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1. Introduction.

The study of rational curves of minimal degree has proven to be
a very useful tool in Fano geometry. The spectrum of application covers
diverse topics such as deformation rigidity, stability of the tangent sheaf,
classification problems or the existence of non-trivial finite morphisms
between Fano manifolds; see [Hw] for an overview.

In this paper we will consider the situation where X is a projective
variety, which is covered by rational curves, e.g., a Fano manifold over C.
An example of that is Pn, which is covered by lines. The key point of many
applications of minimal degree rational curves is showing that the curves in
question are similar to lines in certain respects. For instance, one may ask:
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QUESTION 1.1. — Under what conditions does there exist a unique

minimal degree rational curve containing two given points?

This question found a sharp answer in [Ke4], see [CMS] and [Ke5] for
a number of applications. The argument used there is based on a criterion
of Miyaoka, who was the first to observe that if the answer to the question
is “No”, then a lot of minimal degree curves are singular. We refer to [Ko],
Prop. V.3.7.5, for a precise statement.

As an infinitesimal analogue of this question one may ask the following:

QUESTION 1.2. — Are there natural conditions that guarantee that a

minimal degree rational curve is uniquely determined by a tangent vector?

Although a definite answer to the later question would be as
interesting as one to the former, it seems that Question 1.2 has hardly
been studied before. This paper is a first attempt in that direction. We give
a criterion which parallels Miyaoka’s approach.

THEOREM 1.3. — Let X be a projective variety over an algebraically

closed field k and H ⊂ RatCurvesn(X) a proper, covering family of rational

curves such that none of the associated curves has a cuspidal singularity.

If char(k) �= 0, assume additionally that there exists an ample line bundle

L ∈ Pic(X) such that for every � ∈ H the intersection number L · � of L is

coprime to char(k). Then, if x ∈ X is a general point, all curves associated

with the closed subfamily

Hx :=
{
� ∈ H | x ∈ �

}
⊂ H

are smooth at x and no two of them share a common tangent direction at x.

Remark 1.3.1. — In Theorem 1.3 we do not assume that H is
irreducible or connected. That will later be important for the applications.

Remark 1.3.2. — We refer the reader to Chapter 3.3.1 for a brief
review of the space RatCurvesn(X) of rational curves. The volume [Ko]
contains a thorough discussion.

If H ⊂ RatCurvesn(X) is an irreducible component, it is known
that H is proper if there exists a line bundle L ∈ Pic(X) that intersects a
curve � ∈ H with multiplicity L · � = 1.
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For complex projective manifolds we give another result. To formulate
the setup properly, pick an irreducible component H ⊂ RatCurvesn(X)
such that

1) the rational curves associated with H dominate X,

2) for a general point x ∈ X, the closed subfamily Hx is proper.

Let Ũ be the universal family, which is a P1-bundle over H. The
tangent map of the natural projection ι : Ũ → X, restricted to the relative
tangent sheaf TŨ/H , gives rise to a rational map τ :

→

P(T∨X)

Ũ X

τ

ι

evaluation

P
1-bundleπ

H

→

→

It has been shown in [Ke4] that τ is well-defined and finite over an open
set of X. Examples of rationally connected manifolds, however, seem to
suggest that the tangent map τ is generically injective for a large class of
varieties. Our main result supports this claim.

THEOREM 1.4. — Let X be a smooth projective variety over the field of

complex numbers and let H ⊂ RatCurvesn(X) be the union of irreducible

components such that the subfamily Hx is proper for all points x ∈ X,
outside a subvariety S ⊂ X of codimension at least 2. Then τ is generically

injective, unless the curves associated with the closed subfamily Hcusp ⊂ H

of cuspidal curves dominate X, and the subvariety

D :=
{
x ∈ X | ∃ � ∈ Hcusp : � has a cuspidal singularity at x

}
,

where curves have cuspidal singularities, has codimension 1.

Remark 1.4.1. — It is known that the family Hx is proper for a general
point x ∈ X if H is a “maximal dominating family of rational curves of
minimal degrees”, i.e., if the degrees of the curves associated with H are
minimal among all irreducible components of RatCurvesn(X) which satisfy
condition 1) from above.

The assumption that Hx is proper for all points outside a set of
codimension 2, however, is restrictive.
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The structure of the article is as follows. In Section 2 we discuss some
basic facts about P1-bundles with an irreducible double section. This is
elementary, but turns out to be important later. A central element of the
proofs of 1.3 and 1.4 is the study of families of dubbies, that is, reducible
curves that consist of touching rational curves. Section 3 contains the
precise definition and relevant properties of dubbies. The actual proofs are
included in Section 4.

Although we consider the main results to be interesting on their own,
we also present several applications in Section 5.

Acknowledgements. — Parts of this paper have been worked out while
the first named author visited the University of Washington at Seattle, the
University of British Columbia at Vancouver and Princeton University as
well as while the second named author visited the Isaac Newton Institute
for Mathematical Sciences at Cambridge. Both authors are grateful to these
institutions for their hospitality. S. Kebekus would like to thank K. Behrend
and J. Kollár for the invitations and for numerous discussions. S. Kovács
would like to thank the organizers, Alessio Corti, Mark Gross, and Miles
Reid for the invitation to the ‘Higher Dimensional Geometry Programme’
of the Newton Institute.

We would also like to thank the anonymous referee for careful reading,
and for pointing us to an error in the first version of this paper.

After the main part of this paper was written, J.-M. Hwang has
informed us that, together with N. Mok, they have shown a statement
similar to, but somewhat stronger than Theorem 1.4. Their unpublished
proof uses entirely different methods. To the best of our knowledge, there
is no other result similar to Theorem 1.3.

2. P1-bundles with double sections.

This preliminary section discusses P1-bundles with an irreducible
double section. Most results here are fairly elementary. We have, however,
chosen to include detailed proofs for lack of a suitable reference.

Throughout the present section let λ : Λ → B be a P1-bundle over
a normal variety B, i.e., a morphism whose scheme-theoretic fibers are all
isomorphic to P1. Let σ : B → Λ be a section of λ, Σred = σ(B)red ⊂ Λ,
and let Σ ⊂ Λ be the first infinitesimal neighborhood of Σred in Λ. That is,
if Σred is defined by the sheaf of ideals J = OΛ(−Σred), then Σ is defined
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by the sheaf J 2. Our aim is to relate properties of Λ with those of its
subscheme Σ.

