−1)-curves which simplifies
the self-intersection graph of D and eventually leads to a P1-bundle over C.
The construction of this sequence is explained in Sect. 3.A below.

3.A Construction of a minimal model. Setup of notation. To describe the
sequence of blowings down we use the following terminology.

Notation 3.2. A curve E ⊂ S is called vertical if it maps to a point in C. Let
D = Dh + Dv be the associated decomposition of the divisor D, where Dv

is the sum of the vertical components, and Dh the components that surject
onto C.

Now consider the sequence of blowings down of vertical (−1)-curves,
as given by Algorithm 3.3 below. The construction obviously depends on
choices and is therefore not unique. While the results stated in Sect. 3.B are
independent of the choices made, we fix a particular set of choices for the
remainder of the section and do not pursue the uniqueness question further.

Algorithm 3.3. Construction of a good relative minimal model of S

Step 0: Setup

i := 0, S0 := S, Dh
0 := Dh , Dv

0 := Dv

Step 1: blow down curves that are disjoint from Dh

while there exists a vertical (−1)-curve Ei ⊂ Si, disjoint from Dh
i do

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Si+1 := blow-down of Si along Ei

Dh
i+1 := cycle-theoretic image of Dh in Si+1

Dv
i+1 := cycle-theoretic image of Dv in Si+1

i ← i + 1

k1 := i

Step 2: for each reducible fiber F blow down (−1)-curves
contained in F, always taking curves in Dv if possible.
Stop if Dh

i and Dv
i no longer intersect in F.

for each reducible fiber F ⊂ Si do
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

while Dh
i ∩ Dv

i ∩ F �= ∅ and there exists a (−1)-curve in F do
⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

if there exists a vertical (−1)-curve in F, contained in Dv
i then

∣

∣ Ei := a vertical (−1)-curve in F, contained in Dv
i

else
⌊

Ei := any vertical (−1)-curve in F

Si+1 := blow-down of Si along Ei

Dh
i+1 := cycle-theoretic image of Dh in Si+1

Dv
i+1 := cycle-theoretic image of Dv in Si+1

i ← i + 1

k2 := i
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Step 3: blow down the remaining vertical (−1)-curves

while there exists a vertical (−1)-curve Ei ⊂ Si do
⌊

Si+1 := blow-down of Si along Ei

i ← i + 1

m := i

Now Si does not contain any vertical (−1)-curve, and is
therefore relatively minimal over C.

Notation 3.4. We fix a set of choices, set S = S0 and denote the morphisms
that occur in Algorithm 3.3 as follows.

S0
��

ρi

��
β0: blow-down

S1 · · · ��
βi−1 : blow-down

Si
��

βi : blow-down

��

πi

· · · Sm
��

πm

P
1-bundle

C.

If t ∈ C is any point, let St := π−1(t) and Si,t := π−1
i (t) be the scheme-

theoretic fibers. In addition, we will also consider the following objects.

k1, k2, m . . . the indexes marking the end of Steps 1, 2, and 3 in Algo-
rithm 3.3

Ei . . . the βi-exceptional vertical (−1)-curve in Si

Dh
i , Dv

i . . . the cycle-theoretic images of Dh and Dv in Si, respectively
C0 . . . the section of πm with minimal self-intersection number
Fm . . . the numerical class of a fiber of πm

e . . . −C2
0, invariant of the ruled surface Sm

δ . . . Dh
m · C0, intersection number of Dh

m and C0

3.B Properties of the construction. The following two propositions that
describe features of the morphisms defined in (3.4) will be shown in Sect. 3.C
below.

The first proposition gives a formula for the numerical class of the log
canonical bundle. This is later used in Sect. 6 to give a relation between the
logarithmic Kodaira dimension of S \ D, the genus of the base curve and
the number of fibers contained in Dv.

Proposition 3.5. There exists an effective divisor E ′ ⊂ S, whose support
is exactly the exceptional locus of ρk1 : S → Sk1 , such that the following
equality of numerical classes holds.

KS + D ≡ (e + δ + 2g(C) − 2)ρ∗
m(Fm) + Dv + E ′.

We will later be interested in reducing to a situation where the horizontal
components are isolated in D. The second proposition gives a criterion that
together with Proposition 3.5 can be used to guarantee that Dh

k2
and Dv

k2
intersect only in a controllable manner, if at all.
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Proposition 3.6. Using the notation of Proposition 3.5, let t ∈ C be a point
such that the set-theoretic fiber supp(St) is not contained in the support of
Dv + E ′. Then Dh

k2
and Dv

k2
do not intersect over t, i.e., t �∈ πk2(Dh

k2
∩ Dv

k2
).

3.C Proofs of Propositions 3.5 and 3.6. The proofs are not very compli-
cated. They do, however, require some preliminary computations.

Lemma 3.7. Let t ∈ C be a point and i < m a number such that Si,t is
reducible. Then either Si,t contains at least two (−1)-curves, or it contains
exactly one, but with multiplicity more than one.

Proof. By blowing down vertical (−1)-curves disjoint from Si,t , we can
assume without loss of generality that i = 0, and that all vertical (−1)-
curves blown down in Algorithm 3.3 lie over t. We will then prove the
statement by induction on m − i:

Start of induction, i = m − 1. In this case, Sm−1,t contains exactly two
(−1)-curves.

