
J. ALGEBRAIC GEOMETRY
13 (2004) 233–247
S 1056-3911(03)00331-X
Article electronically published on September 24, 2003

REFLEXIVE PULL-BACKS
AND BASE EXTENSION

BRENDAN HASSETT AND SÁNDOR J. KOVÁCS

Abstract

We prove that Viehweg’s moduli functor of stable surfaces is locally
closed.

1. Introduction

The moduli theory of curves has been studied extensively in the past few
decades. A very important and useful feature of the theory is that the moduli
space of smooth projective curves of genus g admits a geometrically mean-
ingful compactification as the moduli space of stable curves of genus g. The
success of moduli theory of curves leads naturally to a desire for a similar
theory for higher-dimensional varieties.

In recent years there has been great progress in the moduli theory of sur-
faces and higher-dimensional varieties by Alexeev, Kollár, Shepherd-Barron,
and Viehweg [1], [11], [13], [14]. According to their work, moduli spaces exist
for many moduli problems, in particular, for smooth canonically polarized
varieties. More generally, it is established that if a moduli problem satisfies
certain properties, then a corresponding (coarse) moduli space exists. The
most important of these properties are separatedness, boundedness and local
closedness. According to the above authors’ work the former two of these hold
for the moduli problem of canonically polarized stable surfaces—the candi-
date for a geometrically meaningful compactification of the moduli space of
smooth canonically polarized surfaces. Local closedness, however, has pre-
sented a very stubborn problem.

In fact, one of the main problems is that it is not entirely clear what the
“right” definition of the moduli functor should be. This is a very delicate
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problem as one would like to make the functor large enough to obtain a
compact moduli space, but enlarging the class too much could lead to a loss
of separatedness and/or boundedness.

In addition, not only the admissible models have to be decided, but also the
admissible families of those models. Experts generally agree on what models
should be allowed (the semi-log canonical models). However, the right notion
of admissible families is still to be decided.

Both Kollár and Viehweg suggest reasonable definitions, but local closed-
ness has yet to be established for either of their moduli functors. At this
time it is not even clear whether their definitions differ. However, we should
point out that Kollár’s moduli functor is known to satisfy a weak form of
local closedness. Precisely, after passage to a formal or étale local ring, local
closedness holds provided we restrict to base change morphisms arising from
local ring homomorphisms [12], §14.

The goal of this paper is to prove that Viehweg’s moduli functor of canon-
ically polarized varieties is locally closed.

Definitions and notation. Every scheme is considered to be of finite
type over an algebraically closed field k unless specifically noted otherwise.

Let f : X → S be a morphism. Then Xs denotes the fibre of f over the
point s ∈ S and fs denotes the restriction of f to Xs. More generally, for a
morphism α : T → S, let fT : XT = X ×S T → T . In particular, one has the
following commutative diagram:

XT = X ×S T
αX−−−−→ X

fT

y yf
T

α−−−−→ S

For a coherent OX -module F , FT will denote α∗XF on XT . Tensor products
of OXT -modules are over OXT . These conventions will be used through the
entire article.

We will write F∗ for the dual OX -module HomX(F ,OX) when there is no
risk of confusion. The double dual F∗∗ is called the reflexive hull of F and
there is a natural OX -module homomorphism

F → F∗∗;
F is said to be reflexive if this is an isomorphism. We shall also consider
reflexive powers

F [m] := (F⊗m)∗∗ F [−m] := (F⊗m)∗

for m > 0. In general, there exist natural maps

(F∗∗)T → (FT )∗∗ and (F [m])T → (FT )[m]
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which need not be isomorphisms, even when F is reflexive. Of course, these
maps are isomorphisms when F is locally free.

Acknowledgments. We both owe a great debt to János Kollár for pa-
tiently answering our questions about the moduli problems and technical is-
sues addressed in this paper. We would also like to thank Eckart Viehweg for
many useful discussions and for inviting the second author to visit Universität
Essen. The first author benefitted from conversations with Dan Abramovich,
David Hyeon, and Rahul Pandharipande. We are grateful to Miles Reid for
many helpful comments.

2. Moduli functors

Definition 2.1. Fix a base scheme B. The moduli functor of polarized
proper schemes is the contravariant functor

MP : B-schemes→ Sets

given by

MP(S/B) :=


pairs (f : X → S,L), where

f is a flat and proper morphism,
L is an f -ample line bundle on X


/
∼

where two families (f1 : X1 → S,L1) and (f2 : X2 → S,L2) are equivalent
[(f1 : X1 → S,L1) ∼ (f2 : X2 → S,L2)] iff there is an isomorphism h :
X1 → X2 such that f1 = f2 ◦ h and there is a line bundle M on S such that
L1
∼= h∗L2 ⊗ f∗1M. For any morphism of B-schemes, α : T → S, we have

MP(α)(X → S,L) = (XT → T, α∗XL).

In this article we will restrict to the case of B = k, an algebraically closed
field. Schk will denote the category of k-schemes.

Any subfunctor of this moduli functor is called a moduli functor of polarized
proper schemes.

Definition 2.2. A subfunctor F ⊂ MP is called locally closed iff the
following condition is satisfied:

For every (f : X → S,L) ∈ MP(S) there is a locally closed subscheme
j : Su ↪→ S such that if α : T → S is any morphism, then

(fT : XT → T, α∗XL) ∈ F(T ) iff there is a factorization T
α→ Su

j→ S.