2.1. The Picard group of the double section.

Recall from [Ha], III. Ex. 4.6, that there exists a short exact sequence
of sheaves of Abelian groups, sometimes called that ‘truncated exponential
sequence’ in the literature (eg., [BBI], Sect. 2)

(2.1) 0→ J
/
J 2︸ ︷︷ ︸

=N∨Σred|Λ

α−−−→ O∗Σ
β−−−→ O∗Σred

→ 1.

Here N∨Σred|Λ is the conormal bundle, β is the canonical restriction map
and α is given by

α : (J
/
J 2,+) −→ O∗Σ,
f �−→ 1 + f.

In our setup, where Σred � B is a section, the truncated exponential
sequence (2.1) is canonically split. Locally we can write the splitting as
follows. Assume that we are given an affine open subset Uα ⊂ Σ and an
invertible function fα ∈ O∗Σ(Uα). Then, after shrinking Uα, if needed, we
will find a bundle coordinate ya, identify

O∗Σ(Uα) �
[
OΣred(Uα)⊗ k[yα]/(y2

α)
]∗

and write accordingly

fα = gα + hα · yα

where gα ∈ O∗Σred
(Uα) and hα ∈ OΣred(Uα). With this notation, the

splitting of sequence (2.1) decomposes fα as

fα = gα ·
[
1 +

hα
gα
· yα

]
︸ ︷︷ ︸
∈Im(αUα )

.

As a direct corollary to the splitting of (2.1) we obtain a canonical
decomposition of the Picard group

(2.2) Pic(Σ) = Pic(Σred)×H1(Σred, N
∨
Σred|Λ).

TOME 54 (2004), FASCICULE 1
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2.2. The cohomology class of a line bundle.

Let L ∈ Pic(Λ) be a line bundle. Using the decomposition (2.2) from
above, we can associate to L a class c(L) ∈ H1(Σred, N

∨
Σred|Λ). As this class

will be important soon, we will now find a Čech-cocycle in Z1(Uα, N∨Σred|Λ)
that represents c(L).

To this end, find a suitable open affine cover Uα of Σ such that L|Uα is
trivial for all α and where bundle coordinates yα exist. Let fα ∈ L(Uα) be a
collection of nowhere vanishing sections which we write in local coordinates
as fα = gα+hα · yα. Using the Uα-coordinates on the intersection Uα ∩Uβ ,
the transition functions for the line bundle are thus written as

fα
fβ

=
gα + hα · yα
gβ + hβ · yα

=
gα
gβ
·
[
1 +

( hα
gα
− hβ

gβ

)
yα

]
∈ O∗Σ(Uαβ).

In other words, the class of c(L) ∈ H1(Σred, N
∨
Σred|Λ) is represented by the

Čech cocycle

(2.3)
( hα
gα
− hβ

gβ

)
yα ∈ Z1(Uα, N∨Σred|Λ).

2.3. Vector bundle sequences associated to line bundles.

Consider the ideal sheaf sequence for Σred ⊂ Σ.

0→ J
/
J 2 −→ OΣ −→ OΣred → 0.

Warning 2.1. — It should be noted that Σred is not a Cartier-
divisor in Σ since its ideal sheaf, J

/
J 2 � N∨Σred|Λ is not a locally free

OΣ-module. Furthermore, the restriction of the ideal sheaf of Σred in Λ
to Σ, J ⊗ OΣ � J

/
J 3, is not isomorphic to the ideal sheaf of Σred in Σ,

J
/
J 2 �� J ⊗ OΣ. In fact, J ⊗OΣ is not even a subsheaf of OΣ.

Construction 2.2. — Let L ∈ Pic(Σ) be a line bundle. By abuse of
notation, identify Σred with B and consider L|Σred a line bundle on B. Then
twist the above sequence with the locally free OΣ-module L⊗ λ∗(L∨|Σred),
and obtain the following sequence of OΣ-modules,

(2.4) 0→ N∨Σred|Λ −→ L⊗ λ∗(L∨|Σred) −→ OΣred → 0.

Finally, consider the push-forward to B:

(2.5) 0→ N∨Σred|Λ −→ λ∗(L)⊗ L∨|Σred︸ ︷︷ ︸
=:EL

A−−−→ OΣred → 0.
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We obtain a vector bundle EL of rank 2 on B which is presented as
an extension of two line bundles. The surjective map EL → OB induces a
section σL : B → P(E). We will use this notation later and also extend it
to line bundles, L ∈ Pic(Λ), by EL := EL|Σ and σL = σL|Σ. Observe that
(P(EL), σL) depends on L only up to a twist by a line bundle pulled back
from B. I.e., for M ∈ Pic(B), EL⊗λ∗M � EL and σL⊗λ∗M = σL.

Much of our further argumentation is based on the following
observation.

PROPOSITION 2.3. — Let L ∈ Pic(Σ) be a line bundle and c(L) in

H1(Σred ,N
∨
Σred|Λ) the class defined above. Then c(L) coincides with the

extension class

e(L) ∈ Ext1(OΣred ,N
∨
Σred|Λ) = H1(Σred ,N

∨
Σred|Λ)

of the vector bundle sequence (2.5). In particular, the map

e:
(
Pic(Σ),⊗

)
−→

(
H1(Σred ,N

∨
Σred|Λ),+

)
,

L �−→ extension class of sequence (2.5)

is a homomorphism of groups.

Proof. — The proof relies on an explicit calculation in Čech
cohomology. We will choose a sufficiently fine cover Uα of Σred and produce
a Čech cocycle in Z1(Uα, N∨Σred|Λ) that represents the extension class e(L).
It will turn out that this cocycle equals the one that we have calculated
in (2.3) above for c(L).

We keep the notation from above and let fα ∈ L(Uα) be a collection
of nowhere-vanishing sections of L. Such sections can be naturally seen to
give local splittings of the sequences (2.4) and (2.5). Explicitly, if we write
fα = gα + hα · yα, then

fα
gα

= 1 +
hα
gα
· yα ∈ (L⊗ L∨|Σred)(Uα)

are nowhere-vanishing sections ofL⊗L∨|Σred and the splitting takes the form

sα : OΣred(Uα) −→ (L⊗ L∨|Σred)(Uα),

1 �−→ 1 + hα/gα · yα.

TOME 54 (2004), FASCICULE 1
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By construction of Ext1, we obtain the extension class as the homology
class represented by the Čech cocycle

sα(1)− sβ(1) ∈ ker(A)(Uαβ) � N∨Σred|Λ(Uαβ).

This difference is given by the following section in N∨Σred|Λ(Uαβ) which
yields the required cocycle.