Induction step. Suppose i < m − 1 and assume that the statement holds for
Si+1. Set x := βi(Ei) ⊂ Si+1. Then there are three possibilities:

(3.7.1) The point x is contained in two vertical (−1)-curves. In this case,
the curve Ei appears in Si,t with multiplicity more than one.

(3.7.2) The point x is contained in exactly one vertical (−1)-curve E ⊂
Si+1,t . In this case the number of (−1)-curves in Si,t equals the
number of (−1)-curves in Si+1,t , and the multiplicity of Ei in Si,t is
at least the multiplicity of E in Si+1,t .

(3.7.3) The point x is not contained in a vertical (−1)-curve. Then Si,t
contains at least two (−1)-curves.

In either case, the claim is shown. This ends the proof of Lemma 3.7. ��
Corollary 3.8. Let k1 ≤ j ≤ m and E ⊆ Sj a vertical (−1)-curve. Then
Dh

j · E = 1.

Proof. Let β := β j ◦ β j−1 ◦ · · · ◦ βk1 : Sk1 → Sj . By construction, β−1(E)

contains a (−1)-curve, E ′ ⊆ β−1(E) ⊂ Sk1 . By definition of k1, we have
Dh

k1
∩ E ′ �= ∅. Therefore Dh

j ∩ E ⊇ β(Dh
k1

∩ E ′) �= ∅ and hence

Dh
j · E ≥ 1. (3.8.1)

Note that (3.8.1) holds for any vertical (−1)-curve in Sj .
Let Sj,t be the fiber containing E. By Assumption 3.1 Dh

j · E ≤
Dh

j · Sj,t = 2. Assume that Dh
j · E = 2. Then the multiplicity of E in Sj,t

must be one and Dh
j cannot intersect any component of Sj,t other than E.

But by Lemma 3.7, there has to be another vertical (−1)-curve E ′′ ⊂ Sj,t,
which is then disjoint from Dh

j . This, however, contradicts (3.8.1) applied
for E ′′, hence Dh

j · E < 2 and the statement follows. ��
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3.9 Proof of Proposition 3.5. The classical formula for the canonical bundle
of a blow-up surface states:

KSi ≡ β∗
i (KSi+1) + Ei .

Next we wish to express Dh
i in terms of Ei and the pull-back of Dh

i+1.
Depending on i, there are two possibilities:

i < k1 In this case Ei and Dh
i are disjoint by construction, so Dh

i ≡
β∗

i (Dh
i+1) and therefore

KSi + Dh
i ≡ β∗

i

(

KSi+1 + Dh
i+1

) + Ei .

i ≥ k1 In this case Dh
i ·Ei = 1 by Corollary 3.8, hence Dh

i ≡ β∗
i (Dh

i+1)−Ei
and therefore

KSi + Dh
i ≡ β∗

i

(

KSi+1 + Dh
i+1

)

.

In summary, we have

KS + D ≡ ρ∗(KSm + Dh
m

) + Dv + E ′, (3.9.1)

where E ′ is an effective divisor supported on the exceptional locus of the
morphism ρk1 : S → Sk1 . The standard formula [5, V. Cor. 2.11] for
the canonical bundle of a ruled surface and a simple intersection number
calculation yields that

KSm ≡ −2C0 + (2g(C) − 2 − e)Fm and Dh
m ≡ 2C0 + (δ + 2e)Fm .

Combined with (3.9.1) this finishes the proof of Proposition 3.5. ��

3.10 Proof of Proposition 3.6. Let t ∈ C be a point as in the statement
of Proposition 3.6. Assume to the contrary, i.e., that t ∈ πk2(Dh

k2
∩ Dv

k2
).

Observe that with this assumption the “while” condition in Step 2 of Al-
gorithm 3.3 stopped only because there were no further (−1)-curves in the
fiber over t. This implies that Sk2,t is reduced, irreducible and contained
in Dv

k2
:

Sk2,t 	 P1 and Sk2,t ⊆ supp
(

(ρk2)∗(Dv)
) = supp

(

(ρk2)∗(Dv + E ′)
)

.

(3.10.1)

In contrast to (3.10.1), since E ′ is supported exactly on the exceptional locus
of ρk1 , the assumption of Proposition 3.6 says precisely that

supp(Sk1,t) �⊂ supp
(

(ρk1)∗(Dv)
) = supp

(

(ρk1)∗(Dv + E ′)
)

. (3.10.2)

Now let

j := max
{

i | supp(Si,t) �⊂ supp
(

(ρi)∗(Dv + E ′)
)}

. (3.10.3)

It follows by (3.10.1) and (3.10.2) that

k1 ≤ j < k2. (3.10.4)
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Loosely speaking, the exceptional curve Ej is the last (−1)-curve contracted
over t that is not in the image of Dv + E ′. The following two statements
follow immediately from the choice of j.

(3.10.5) Ej is contained in the fiber over t, i.e., Ej ⊂ Sj,t
(3.10.6) Ej is not contained in the image of Dv + E ′, i.e., Ej �⊂

supp((ρ j)∗(Dv)).

The choice of j and the “if” statement in Step 2 of Algorithm 3.3 guarantee
that Ej is the only (−1)-curve contained in Sj,t. In that case Lemma 3.7
asserts that the multiplicity of Ej in Sj,t is at least 2. In addition, the first
inequality of (3.10.4) and Corollary 3.8 assert that Dh

j intersects Ej non-
trivially. Then by Assumption 3.1 Dh

j does not intersect any component of
the fiber Sj,t other than Ej . Then (3.10.5) and (3.10.6) imply that

Dh
j ∩ Dv

j ∩ Sj,t = ∅.

This, combined with the second inequality in (3.10.4) above contradicts the
choice of k2 as the index marking the end of Step 2 of Algorithm 3.3.

4 Proof of the main result: Setup of notation

In this section, we briefly fix notation used throughout the proof of The-
orem 1.4. The proof will be given in Sects. 5–7 for the cases when the
logarithmic Kodaira dimension of S◦ is 1, 0 or −∞, respectively. As one
might expect, the case of κ(S◦) = 0 is by far the longest and most involved.

Notation 4.1. Throughout the rest of the article, we keep the notation and
assumptions of Theorem 1.4. We fix a smooth projective compactification S
of S◦ such that D = S \ S◦ ⊂ S is a simple normal crossing divisor. Further-
more, let X be a smooth projective variety and f : X → S a morphism such
that X \ f −1(D) 	 X◦ and f |X◦ = f ◦.

Part of the argumentation involves the log minimal model of (S, D). We
will therefore adhere to the notation introduced in Sect. 2.A. In particular,
we use

φ : (S, D) → (Sλ, Dλ)

to denote the birational morphism from S to its logarithmic minimal model
that is described in Fact 2.1.

5 Proof of the main result: Logarithmic Kodaira dimension 1

If κ(S◦) = 1, the statement of Theorem 1.4 follows almost immediately
from the logarithmic minimal model program.

Proof of Theorem 1.4 when κ(S◦) = 1. By Fact 2.1, we can run the logarith-
mic minimal model program and find a birational morphism φ : S → Sλ
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from S to a normal surface Sλ such that the associated log-canonical divisor
KSλ

+ Dλ on Sλ is nef.
The logarithmic abundance theorem in dimension 2, Fact 2.3, then asserts

that for n � 0 the linear system |n(KSλ
+ Dλ)| yields a morphism to a curve

πλ : Sλ → C, such that KSλ
+Dλ is trivial on the general fiber Fλ of πλ. Like-

wise, if π := πλ ◦φ, and F ⊂ S is a general fiber of π, then KS + D is trivial
on F. It follows that F is either an elliptic curve that does not intersect D,
or that F is a rational curve that intersects D in two points. It follows, in the
former case from [11, Thm. 1, Cor. 3.2] and in the latter case from [13, 0.2],
that f ◦ is isotrivial over F \ D, and therefore Var( f ◦) ≤ 1 = κ(S◦).

��

6 Proof of the main result: Logarithmic Kodaira dimension 0

Throughout the present section, we maintain the notation and assumptions
of Theorem 1.4 and Sect. 4 and assume that κ(S◦) = 0.

As the proof is rather long, we subdivide it into several steps. We start
in Sect. 6.A by recalling a result of Viehweg and Zuo on which much of the
argumentation is based. As a first application, we will in Sect. 6.B reduce
to the situation where S is uniruled. In Sect. 6.C we will further reduce to
the case where S is birationally ruled over a curve.

This makes it possible in Sect. 6.D to employ the results of Chapt. 3
to construct a birational model of S to which the aforementioned result
of Viehweg and Zuo can be applied. The application itself, carried out in
Sects. 6.E–6.F, shows that Var( f ◦) = 0 and finishes the proof of The-
orem 1.4.

6.A A result of Viehweg and Zuo. The argumentation relies on the fol-
lowing result describing the sheaf of logarithmic differentials on the base
of a family of canonically polarized varieties. Note that we are still using
Notation 4.1.

Theorem 6.1 [21, Thm. 1.4(i)]. There exists an integer n > 0 and an
invertible subsheaf A ⊂ Symn Ω1

S(log D) of Kodaira dimension κ(A) ≥
Var( f ◦). ��

We will show that Var( f ◦) = 0 by a detailed analysis of Ω1
S(log D).

Essentially, we prove that for all numbers n and locally free subsheaves A ⊂
Symn Ω1

S(log D), the Kodaira dimension of A is never positive, κ(A) ≤ 0.

6.B Reduction to the uniruled case. A surface S with κ(S◦) = 0, of course,
need not be uniruled. Using the result of Viehweg and Zuo, however, we will
show that any family of canonically polarized varieties over a non-uniruled
surface S with κ(S◦) = 0 is isotrivial.

Proposition 6.2. If S is not uniruled, i.e., if κ(S) ≥ 0, then Var( f ◦) = 0.
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We prove Proposition 6.2 using two lemmata.

Lemma 6.3. If n ∈ N is sufficiently large and divisible, then

OSλ
(n(KSλ

+ Dλ)) = OSλ
. (6.3.1)

In particular, the log canonical Q-divisor KSλ
+ Dλ is numerically trivial.