(
1 +

hα
gα
· yα

)
−

(
1 +

hβ
gβ
· yα

)
=

( hα
gα
− hβ

gβ

)
yα ∈ Z1(Uα, N∨Σred|Λ).

That, however, is the same cocycle which we have obtained above in
formula (2.3) for the class c(L). The proof of Proposition 2.3 is therefore
finished.

2.4. The reconstruction of the P1-bundle from a double section.

It is a remarkable fact that the restriction of an ample line bundle
L ∈ Pic(Λ) to a double section carries enough information so that the whole
P

1-bundle Λ can be reconstructed. The proof is little more than a straight-
forward application of Proposition 2.3. We are grateful to Ivo Radloff who
showed us how to use extension classes to simplify our original proof.

NOTATION 2.4. — Let (Λ,σ) and (Λ′ ,σ′) be two P1-bundles with
sections over B. We say that (Λ,σ) and (Λ′ ,σ′) are isomorphic pairs

(over B) if there exists a morphism γ :Λ → Λ′, an isomorphism of pairs,
such that γ is a B-isomorphism of P1-bundles and γ ◦ σ = σ′. Sometimes
we will refer to these pairs by the image of the section: (Λ,σ(B)), in which
case the meaning of isomorphic pairs should be clear.

THEOREM 2.5. — Given a line bundle L ∈ Pic(Λ), which is not the

pull-back of a line bundle on B, let EL and σL be as in 2.2. Consider the

relative degree d ∈ Z \ {0} of L, i.e., the intersection number with fibers

of λ. If d is coprime to char(k), then (Λ,σ) and (P(EL),σL) are isomorphic

pairs over B.

Proof. — LetH := OΛ(Σred) = J ∨. Then Λ � P(λ∗H) and σ : B → Λ
is the section associated to the surjection, λ∗H → λ∗(H|Σred). First we
would like to prove that λ∗H � λ∗(H|Σ). Indeed, consider the sequence,

0→ H ⊗ J 2 � J −→ H −→ H|Σ → 0.
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We need to prove that λ∗J � R1λ∗J � 0. However, that follows from
considering the push-forward of the sequence,

0→ J −→ OΛ −→ OΣred → 0,

since λ∗OΛ � λ∗OΣred � OB , and R1λ∗OΛ � 0.

This implies the statement for L = H, that is, we obtain that (Λ, σ)
and (P(EH), σH) are isomorphic pairs over B (cf. [Ha], II.7.9).

In order to finish the proof, we are going to prove that (P(EH), σH)
and (P(EL), σL) are isomorphic pairs over B for any L ∈ Pic(Λ). In fact,
it suffices to show that the extension classes of the following sequences are
the same up to a non-zero scalar multiple.

(2.6)
{ 0 −→ N∨Σred|Λ −→ λ∗(H|Σ)⊗H∨|Σred −→ OΣred −→ 0,

0 −→ N∨Σred|Λ −→ λ∗(L|Σ)⊗ L∨|Σred −→ OΣred −→ 0.

Recall that Pic(Λ) = Z×Pic(B) so that we can write L ∈ H⊗d⊗λ∗M
for an appropriate M ∈ Pic(B). By Proposition 2.3 this implies that
the extension classes of the sequences (2.6) are given by c(H|Σ) and
c(H|⊗dΣ ) = d · c(H|Σ). In particular, they differ only by the non-zero
factor d ∈ k.

Warning 2.6. — The construction of the vector bundle EL and
Proposition 2.3 use only the restriction L|Σ. It may thus appear that
Theorem 2.5 could be true without the assumption that L ∈ Pic(Λ) and
that one could allow arbitrary line bundles L ∈ Pic(Σ) instead. That,
however, is wrong and counterexamples do exist. Note that the proof
of Theorem 2.5 uses the fact that L is contained in Z×Pic(B) which is not
true in general if L ∈ Pic(Σ) is arbitrary.

The assumption that d be coprime to char(k) is actually necessary in
Theorem 2.5, as shown by the following simple corollary of Proposition 2.3
and of the proof of Theorem 2.5.

COROLLARY 2.7. — Using the same notation as in Theorem 2.5,
assume that d is divisible by char(k). Then

λ∗(L|Σ)⊗ L∨|Σred � N∨Σred|Λ ⊕OΣred .

TOME 54 (2004), FASCICULE 1
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3. Dubbies.

Throughout the proofs of Theorems 1.3 and 1.4, which we give in
Sections 4.1 and 4.2 below, we will assume that X contains pairs of minimal
rational curves which intersect tangentially in at least one point. A detailed
study of these pairs and their parameter spaces will be given in the present
chapter. The simplest configuration is the following:

DEFINITION 3.1. — A dubby is a reduced, reducible curve, isomorphic

to the union of a line and a smooth conic in P2 intersecting tangentially in

a single point.

Remark 3.1.1. — The definition may suggest at first glance that one
component of a dubby is special in that it has a higher degree than the
other. We remark that this is not so. A dubby does not come with a natural
polarization. In fact, there exists an involution in the automorphism group
that swaps the irreducible components.

Later we will need the following estimate for the dimension of the
space of global sections of a line bundle on a dubby. Let � = �1 ∪ �2 be a
dubby and L ∈ Pic(�) a line bundle. We say that L has type (d1, d2) if the
restrictions of L to the irreducible components �1 and �2 have degree d1

and d2, respectively.

LEMMA 3.2. — Let � be a dubby and L ∈ Pic(�) a line bundle of type

(d1 ,d2). Then h0(�,L) ≥ d1 + d2.

Proof. — By assumption, we have that L|�i � OP1(di). Let �1 · �2
be the scheme theoretic intersection of �1 and �2, ιi : �i → � the natural
embedding, and Li = ιi∗(L|�i) for i = 1, 2. Then one has the following short
exact sequence:

0→ L −→ L1 ⊕ L2 −→ O�1·�2 → 0.

This implies h0(�, L) ≥ χ(L) = χ(L1) + χ(L2)− χ(O�1·�2) = d1 + d2.