Proof. (6.3.1) is an immediate consequence of the assumption κ(S◦) = 0
and the logarithmic abundance theorem in dimension 2, Fact 2.3, which
asserts that the linear system |n(KSλ

+ Dλ)| is basepoint-free. ��
Lemma 6.4. If κ(S) ≥ 0, then Sλ is Q-Gorenstein, KSλ

is numerically
trivial and Dλ = ∅.

Proof. Lemma 6.3 together with the assumption that |nKS| �= ∅ for large n
imply that φ contracts all irreducible components of D, and all divisors in
any linear system |nKS|, for all n ∈ N. Hence the claim follows. ��
Proof of Proposition 6.2. We argue by contradiction and assume to the
contrary that both κ(S) ≥ 0 and Var( f ◦) ≥ 1. Let H ∈ Pic(Sλ) be an
arbitrary ample line bundle.

Claim 6.4.1. The reflexive sheaf of differentials (Ω1
Sλ

)∨∨ has slope
µH((Ω1

Sλ
)∨∨) = 0, but it is not semistable with respect to H .

Proof of Claim 6.4.1. Fix a sufficiently large number m > 0 and a general
curve Cλ ∈ |m H|. Flenner’s variant of the Mehta–Ramanathan theorem,
[4, Thm. 1.2], then ensures that if (Ω1

Sλ
)∨∨ is semistable, then so is its

restriction (Ω1
Sλ

)∨∨|Cλ
.

By the general choice, Cλ is contained in the smooth locus of Sλ and
stays off the fundamental points of φ−1. The birational morphism φ will
thus be well-defined and isomorphic along C := φ−1(Cλ). Lemma 6.4 then
asserts that

µH
((

Ω1
Sλ

)∨∨) = KSλ
· Cλ

2m
= 0,

which shows the first claim.
Lemma 6.4 further implies that codimSλ

φ(D) ≥ 2, and so C is disjoint
from D. The unstability of (Ω1

Sλ
)∨∨ can therefore be checked using the

identifications
(

Ω1
Sλ

)∨∨∣

∣

Cλ

∼= Ω1
Sλ

∣

∣

Cλ

∼= Ω1
S

∣

∣

C
∼= Ω1

S(log D)
∣

∣

C
. (6.4.2)

Since symmetric powers of semistable vector bundles over curves are again
semistable [6, Cor. 3.2.10], in order to prove Claim 6.4.1, it suffices to
show that there exists a number n ∈ N such that Symn Ω1

S(log D)|C is not
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semistable. For that, use the identifications (6.4.2) to compute

degC Symn Ω1
S(log D)

∣

∣

C
= const+ · degC Ω1

S

∣

∣

C

= const+ · degCλ

(

Ω1
Sλ

)∨∨∣

∣

Cλ
(6.4.2)

= const+ · (KSλ
· Cλ) = 0. Lemma 6.4

Hence, to prove unstability it suffices to show that Symn Ω1
S(log D)|C con-

tains a subsheaf of positive degree.
Theorem 6.1 implies that there exists an integer n > 0 such that

Symn Ω1
S(log D) contains an invertible subsheaf A of Kodaira dimen-

sion κ(A) ≥ 1. But by general choice of Cλ, this in turn implies that
degC(A|C) > 0, which shows the required unstability. This ends the proof
of Claim 6.4.1. ��

Claim 6.4.1 implies that Ω1
Sλ

|Cλ
has a subsheaf of positive degree or,

equivalently, that it has a quotient of negative degree. On the other hand,
Miyaoka’s criterion for uniruledness, [16, Cor. 8.6] or [7], asserts that then
S is uniruled, leading to a contradiction. ��

In view of Proposition 6.2, it suffices to prove Theorem 1.4 under the
following additional assumption that we maintain for the rest of Sect. 6.

Assumption 6.5. In addition to the notation and assumptions introduced
above we further assume that S is uniruled.

6.C Reduction to birationally ruled surfaces. We will now show that S◦
is dominated by curves that are images of A1 \ {0}. We will then, in Prop-
osition 6.8, conclude that unless f ◦ is isotrivial, a general point of S◦ is
contained in exactly one image of A1 \ {0}. This will exhibit S as a bira-
tionally ruled surface.

Proposition 6.6. The surface S is dominated by a family of rational curves
that intersect D in two points, but it is not dominated by rational curves
intersecting D in one point.

Remark 6.7. In Proposition 6.6, the number of intersection points is to be
understood in the sense of Definition 2.4.

Proof of Proposition 6.6. Recall from [8, Thm. 1.1] that S is dominated by
rational curves that intersect D in one point iff κ(S◦) = −∞, which is not
the case.

Claim 6.7.1. The smooth locus Sλ\Sing(Sλ) is dominated by rational curves
intersecting Dλ in two points.

Proof of Claim 6.7.1. We aim to apply [8, Prop. 1.4(3)], and so we need that

– the log canonical divisor KSλ
+ Dλ is numerically trivial, and that

– the boundary divisor Dλ is not empty.
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The numerical triviality of KSλ
+ Dλ was shown in Lemma 6.3 above. To

show that Dλ �= ∅, we argue by contradiction, and assume that Dλ = ∅. Set

S1
λ := Sλ \ φ(exceptional set of φ)

︸ ︷︷ ︸

finite, contains φ(D)

.

Then S1
λ is the complement of a finite set and φ−1|S1

λ
is a well-defined open

immersion. Let fλ := φ ◦ f . Then X| f −1
λ (S1

λ)
→ S1

λ is a smooth family of
canonically polarized varieties. Consider the following diagram:

X

��

fλ

X̃ := X ×Sλ
S̃oo

��

f̃

Sλ S̃λ
oo α

index-one-cover S̃ ,oo
β

log resolution

where α is the index-one-cover described in [10, 5.19], and β is the minimal
desingularization of S̃λ composed with blow-ups of smooth points so that
β−1(S̃λ \ α−1(S1

λ)) is a divisor with at most simple normal crossings.
By Lemma 6.3, KSλ

is torsion. Since α is étale in codimension one this
implies that KS̃λ

is trivial. Furthermore, S̃λ has only canonical singularities:
we have already noted in Fact 2.1 that the singularities of Sλ are log-terminal,
i.e., they have minimal discrepancy > −1. Then by [10, Prop. 5.20] the
minimal discrepancy of the singularities of S̃λ is also > −1, and as KS̃λ

is
Cartier, the discrepancies actually must be integral and hence ≥ 0, cf. [10,
proof of Cor. 5.21]. Consequently,

KS̃ = β∗(KS̃λ
)

︸ ︷︷ ︸

∼=OS̃

+(effective and β-exceptional). (6.7.2)

This in turn has two further consequences:

i) κ(KS̃) = 0. In particular, S̃ is not uniruled.
ii) If we set S̃1 := (α ◦ β)−1(S1

λ) then X̃| f̃ −1(S̃1)
→ S̃1 is again a smooth

family of canonically polarized varieties. Letting D̃ := S̃ \ S̃1 then D̃ is
exactly the β-exceptional set, and (6.7.2) implies that

κ(S̃1) = κ(KS̃ + D̃
︸ ︷︷ ︸

effective, β-exceptional

) = 0.

In particular, Proposition 6.2 applies to f̃ : X̃ → S̃ and shows that S̃ is
uniruled.

This is a contradiction and thus the proof of Claim 6.7.1 is complete. ��
If φ(D) ⊂ Dλ ∪ Sing(Sλ), i.e., if all connected components of D are

either mapped to singular points, or to divisors, Claim 6.7.1 and Remark 2.5
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immediately imply Proposition 6.6. Likewise, if Sλ were smooth, Prop-
osition 2.7 on small set avoidance would imply that almost all curves in
the family stay off the isolated zero-dimensional components of φ(D), and
Proposition 6.6 would again hold. In the general case, when Sλ is singular,
and d1, . . . , dr are smooth points of Sλ that appear as connected components
of φ(D), a little more care is required.

If D′ is the union of connected components of D which are contracted to
the set of points {d1, . . . , dr} ⊂ Sλ, it is clear that the birational morphism
φ : S → Sλ factors via the contraction of D′, i.e. there exists a diagram

S ��
α

��

φ

S′ ��
β

Sλ ,

where S′ is smooth, and α maps the connected components of D′ to points
d′

1, . . . , d′
r ∈ S′ and is isomorphic outside of D′.

Now, if D′′ := D \ D′, the above argument shows that S′ is dominated
by rational curves that intersect α(D′′) in two points. Since S′ is smooth,
Proposition 2.7 on small set avoidance applies and shows that almost all
of these curves do not contain any of the d′

i . Therefore, we have seen that
most of the curves in question intersect α(D) in two points. Remark 2.5
then completes the proof. ��
Proposition 6.8. Either Var( f ◦) = 0, or there exists a smooth curve C and
morphisms

C S̃ ��
ψ

birational
oo π

birat. ruling
S

such that

(6.8.1) S̃ is a smooth surface and D̃ := ψ−1(D) is a divisor with simple
normal crossing support.

(6.8.2) If t ∈ C is a general point, then the fiber S̃t := π−1(t) is isomorphic
to P1, and intersects D̃ in exactly two points. In particular, D̃· S̃t = 2
for all t ∈ C.

(6.8.3) The restriction of f ◦ to any fiber of π ◦ ψ−1|S◦ is isotrivial.
(6.8.4) The morphism ψ is birational, and isomorphic over S◦ . In particular,

π induces a fibration π ◦ ψ−1|S◦ : S◦ → C.

Proof. If Var( f ◦) = 0, there is nothing to prove, so we may assume that
Var( f ◦) > 0.

By Proposition 6.6, there exists a proper curve C′ ⊂ Chow(S) such
that general points t ∈ C′ are associated with irreducible, reduced rational
curves �t intersecting D in exactly two points, in the sense of Definition 2.4.
Then by [13, Thm. 0.2] the restriction of the family f to a general curve
(�t)t∈C′ is isotrivial, so (6.8.3) follows from the rest of the statement.

Let S̃′ be the restriction of the universal family over Chow(S) to C′ and
ψ′ : S̃′ → S the restriction of the cycle morphism. Finally, let C be the
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normalization of C′, S̃ the normalization of S̃′ ×C′ C and ψ : S̃ → S the
morphism induced by ψ′. After blowing up further, we may assume that S̃
is smooth and that D̃ := (ψ−1(D))red has only simple normal crossings.