3.1. The identification of the components of a dubby.

To illustrate the main observation about dubbies, let us consider a
very simple setup first: let L ∈ Pic(X) be an ample line bundle, and assume
that � = �1∪ �2 ⊂ X is a dubby where both components are members of the
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same connected family H of minimal rational curves. In particular, L|� will
be of type (d, d), where d > 0. Remarkably, the line bundle L induces a
canonical identification of the two components �1 and �2, at least when d is
coprime to the characteristic of the base field k. Over the field of complex
numbers, the idea of construction is the following: Fix a trivialization
t : L|V → OV of L on an open neighborhood V of the intersection
point {z} = �1 ∩ �2. Given a point x ∈ �1 \ �2, let σ1 ∈ H0(�1, L|�1) be a
non-zero section that vanishes at x with multiplicity d. Then there exists a
unique section σ2 ∈ H0(�2, L|�2) with the following properties:

1) the section σ2 vanishes at exactly one point y ∈ �2;

2) the sections σ1 and σ2 agree on the intersection of the components,
i.e., σ1(z) = σ2(z);

3) the differentials of σ1 and σ2 agree at z, i.e., )v(t ◦ σ1) = )v(t ◦ σ2)
for all non-vanishing tangent vectors )v ∈ T�1 ∩ T�2 .

The map that associates x to y gives the identification of the
components and does not depend on the choice of t.

In the following Section 3.2, we will give a construction of the
identification morphism which also works in the relative setup, for bundles
of type (d1, d2) where d1 �= d2, and in arbitrary characteristic.

3.2. Bundles of dubbies.

For the proof of the main theorems we will need to consider bundles of
dubbies, i.e., morphisms where each scheme-theoretic fiber is isomorphic to
a dubby. The following proposition shows how to identify the components
of such bundles.

PROPOSITION 3.3. — Let λ:Λ → B be a projective family of dubbies

over a normal base B and assume that Λ is not irreducible. Then it has

exactly two irreducible components Λ1 and Λ2, both P1-bundles over B.

Assume further that there exists a line bundle L ∈ Pic(Λ) whose restriction

to a λ-fiber has type (m,n), where m and n are non-zero and relatively

prime to char(k). If Σred ⊂ Λ1 ∩ Λ2 denotes the reduced intersection,
then Σred is a section over B, and the pairs (Λ1 ,Σred) and (Λ2 ,Σred) are

isomorphic over B.

Note that the isomorphism given in Proposition 3.3 is not canonical
and may not respect the line bundle L.

TOME 54 (2004), FASCICULE 1



64 STEFAN KEBEKUS & SÁNDOR J. KOVÁCS

Proof of Proposition 3.3. — The map λ is flat because all its scheme-
theoretic fibers are isomorphic. Let Λ1 ⊂ Λ be one of the irreducible
components. It is easy to see that if x ∈ Λ1 is a general point, then Λ1

contains the (unique) irreducible component of �λ(x) := λ−1λ(x) that
contains x. Since λ is proper and flat, λ(Λ1) = B. Hence Λ1 contains one
of the irreducible components of �b for all b ∈ B. Repeating the same
argument with another irreducible component, Λ2, one finds that it also
contains one of the irreducible components of �b for all b ∈ B. However, they
cannot contain the same irreducible component for any b ∈ B: In fact, if
they contained the same component of �b for infinitely many points b ∈ B,
then they would agree. On the other hand, if they contained the same
component of �b for finitely many points b ∈ B, then Λ would have an
irreducible component that does not dominate B. This, however, would
contradict the flatness of λ. Hence Λ1 ∪ Λ2 = Λ. They are both P1-bundles
over B by [Ko], Thm. II.2.8.1.

Let Σ := Λ1 ∩ Λ2 be the scheme-theoretic intersection. Since Λ is
a bundle of dubbies and B is normal, it is clear that its reduction, Σred is a
section, and that Σ is its first infinitesimal neighborhood in either Λ1 or Λ2.
In this setup, the isomorphism of pairs is given by Theorem 2.5.

3.3. The space of dubbies.

In addition to the space of rational curves, which we use throughout,
it is also useful to have a parameter space for dubbies. For the convenience
of the reader, we will first recall the construction of the former space very
briefly. The reader is referred to [Ko], chap. II.1, for a thorough treatment.

3.3.1. The space of rational curves. — Recall that there exists a
scheme Hombir(P1, X) whose geometric points correspond to morphisms
P

1 → X that are birational onto their images. Furthermore, there exists an
‘evaluation morphism’: µ : Hombir(P1, X)×P1 → X. The group PGL2 acts
on the normalization Homn

bir(P
1, X), and the geometric quotient exists.

More precisely, we have a commutative diagram

Homn
bir(P

1, X)× P1 U

µ

Univrc(X X) ι

π

Homn
bir(P

1, X) u RatCurvesn(X)→

→ →

→ →

where u and U are principal PGL2 bundles, π is a P1-bundle and the
restriction of the ‘evaluation morphism’ ι to any fiber of π is a morphism
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which is birational onto its image. The quotient space RatCurvesn(X)
is then the parameter space of rational curves on X. The letter ‘n’ in
RatCurvesn may be a little confusing. It has nothing to do with the
dimension of X and it’s not a power. It serves as a reminder that the
parameter space is the normalization of a suitable quasiprojective subset of
the Chow variety.

It may perhaps look tempting to define a space of dubbies in a
similar manner, as a quotient of the associated Hom-scheme. However,
since geometric invariant theory becomes somewhat awkward for group
actions on non-normal varieties, we have chosen another, elementary but
somewhat lengthier approach. The space of dubbies will be constructed as a
quasi-projective subvariety of the space of ordered pairs of pointed rational
curves, and the universal family of dubbies will be constructed directly.

3.3.2. Pointed rational curves. — It is easy to see that RC•(X) =
Univrc(X) naturally parameterizes pointed rational curves on X and the
pull-back of the universal family

Univrc
• (X) = RC•(X)×RatCurvesn(X) Univrc(X)

is the universal family of pointed rational curves over RC•(X). The
identification morphism RC•(X) → Univrc(X) and the identity map of
RC•(X) gives a section of this universal family:

Univrc
• (X) Univrc(X)

RC•(X)

η 	

π
RatCurvesn(X)

→

→

→

→→

3.3.3. Ordered pairs of pointed rational curves. — The product

RC2
•(X) := RC•(X)× RC•(X)

naturally parameterizes pairs of pointed rational curves. We denote the
projections to the two factors by ρi : RC2

•(X)→ RC•(X) for i = 1, 2. Then
the universal family will be given as the disjoint union

Univrc,2
• (X) =

(
RC2

•(X)×ρ1 Univrc
• (X)

)
∪

(
RC2

•(X)×ρ2 Univrc
• (X)

)
.
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The two copies of the section η : RC•(X)→ Univrc
• (X) induce two sections

of this family, one for each component of the union:

p̃
Univrc

• (X) Univrc
• (X)

ρ1
RC2

•(X) ρ2

σ1 σ2

RC•(X)

η η

RC•(X)

→

→ →

→ →

→

→

Univrc,2
• (X)

3.3.4. The space of dubbies. — Consider the evaluation morphism
ι2 : Univrc,2

• (X) → X. The associated tangent map Tι2 restricted to the
relative tangent sheaf TUnivrc,2

• (X)/RC2
•(X) gives rise to a rational map

τ rc,2 : Univrc,2
• (X) - - - � P(T∨X).