(6.8.1) and (6.8.2) hold by construction. The last part of (6.8.2) follows
from the fact that for a general t ∈ C, D̃ intersects S̃t transversally and the
numerical class of S̃t is independent of t. By Zariski’s main theorem [5,
Thm. V.5.2], the proof of Proposition 6.8 is finished if we show that ψ is
birational, and that it is finite over S◦ = S \ D.

Birationality. Since we are working in characteristic 0, it suffices to show
that ψ is generically injective. Assume to the contrary that a general point
in S◦ is contained in more than one of the �t’s.

Fix a general t ∈ C ′. Then the associated curve �t intersects D in exactly
two points. Further, there exists an open set �◦

t ⊂ �t such that any x ∈ �◦
t

satisfies the following:

– x is a general point of S◦, and
– there exists a point tx ∈ C ′ such that the associated curve �tx contains x,

is different from �t , and intersects D in exactly two points.

Since the �tx dominate S, and since f is isotrivial both over �t and over any
of the �tx , f must be isotrivial, contrary to our assumption.

Finiteness. If there was a point s ∈ S◦ that was contained in infinitely
many of the curves (�t)t∈C′, then the isotriviality of the restrictions f |�t

would again imply that f is isotrivial over S, contradicting our assumptions.
��

To prove Theorem 1.4, we may replace S by S̃ and X by a desingular-
ization of X ×S S̃. We will thus make the following additional assumption
that we will maintain without loss of generality for the rest of the present
section.

Assumption 6.9. Assume that there exists a morphism π : S → C to
a smooth curve C, with the following property: If t ∈ C is a general point,
then the fiber St := π−1(t) is isomorphic to P1, and intersects D in exactly
two points. In particular, D · St = 2 for all t ∈ C.

6.D Construction of a good model of S. In order to apply Theorem 6.1
to our setup, we need to study the restriction of the sheaf of logarithmic
differentials to components of the boundary. While the restriction to isolated
components is easily described using Lemma 2.13, in general we have very
little control over the intersection graph of the boundary divisor. It seems
therefore rather difficult to describe logarithmic differentials directly in this
naïve manner.

To overcome this difficulty and to simplify the intersection graph, we
recall the results of Sect. 3 and apply Algorithm 3.3 to the birationally
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ruled surface π : S → C. We have seen in Proposition 3.6 that in the
intermediate surface Sk2 , the horizontal components of the boundary divisor
Dh

k2
are disjoint from the vertical components Dv

k2
as long as Dv + E ′

does not contain an entire fiber of π. This makes the analysis of the sheaf
of logarithmic differentials much easier. Unfortunately, the image ρk2(D)
need not be a normal crossing divisor. We construct a log resolution of
(Sk2, ρk2(D)) as follows.

Construction 6.10. Let S◦
k2

⊂ S◦ be the maximal open subset where ρk2 is
isomorphic. The difference S◦ \ S◦

k2
is then contained in finitely many fibers.

By definition, we can view S◦
k2

also as an open subset of Sk2 , and observe
that

Sk2 \ S◦
k2

= Dh
k2

∪ Dv
k2

∪ {finitely many isolated points}.

Let β : Sµ → Sk2 be the minimal log resolution of the pair (Sk2, Sk2 \ S◦
k2

).
If Xµ is a desingularization of the pull-back X ×Sk2

Sµ, we obtain a diagram
as follows:

Xµ

��

��
fµ

Sµ

��

β

��

πµ=πk2 ◦β

X ��
f

S ��
ρk2

Sk2
��

γ
Sm

��
πm

C

with
π = πm ◦ γ ◦ ρk2

πk2 = πm ◦ γ
πµ = πm ◦ γ ◦ β.

Again, the rational map β−1 ◦ρk2 is an isomorphism over S◦
k2

, so that we can
view S◦

k2
as a subset of Sµ. The morphism fµ is smooth over S◦

k2
⊂ Sµ, and

to show that f ◦ is isotrivial, it suffices to prove isotriviality for fµ. Finally,
let Dµ := Sµ \ S◦

k2
. Then Dµ is a simple normal crossing divisor that we

decompose into horizontal and vertical components, Dµ = Dh
µ ∪ Dv

µ, as
before. Note that by Assumption 6.9 Dh

µ is a double section, in particular,
it has at most two irreducible components.

Notation 6.11. We have applied Algorithm 3.3 to the birationally ruled sur-
face π : S → C in order to construct Sk2 and Sm. Throughout the remainder
of the present Sect. 6, we maintain Notation 3.4 that was introduced on
p. 667 along with Algorithm 3.3.

In particular, we let C0 ⊂ Sm be the distinguished section of πm with the
minimal self-intersection number, e = −C2

0 and δ = Dh
m · C0.

6.E Another application of Theorem 6.1. Fix an irreducible component
Dh,1

µ ⊂ Dh
µ. Using Proposition 3.6 we will be able to show in Sect. 6.F

below that Dh,1
µ is either rational or elliptic, and compute an upper bound

for the number of intersection points between Dh,1
µ and other components

of Dµ. Theorem 6.1 will then apply to Sµ and yield the following proposition.
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Proposition 6.12. Let Dh,1
µ ⊂ Dh

µ be an irreducible component. If either
one of the following holds:

(6.12.1) Dh,1
µ is elliptic and isolated in Dµ, or

(6.12.2) Dh,1
µ is rational and intersects other components of Dµ in at most

two points,

then Var( f ◦) = 0.

Proof. We argue by contradiction and assume Var( f ◦) > 0. By The-
orem 6.1 there exists a number n > 0 and an invertible subsheaf Aµ ⊂
Symn Ω1

Sµ
(log Dµ) of Kodaira dimension κ(Aµ) > 0.

If Fµ ⊂ Sµ is a general fiber of πµ, then Fµ is isomorphic to P1 and
intersects Dµ transversally in exactly two points. Then the logarithmic
normal bundle sequence (2.13.1) from Lemma 2.13 is split. The restric-
tion Ω1

Sµ
(log Dµ)|Fµ

is therefore trivial, and so is Symn Ω1
Sµ

(log Dµ)|Fµ
.

It follows that the restriction of Aµ to Fµ is a trivial subsheaf of
Symn Ω1

Sµ
(log Dµ)|Fµ

. This has two consequences. First, the restriction of

Aµ to Dh,1
µ must have positive Kodaira dimension. Second, the natural map

between restrictions, Aµ|Dh,1
µ

→ Symn Ω1
Sµ

(log Dµ)|Dh,1
µ

, is not zero.
On the other hand, sequence (2.13.2) from Lemma 2.13 gives

0 → Ω1
Dh,1

µ

(

log
(

Dµ − Dh,1
µ

)∣

∣

Dh,1
µ

)

︸ ︷︷ ︸

=:L

→ Ω1
Sµ

(log Dµ)
∣

∣

Dh,1
µ

︸ ︷︷ ︸

=:R

→ ODh,1
µ

→ 0,

where L ∈ Pic(Dh,1
µ ) is a line bundle of degree

deg L = 2g
(

Dh,1
µ

) − 2

+ #
{

intersection points of Dh,1
µ with other components of Dµ

}

.

If Dh,1
µ is elliptic and isolated in Dµ, then deg L = 0. Then R is semistable

of degree 0, and so is Symn R. Likewise, if Dh,1
µ is rational and intersects

other components of Dµ in at most two points, then −2 ≤ deg L ≤ 0. Then
R is a sum of line bundles of non-positive degree, and so is Symn R. In
both cases, we have deg(Aµ|Dh,1

µ
) ≤ 0. A contradiction. ��

6.F Computation of genera and intersection points. In order to apply Prop-
osition 6.12, we need to compute the genus of Dh,1

µ and the number of
intersection points between Dh,1

µ and other components of Dµ. While it is
possible to write down a (complicated) formula that involves both pieces of
information, we found it easier to consider the cases where Dh

µ is reducible,
respectively irreducible, separately in Sects. 6.F and 6.F.

The following simple observation helps to count the number of intersec-
tion points in either case.
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Observation 6.13. If x ∈ Dh,1
µ is a point of intersection between Dh,1

µ and
other components of Dµ, then, using the notation introduced in (6.10), one
of the following holds:

(6.13.1) β(x) is a singular point of Dh,1
k2

= β∗(Dh,1
µ ). In particular, (γ ◦β)(x)

is a singular point of Dh,1
m = (γ ◦ β)∗(Dh,1

µ ).
(6.13.2) β(x) ∈ Dh

k2
∩ Dv

k2
. By Proposition 3.6, πµ(x) is a point whose set-

theoretic fiber supp(Sπµ(x)) is contained in the support of Dv + E ′.
(6.13.3) Dh

k2
is reducible and β(x) ∈ Dh,1

k2
∩ Dh,2

k2
. In particular, Dh

m is
reducible and (γ ◦ β)(x) ∈ Dh,1

m ∩ Dh,2
m . ��

Formulated in more technical terms, Observation 6.13 gives the follow-
ing.

Corollary 6.14. If we denote the the number of points as follows,

I := #
{

intersection points between Dh,1
µ and other components of Dµ

}

I1 := #
{

x ∈ Dh,1
µ

∣

∣ (γ ◦ β)(x) is a singular point of Dh,1
m

}

I2 := #
{

x ∈ Dh,1
µ

∣

∣ supp(Sπµ(x)) ⊂ supp(Dv + E ′)
}

then

I ≤ I1 + I2 +
{

Dh,1
m · Dh,2

m if Dh
m is reducible

0 otherwise. ��
It remains to compute the numbers I1, I2 and Dh,1

m · Dh,2
m in all relevant

cases. Before we do that, we remark that the results of Sect. 3 immediately
give an upper bound for the number I2. For this, we maintain the notation
of Sect. 3. In particular, we use the numbers e and δ that were introduced in
Notation 3.4.

Lemma 6.15. If d is the degree of the finite morphism Dh,1
µ → C, then

0 ≤ I2 ≤ −d · (e + δ + 2g(C) − 2).

Proof. It is clear from the definition that

I2 ≤ d · #
{

t ∈ C
∣

∣ supp(St) ⊂ supp(Dv + E ′)
}

.

On the other hand, since κ(S◦) = 0, it follows from Proposition 3.5 that

0 ≤ #
{

t ∈ C | supp(St) ⊂ supp(Dv + E ′)
} ≤ −(e + δ + 2g(C) − 2).