We define a quasiprojective variety, the space of dubbies,

Dubbiesn(X) := normalization of{
� ∈ RC2

•(X) | τ rc,2 is defined at σ1(�) and at σ2(�),

and τ rc,2(σ1(�)) = τ rc,2(σ2(�))
}
.

We will often consider pairs of curves such that both components
come from the same family H ⊂ RatCurvesn(X). For this reason we
define π2 : Dubbiesn(X)→ RatCurvesn(X)× RatCurvesn(X), the natural
forgetful projection morphism, and

Dubbiesn(X)|H := Dubbiesn(X) ∩ π−1
2 (H ×H).

PROPOSITION 3.4. — Assume that H ⊂ RatCurvesn(X) is a proper

family of immersed curves. Then Dubbiesn(X)|H is also proper.

Proof. — Since the tangent map, τ rc,2, is well-defined at σ1(�) and
σ2(�) for every � ∈ RC2

•(X) ∩ π−1
2 (H ×H),

Dubbiesn(X)=normalization of
{
� ∈ RC2

•(X) | τ rc,2(σ1(�)) = τ rc,2(σ2(�))
}
,

which is clearly a closed subvariety of the proper variety π−1
2 (H ×H).

The next statement follows immediately from the construction and
from the universal property of RatCurvesn(X).
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PROPOSITION 3.5. — Let �1 and �2 ⊂ X be rational curves with

normalizations ηi :P1 � �̃i → �i ⊂ X. If Tηi have rank 1 at the point

[0:1] ∈ P1 for i = 1,2, and if the images of the tangent morphisms agree,

Image
(
Tη1|[0:1]

)
= Image

(
Tη2|[0:1]

)
⊂ TX ,

then there exists a point � ∈ Dubbiesn(X) such that p̃−1(�) = �̃1 ∪ �̃2.
If H ⊂ RatCurvesn(X) is a subfamily, and both �i correspond to

points of H, then we can find such an � in Dubbiesn(X)|H .

Remark 3.5.1. — Since RC2
•(X) is the space of ordered pairs of curves,

the space Dubbiesn(X) is really the space of ‘ordered dubbies’. In other
words, for each pair of rational curves with tangential intersection, there
are at least two points of Dubbiesn(X) representing it.

3.3.5. The universal family of dubbies. — In order to show that
Dubbiesn(X) is a space of dubbies indeed, we need to construct a universal
family, which is a bundle of dubbies in the sense of Section 3.2. To this end,
we will factor the universal evaluation morphism via a reducible family of
dubbies.

PROPOSITION 3.6. — The evaluation morphism,

ι:Univrc,2
• (X)×RC2

•(X) Dubbiesn(X)︸ ︷︷ ︸
=: Ũ, decomposes as Ũ1∪Ũ2

−→ U ⊂ X ×Dubbiesn(X),

factors as follows:

Ũ U U
α

ι

two disjoint

β

p̂bundle of
dubbies

bundle of two curves
with complicated intersectionDubbiesn(X)

→ →

→p̃ p

P
1-bundle

The preimage ΛD := p̂−1(D) is reducible for every irreducible component

D ⊂ Dubbiesn(X), and is a bundle of dubbies in the sense that for every

closed point b ∈ D, the fiber p̂−1(b) is isomorphic to a dubby.

Remark 3.6.1. — If � ∈ Dubbiesn(X) is any point, then the two
corresponding curves in X intersect tangentially in one point, but may have
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very complicated intersection at that point and elsewhere. The factorization
of the evaluation morphism should therefore be understood as a partial
resolution of singularities, as shown in Figure 3.1.

α

ι

two disjoint

β

p̂bundle of
dubbies

bundle of two curves
with complicated intersection

→ →

→p̃ p

P
1-bundle

Figure 3.1. A partial resolution of singularities

Proof. — As a first step we will construct the space Λ. Because
the evaluation ι is a finite, hence affine, morphism, it seems appropriate
to construct a suitable subsheaf A ⊂ ι∗OŨ , which is a coherent sheaf
of OU -modules and set β : Λ = Spec(A)→ U .

Let σ1 ⊂ Ũ1 and σ2 ⊂ Ũ2 be the images of the pullbacks of
the canonical sections, σ1 and σ2, constructed in 3.3.3. In order to
construct A, we will need to find an identification of their first infinitesimal
neighborhoods, σ̃1 and σ̃2. Since ι is separable, it follows directly from
the construction that σ̃1 and σ̃2 map isomorphically onto their scheme-
theoretic images ι(σ̃1) and ι(σ̃2). Again, by the definition of Dubbiesn(X),
these images agree: ι(σ̃1) = ι(σ̃2) and we obtain the desired identification

γ : σ̃1 −→ σ̃2.

Let i1 : σ̃1 → Ũ1 and i2 : σ̃2 → Ũ2 be the inclusion maps and consider the
sheaf morphism

ϕ := ι∗(i
#
1 − γ# ◦ i#2 ) : ι∗OŨ −→ ι∗Oσ̃1 .

The sheaf A := ker(ϕ) is thus a coherent sheaf of OU -modules. As it was
planned above, define Λ := Spec(A). The existence of the morphisms α

and β and that ι = β ◦ α follows from the construction. It remains to show
that Λ is a bundle of dubbies. Let � ∈ Dubbiesn(X) be a closed point.
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Replacing Dubbiesn(X) with a neighbourhood of � and passing to a finite,
unbranched cover if necessary, and by abuse of notation still denoting it by
Dubbiesn(X), we can assume that

1) the variety Dubbiesn(X) is affine, say Dubbiesn(X) � SpecR,

2) the P1-bundles Ũi = P(p̃∗OŨi(σi)
∨), for i = 1, 2 are trivial, and

3) there exists a Cartier divisor τ ⊂ U such that ι−1(τ) = τ1 ∪ τ2,
where τi ⊂ Ũi are sections that are disjoint from σi.