This shows the claim. ��
6.F.1. Computation of genera and intersection points if Dh

µ is reducible.
Let Dh,1

m and Dh,2
m be the irreducible components of Dh

m and write Dh,i
m ≡

C0 + bi Fm . Since δ = Dh
m · C0, a simple computation shows that
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Dh
m ≡ 2C0 + (δ + 2e)Fm . In particular, b1 + b2 = δ + 2e, and then the

intersection number between the components is

Dh,1
m · Dh,2

m = (C0 + b1 Fm) · (C0 + b2 Fm) = −e + b1 + b2 = e + δ.
(6.16)

The number I can be then bounded as follows:

0 ≤ I ≤ I1 + I2 + Dh,1
m · Dh,2

m Corollary 6.14

= I2 + Dh,1
m · Dh,2

m because Dh,1
m

∼= C is smooth

≤−(e+ δ+2g(C)−2)+ Dh,1
m · Dh,2

m Lemma 6.15
= 2−2g(C). Equation (6.16).

In particular, either Dh,1
µ is elliptic and I = 0, or it is rational and I ≤ 2. The

prerequisites of Proposition 6.12 are thus fulfilled in any case. It follows
that Var( f ◦) = 0, and Theorem 1.4 is shown in this case. ��

6.F.2. Computation of genera and intersection points if Dh
µ is irreducible.

Since Dh
m ≡ 2C0 + (δ + 2e)Fm , the standard formula [5, V. Cor. 2.11] for

the numerical class of the canonical bundle of a ruled surface gives

KSm + Dh
m ≡ (e + δ + 2g(C) − 2)Fm .

The formula [5, V. Ex. 1.3a] for the arithmetic genus of Dh
m then says that

pa
(

Dh
m

) =
(

KSm + Dh
m

) · Dh
m

2
+ 1 = (e + δ + 2g(C) − 2)

︸ ︷︷ ︸

≤0 by Lemma 6.15

+1 ≤ 1.

(6.17)

In particular, Dh
µ is either elliptic or rational. We treat these cases separately.

If Dh
µ is elliptic, then g(Dh

m) = pa(Dh
m) = 1 and so Dh

m is smooth,
I1 = 0. Corollary 6.14 and Equation (6.17) assert

I ≤ I2 ≤ −2 · (e + δ + 2g(C) − 2) = −2 · (

pa
(

Dh
m

) − 1
) = 0.

The elliptic curve Dh
µ is thus isolated in Dµ, Proposition 6.12 implies that

Var( f ◦) = 0, and Theorem 1.4 is shown in this case.
Therefore we may assume that Dh

µ is rational. If Dh
m is singular, its arith-

metic genus is exactly one and [5, IV. Ex. 1.8a] asserts that there are at most
two points in Dh

µ that map to the singularities. Hence, whether Dh
m is singu-

lar or not, I1 is always bounded as I1 ≤ 2 · pa(Dh
m). Then Corollary 6.14,

Lemma 6.15 and (6.17) assert that

I ≤ I1 + I2 ≤ 2 · pa
(

Dh
m

) − 2 · (e + δ + 2g(C) − 2) = 2.

Again, Proposition 6.12 applies and Theorem 1.4 is shown. ��
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7 Proof of the main result: Logarithmic Kodaira dimension −∞
We maintain the notation and assumptions of Theorem 1.4 and Sect. 4 and
assume that κ(S◦) = −∞. In this case, the statement follows quickly from
the logarithmic abundance result of Keel–McKernan:

Theorem 7.1 [8, Thm. 1.1]. Let S be a smooth projective surface and D ⊂ S
a reduced divisor with simple normal crossings. Assume that

κ(S \ D) = −∞.

Then S \ D is dominated by a family of curves that are isomorphic to A1. ��
Proof of Theorem 1.4 if κ(S◦) = −∞. Follows immediately from The-
orem 7.1 because families over A1 are necessarily isotrivial by [13, 0.2].

��

8 Generalizations

8.1. It may be worth to note that the proof of Theorem 1.4 uses only the
following two facts about families of canonically polarized varieties.

(8.1.1) positive variation guarantees the existence of a sheaf A ⊂
Symn Ω1

S(log D) of positive Kodaira–Iitaka dimension – see The-
orem 6.1

(8.1.2) families over P1,A1,A1 \{0} and over elliptic curves are necessarily
trivial.

Since (8.1.2) is an immediate consequence of (8.1.1), the proof of The-
orem 1.4 will work with few modifications whenever we have a family
that guarantees the existence of a subsheaf of Symn Ω1

S(log D) similar to
what we have in (8.1.1). For instance, [21, Thm. 1.4(iii)] applies to give the
following complementary statement to Theorem 1.4.

Theorem 8.2. Let S◦ be a smooth quasi-projective surface and f ◦ : X◦ → S◦
a smooth family of maximal variation, Var( f ◦) = 2 such that ωX◦/S◦ is rela-
tively semi-ample. Then S◦ is of log general type, i.e., κ(S◦) = 2. ��
Remark 8.3. It is conjectured that ωX◦/S◦ is relatively semi-ample iff f ◦ is
a family of minimal manifolds. So far, this is known only if the fibers have
dimension at most three.

Corollary 8.4. Viehweg’s Conjecture 1.1 holds for families of minimal
curves, surfaces or threefolds over surfaces. ��
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