We can then find homogeneous bundle coordinates [x0 : x1] on Ũ1

and [y0 : y1] on Ũ2 such that

σ1 = {([x0 : x1], b) ∈ Ũ1 |x0 = 0}, τ1 = {([x0 : x1], b) ∈ Ũ1 |x1 = 0},
σ2 = {([y0 : y1], b) ∈ Ũ2 | y0 = 0}, τ2 = {([y0 : y1], b) ∈ Ũ2 | y1 = 0}.

If we set

Ũ0 := Ũ \ (τ1 ∪ τ2),

then the image U0 := ι(Ũ0) is affine, and we can write the relevant modules
as

OŨ (Ũ0) � R⊗ (k[x0]⊕ k[y0]), Oσ̃1(Ũ0) � R⊗ k[x0]/(x2
0),

Oσ̃2(Ũ0) � R⊗ k[y0]/(y2
0).

Adjusting the bundle coordinates, if necessary, we can assume that the
identification morphism γ#(U0) : Oσ̃2(Ũ0)→ Oσ̃1(Ũ0) is written as

γ#(U0) : R⊗ k[y0]/(y2
0) −→ R⊗ k[x0]/(x2

0),

r ⊗ y0 �−→ r ⊗ x0.

In this setup, we can find the morphism ϕ explicitly:

ϕ(U0) : R⊗
(
k[x0]⊕ k[y0]

)
−→ R⊗ k[x0]/(x2

0),

r ⊗
(
f(x0), g(y0)

)
�−→ r ⊗

(
f(x0)− g(x0)

)
.

Therefore, as an R-algebra, ker(ϕ)(U0) is generated by the elements
u := 1R ⊗ (x0, y0) and v := 1R ⊗ (x2

0, 0), which satisfy the single relation
v(u2 − v) = 0. Thus

ker(ϕ)(U0) = R⊗ k[u, v]/(v(u2 − v)).

In other words, β−1(U0) is a bundle of two affine lines over Dubbiesn(X),
meeting tangentially in a single point.
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It follows directly from the construction ofA that α is an isomorphism
away from σ1 ∪ σ2. The curve p̂−1(�) is therefore smooth outside of
p̂−1(�)∩ β−1(U0), and it follows that p̂−1(�) is indeed a dubby. This shows
that Λ is a bundle of dubbies.

To finish the proof, we need to verify that ΛD is reducible. To that
end, recall from Section 3.3.2 that the universal family Ũ |D = p̃−1(D) is the
disjoint union of two P1-bundles. Since α is isomorphic away from σ1 ∪ σ2,
it follows that ΛD = α(Ũ |D) is reducible as claimed. This ends the proof.

4. Proofs of the main theorems.

4.1. Proof of Theorem 1.3.

The assertion that all curves associated with Hx are smooth at a
general point x ∈ X follows immediately from the assumption that none
of the curves � ∈ H is cuspidal, and by [Ke5], thms. 2.4 (1) and 3.3 (1).
It remains to show that no two curves intersect tangentially.

We will argue by contradiction and assume that we can find a pair
� = �1 ∪ �2 ⊂ X of distinct curves �i ∈ H that intersect tangentially
at x. The pair � is then dominated by a dubby whose singular point maps
to x. Loosely speaking, we will move the point of intersection to obtain
a positive-dimensional family of dubbies that all contain the point x – see
figure 4.1.

ΛT

−−−−−−−−− →
β

T

pr1

X

x

p̂→

◦

τ1

Figure 4.1. Proof of Theorem 1.4

Setup. — To formulate our setup more precisely, we will use
the notation introduced in diagram (3.1) of Proposition 3.6 and recall
from Proposition 3.4 that Dubbiesn(X)|H is proper. Recall further that
the universal family U is a subset U ⊂ X × Dubbiesn(X) and let
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 := pr1 ◦ ι : Ũ → X be the canonical morphism. The assumption that
for every general point x ∈ X, there is a pair of curves intersecting
tangentially at x can be reformulated as

 ◦ σ1

(
Dubbiesn(X)|H

)
=  ◦ σ2

(
Dubbiesn(X)|H

)
= X.

Let D ⊂ Dubbiesn(X)|H be an irreducible component such that

 ◦ σ1(D) =  ◦ σ2(D) = X

holds. By abuse of notation, we will denote ŨD = (ŨD)1 ∪ (Ũ2)D by
Ũ = Ũ1 ∪ Ũ2. Fix a closed point t ∈ D and consider the intersection
numbers

d1 := ∗(L) ·
(
p̃−1(t) ∩ Ũ1

)
and d2 := ∗(L) ·

(
p̃−1(t) ∩ Ũ2

)
.

Renumbering Ũ1 and Ũ2, if necessary, we may assume without loss of
generality that d1 ≥ d2. In this setup it follows from the upper semi-
continuity of the fiber dimension that (|Ũ1

)−1(x) contains an irreducible
curve τ1 which intersects σ1(D) non-trivially and is not contained in

S :=
{
y ∈ Ũ | ι is not an isomorphism at y.

}
Set T := p̃(τ1). After a base change, if necessary, we may assume that T is
a normal curve and consider the restrictions of the morphisms constructed
in Proposition 3.6:

ŨT −−→
α

ΛT −−→
β

UT −−−→
pr1

X.



Using [Ke4], thm. 3.3. (1), we find that τ1 is generically injective over
T , and therefore is a section. Let ŨT,1 = (Ũ1)T and ŨT,2 = (Ũ2)T . It
follows directly from the reducibility assertion of Proposition 3.6 that ΛT
is reducible, and it follows from Proposition 3.3 that (ŨT,1, σ1(T )) and
(ŨT,2, σ2(T )) are isomorphic pairs over T . Let γ : ŨT,1 → ŨT,2 be an
isomorphism and consider the section τ2 := γ(τ1) ⊂ ŨT,2.

The contraction of τ2. — With the notation above, Theorem 1.3
follows almost immediately from the following observation.

LEMMA 4.1. — The morphism  contracts the section τ2 to x, i.e.,
τ2 ⊂ −1(x).
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Notice that this finishes the proof of Theorem 1.3. Indeed, Lemma 4.1
implies that a general point t ∈ T corresponds to a pair �t = �t,1 ∪ �t,2 of
two distinct curves that intersect at x. The curve �t is then singular at x, a
contradiction to the fact that τ1 �⊂ S.

Proof Lemma 4.1. — As a first step, we show that  contracts τ2 to
some point y ∈ X. The proof relies on a calculation of intersection numbers
on the ruled surfaces ŨT,1 and ŨT,2. Recall the basic fact that

Num(ŨT,1) = Z · σ1(T )⊕ Z · FV,1

where FV,1 is a fiber of p̃ŨT,1 : ŨT,1 → T . A similar decomposition holds

for ŨT,2. Since τ1 is a section, we have the numerical equivalence,

τ1 ≡ σ1(T ) + d · FV,1,

where d is a suitable integer. Since γ maps σ1(T ) isomorphically onto σ2(T ),
we obtain a similar equation on ŨT,2,

τ2 ≡ σ2(T ) + d · FV,2.

Next take the ample line bundle L ∈ Pic(X) and set

d3 := ∗(L) · σ1(T ) = ∗(L) · σ2(T ).

These two numbers are indeed equal since the evaluation morphism
identifies the images of the two sections σ1(T ) and σ2(T ). Now we can
write the intersection numbers as

∗(L) · τ2 = ∗(L) · (σ2(T ) + d · FV,2)
= d3 + d · d2 = (d3 + d · d1︸ ︷︷ ︸

=∗(L)·τ1=0

) + d · (d2 − d1) = d · (d2 − d1) ≤ 0.

Since L is ample, this shows that (τ2) is a point, y ∈ X.

It remains to prove that x = y. In order to see that, it suffices to recall
two facts. First, as it was already used above, the evaluation morphism
identifies the images of the two sections σ1(T ) and σ2(T ). Second, we know
that τ1 and the canonical section σ1 ⊂ Λ1 intersect. Let t ∈ p̃(τ1 ∩ σ1(T ))
be a closed point. The two sections τ2 and σ2(T ) will then also intersect,
t ∈ p̃(τ2 ∩ σ2(T )) and we obtain

x = (τ1) = 
(
τ1 ∩ σ1(T ) ∩ p̃−1(t)

)
= 

(
τ2 ∩ σ2(T ) ∩ p̃−1(t)

)
= y.

Lemma 4.1 is thus shown.
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4.2. Proof of Theorem 1.4.

Let H ⊂ RatCurvesn(X) be as in Theorem 1.4. We assume without
loss of generality that all irreducible components of H dominate X. Fix an
ample line bundle L ∈ Pic(X) and let H ′ ⊂ H be an irreducible component
such that for a general curve C ∈ H ′ the intersection number L·C is minimal
among all the intersection numbers of L with curves from H. Finally, fix a
rational curve C ⊂ X that corresponds to a general point of H ′.

The proof of Theorem 1.4 now follows very much the lines of the
proof of Theorem 1.3 from the previous section. The main difference to the
previous argument is that we have to work harder to find the family T , as
the properness of Dubbiesn(X)|H is no longer automatically guaranteed.
Over the complex number field, however, the following lemma holds, which
replaces the properness assumption in our context.

LEMMA 4.2. — Assume that X is a complex-projective manifold, and

let S′ ⊂ X be a subvariety of codimension codimX S′ ≥ 2. If C ∈ H is a

curve that corresponds to a general point of H ′, then C and S′ are disjoint:

C ∩ S′ = ∅.

Proof. — See [Ko], Chapter II, Proposition 3.7 and Theorem 3.11.

COROLLARY 4.3. — Under the assumptions of Theorem 1.4, if C ∈ H ′

is a general curve, and if codimX D ≥ 2, then

HC :=
{
C′ ∈ H | C ∩ C′ �= ∅

}
⊂ H

is proper, and the associated curves are immersed along C. In particular, C
is immersed.

Proof. — It suffices to note that C is disjoint from both S and D.

Before coming to the proof of Theorem 1.4, we give a last preparatory
lemma concerning the dimension of the locus D of cusps.

LEMMA 4.4. — If D ⊂ X is a divisor, then the subfamily Hcusp ⊂ H

of cuspidal curves dominates X.

Proof. — Argue by contradiction and assume that all cuspidal curves
in Hcusp are contained in a divisor. The total space of the family of cuspidal
curves is then at least (1+dimD)-dimensional, so for a general point x ∈ D

there exists a positive dimensional family of cuspidal curves that contain x

and are contained in D. That, however, is impossible: it has been shown
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ΛT

−−−−−−−−−− →
β

T

x

pr1

p̂→

◦

�1
2,ŨT

Figure 4.2. Proof of Theorem 1.4

in [Ke4], Thm. 3.3, that in the projective variety D, a general point is
contained in no more then finitely many cuspidal curves.

Setup of the proof. — For the proof of Theorem 1.4, we will again argue
by contradiction. By Lemma 4.4 this amounts to the assumption that τ

is not generically injective, and that codimX D ≥ 2. By Corollary 4.3,
this implies that the space of curves which intersect C is proper and all
associated curves are immersed along C. Since C was a general curve,
the assumptions also imply that for a general point x ∈ C, there exists
a point t ∈ Dubbiesn(X) corresponding to a pair of marked curves
� = �1 ∩ �2 such that �2 = C and �1 intersects C tangentially at x, i.e.,
Image(τ(σ1(t))) = P(TC |∨x) where τ : Ũ → P(T∨X) is the tangent morphism
from the introduction. Hence we can find a proper curve T ⊂ Dubbiesn(X)
with associated diagram

ŨT −−−−→
α

p̃ p

ΛT −−−−→
β

UT − X

T

−−−→
pr1



p̂→

such that ŨT decomposes as ŨT = ŨT,1 ∪ ŨT,2, where

ŨT,2 � C̃ × T � P1 × T,

and where τ |σ1(T ) dominates P(T∨C ).

End of proof. — We are now in a situation which is very similar to the
one considered in the proof of Theorem 1.3: we will derive a contradiction
by calculating certain intersection numbers on ŨT,1 and ŨT,2.

As a first step, remark that ŨT,1 maps to a surface in X. It follows
that ∗(L) is nef and big on ŨT,1.
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Secondly, since ŨT,2 is isomorphic to the trivial bundle P1 × T , we
have a decomposition

Num(ŨT,2) � Z · FH,2 ⊕ Z · FV,2

where FH,2 is the numerical class of a fiber of the map ŨT,2 → P
1 and FV,2

that of a fiber of the map ŨT,2 → T . Likewise, since the pairs (ŨT,1, σ1(T ))
and (ŨT,2, σ2(T )) are isomorphic, let

Num(ŨT,1) � Z · FH,1 ⊕ Z · FV,1

be the corresponding decomposition. If d denotes the degree of the (finite,
surjective) morphism

 ◦ σ1 =  ◦ σ2 : T −→ C,

then it follows directly from the construction that the curves of type FH,2
intersect σ2(T ) with multiplicity d. We obtain that

σ2(T ) ≡ FH,2 + d · FV,2 and thus σ1(T ) ≡ FH,1 + d · FV,1.

To end the argumentation, let

d1 := ∗(L) · FV,1 and d2 := ∗(L) · FV,2

In particular, since ∗(L) · FH,2 = 0, we have that ∗(L) · σ2 = d · d2. Recall
that H ′ ⊂ H was chosen so that d1 ≥ d2 and write:

∗(L) · FH,1 = ∗(L) ·
(
σ1(T )− d · FV,1

)
= d · d2 − d · d1 ≤ 0.

Because ŨT,1 is covered by curves which are numerically equivalent to FH,1
that contradicts the assumption that ∗(L)|

ŨT,1
is big and nef. The proof

of Theorem 1.4 is thus finished.

5. Applications.
5.1. Irreducibility questions.

Let H ⊂ RatCurvesn(X) be a maximal dominating family of rational
curves of minimal degrees on a projective variety X. How many components
can H have? If we pick an irreducible component H ′ ⊂ H and fix a general
point x ∈ X, does it follow that

H ′x :=
{
� ∈ H ′ | x ∈ �

}
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is irreducible? These questions have haunted the field for quite a while now,
as the possibility that H ′x might be reducible poses major problems in many
of the proposed applications of rational curves to complex geometry – see
the discussion in [Hw].

It is conjectured [Hw], chapter 5, question 2, that the answers to both
of these questions are affirmative for a large class of varieties. There exists
particularly strong evidence if X is a complex manifold and if the dimension
of H ′x is not too small. Theorem 1.3 enables us to give a partial answer.

THEOREM 5.1. — Under the assumptions of Theorem 1.3, if X is a

complex manifold and if for a general point x ∈ X, and for all irreducible

components H ′ ⊂ H

dimH ′x ≥
dimX − 1

2
,

then Hx is irreducible. In particular, H is irreducible.

The main technical difficulty in proving Theorem 5.1 lies in the fact
that the closed points of H are generally not in 1:1-correspondence with
actual rational curves, a possibility that is sometimes overlooked in the
literature. As a matter of fact, this correspondence is only generically
injective, and it may well happen that two or more points of H correspond
to the same curve � ⊂ X. This is due to the very construction of the space
RatCurvesn(X): recall from Section 3.3 that RatCurvesn(X) is constructed
as the quotient of the normalization of Hombir(P1, X). While Hombir(P1, X)
is in 1:1-correspondence with morphisms, P1 → X, that are birational onto
their imnage, the normalization morphism

Homn
bir(P

1, X) −→ Hombir(P1, X),

need not be injective. For complex manifolds, however, we have the following
workaround.

LEMMA 5.2. — Under the assumptions of Theorem 5.1, let x ∈ X be

a general point and set

Hx :=
{
� ∈ H | x ∈ �

}
.

Then the closed points of Hx are in 1:1-correspondence with the associated

curves in X.
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Proof. — Since x is a general point and since we have picked a
fixed component, H ′, all rational curves through x are free by the proof
of [KMM], Theorem 1.1. The space Hombir(P1, X) is therefore smooth at
every point f ∈ Hombir(P1, X) whose image contains the point x by [Ko],
Theorem II.1.7. The normalization morphism

Homn
bir(P

1, X) −→ Hombir(P1, X),

is thus isomorphic in a neighbourhood of f . Since Hombir(P1, X) is in 1:1
correspondence with morphisms P1 → X, the claim follows.

This enables us to prove Theorem 5.1.

Proof of Theorem 5.1. — Choose a general point x ∈ X, and let
τ : H - - - � P(T∨X) be the tangent morphism described in the introduction.
Since all curves associated with Hx are smooth, τ restricts to a regular
morphism

τx : Hx −→ P(T∨X x).

This morphism is known to be finite [Ke4], Theorem 3.4. By Theorem 1.3,
τx is injective.

Now assume that Hx is not irreducible, Hx = Hx,1 ∪ . . . ∪ Hx,n.
Since τx is finite, we have that

dim
(
τx(Hx,1)

)
+ dim

(
τx(Hx,2)

)
≥ dimX − 1 = dimP

(
T∨X x

)
.

Thus, by [Ha], Theorem I.7.2,

τx(Hx,1) ∩ τx(Hx,2) �= ∅.

It follows that τ is not injective, a contradiction.

Lemma 5.2 raises the following question.

QUESTION 5.3. — Are there other conditions than smoothness over C

which guarantee that closed points of Hx are in 1:1-correspondence with

rational curves?

5.2. Automorphism groups of projective manifolds and their
spaces of rational curves.

The setup of Theorem 5.1 naturally generalizes the notion of a prime
Fano manifold, i.e., one that is covered by lines under a suitable embedding.
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Some of the results that have been obtained for prime Fanos hold in the
more general setup of Theorem 5.1. We give one example.

For any complex variety X, let Aut0(X) denote the maximal
connected subgroup of the group of automorphisms. By universal properties,
an automorphism of a complex variety induces an automorphism of the
space RatCurvesn(X). It might be interesting to note that in our setup the
converse also holds.

THEOREM 5.4. — In the setup of Theorem 5.1, if b2(X) = 1, then the

groups Aut0(X) and Aut0(H) coincide.

Proof. — The theorem follows from Theorem 5.1 and [HM], Theorem 1
— observe that the proof of Theorem 1 in [HM] works without the
assumption that H is a dominating family of rational curves of minimal
degrees because we assume here that H is proper.

5.3. Contact Manifolds.

Let X be a projective contact manifold over C, e.g., the twistor space
over a Riemannian manifold with Quaternionic-Kählerian holonomy group
and positive curvature. We refer to [Ke3] and the references therein for an
introduction and for the relevant background information.

If X is different from the projective space, it has been shown
in [Ke3] that X is covered by a compact family of rational curves
H ⊂ RatCurvesn(X) such that for a general point x, all curves associated
with points in Hx are smooth. Thus, the assumptions of Theorem 1.4 are
satisfied, and τ is generically injective. This has been shown previously
in [Ke2] using rather involved arguments which heavily rely on obstructions
to deformations coming from contact geometry.
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[KMM] J. KOLLÁR, Y. MIYAOKA, S. MORI, Rational Connectedness and Boundedness
of Fano Manifolds, J. Diff. Geom., 36 (1992), 765–769.

[Ko] J. KOLLÁR, Rational Curves on Algebraic Varieties, vol. 32 of Ergebnisse der
Mathematik und ihrer Grenzgebiete 3. Folge, Springer, 2nd edition, 1996.
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