We say that F ⊂MP is open iff Su ⊂ S is open for every S.
For the definition of bounded, separated, and complete moduli functors the

reader is referred to [14, 1.15].
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Definition 2.3. Fix a polynomial h ∈ Q[t] such that h(Z) ⊆ Z. The moduli
functor of polarized schemes with Hilbert polynomial h is the subfunctor MPh

of MP given by

MPh(S) = {(f : X → S,L) ∈MP(S) | χ(LνXs)
= h(ν) for all ν ∈ Z and s ∈ S}.

This is an open and closed subfunctor.
Definition 2.4. A subfunctor M[N ] ⊂ MP is called a moduli functor

of canonically polarized Q-Gorenstein schemes of index N if, for each
(f : X → S,L) ∈M[N ](S),

(2.4.1) Xs is connected, Cohen-Macaulay, and Gorenstein outside a closed
subscheme of codimension at least two for each s ∈ S;

(2.4.2) f is equivalent to a family of the form (f : X → S, ω
[N ]
X/S).

Remark 2.5. Assumption (2.4.1) implies that the fibers are equidimen-
sional projective schemes. One can show that the relative Cohen-Macaulay
condition is open (see [5, IV3, 12.2.1]), as is the locus where the relative dualiz-
ing sheaf is locally free (the relative Gorenstein locus). Since the complement
to the relative Gorenstein locus intersects the fibers in codimension ≤ 2 over
an open subset of the base, it follows that Assumption (2.4.1) is open. Note
that the singularity assumptions may also be expressed as a condition on the
morphism f : its relative dualizing complex is supported in degree −dim(X/S)
and the resulting dualizing sheaf is locally free over an open subset whose com-
plement meets each fiber in codimension two. We refer the reader to [3] for a
recent account of relative duality.

We emphasize that for families of canonically polarized Q-Gorenstein
schemes of index N , ω[N ]

X/S is invertible by definition. This is a condition

on the morphism, not just a condition on the fibers. Indeed, ω[N ]
X/S may fail

to be invertible even when ω
[N ]
Xs

is invertible for each s ∈ S (see [13]). Also,
it is not entirely obvious that Assumption (2.4.2) actually yields a subfunc-
tor, i.e., that families of canonically polarized schemes pull back to families of
canonically polarized schemes. This is proved in the following lemma:

Lemma 2.6. Given a family of canonically polarized Q-Gorenstein
schemes of index N , f : X → S, and a morphism α : T → S, we have

α∗Xω
[N ]
X/S ' ω

[N ]
XT /T

.

Proof. Let U ⊂ X be the relative Gorenstein locus of f , i.e., the largest
open subset U of X such that Us is Gorenstein for all s ∈ S or equivalently
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the largest open subset U of X such that ωX/S |U is a line bundle. Then
ω

[N ]
X/S |U ' ωNU/S and hence

α∗Xω
[N ]
X/S |α−1

X U ' α
∗
Xω

N
U/S ' ωNα−1

X U/T
' ω[N ]

XT /T
|α−1
X U .

Now codim(Us, Xs) ≥ 2 for all s ∈ S, so codim((α−1
X U)t, (XT )t) ≥ 2 for all

t ∈ T . Finally, α∗Xω
[N ]
X/S and ω[N ]

XT /T
are reflexive, and since they are isomorphic

on α−1
X U , they are isomorphic on XT (cf. (3.6.2)). �

If M[N ] is a functor of canonically polarized Q-Gorenstein schemes of index
N , then we can consider M

[N ]
h as well. An argument using Proposition 3.6

(and very similar to Lemma 2.6) implies

M
[N ]
h (S) = {(f : X → S) ∈M[N ](S) | χ(ω[ν·N ]

Xs
) = h(ν)

for all ν ∈ Z and s ∈ S}.

Remark 2.7. Note that we speak of “a” moduli functor and not “the”
moduli functor. The reason is that in order to obtain a relatively nice moduli
space one has to restrict to a smaller class than all the canonically polarized
Q-Gorenstein schemes of index N . On the other hand, one could consider
“the” moduli space of smooth varieties, but in that case one would not obtain
a compact moduli space. The “right” class of schemes will be somewhere
between these two and part of the difficulty is to identify that class.

Assumptions 2.8. Assume the following:

(2.8.1) M
[N ]
h is locally closed;

(2.8.2) M
[N ]
h is bounded;

(2.8.3) M
[N ]
h is separated;

(2.8.4) M
[N ]
h is complete;

(2.8.5) for all smooth projective curves S, and for all (f : X → S) ∈
M

[N ]
h (S), the sheaf f∗ω

[ν·N ]
X/S is semi-positive for all ν sufficiently

large and divisible.

Theorem 2.9 ([10, 4.2.1], [13, 5.7], [11, 5.6], [14, 9.23, 9.30]). Assume that
k has characteristic zero. We retain the notation introduced above and assume
that M

[N ]
h satisfies the conditions of 2.8. Let ν > 0 be a fixed integer such that

ω
[ν·N ]
X is very ample and without higher cohomology for all X ∈M

[N ]
h (k).

Then there exists a coarse algebraic moduli spaceM[N ]
h for M

[N ]
h which is a

projective scheme and for all µ� 0 there exist a p > 0 and an ample invertible
sheaf λ(p)

µ·ν·N on M[N ]
h , such that for all (f : X → S) ∈ M

[N ]
h (S) and for the

induced morphism φ : S →M[N ]
h one has φ∗λ(p)

µ·ν·N =
(

det f∗ω
[µ·ν·N ]
X/S

)p
.
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Viehweg’s Functor (Property V[N ]). Consider a family of polarized va-
rieties, f : X → S, satisfying Assumption (2.4.1). We say that f satisfies
property V[N ] if ω[N ]

X/S is invertible.
Note that families of canonically polarized Q-Gorenstein schemes of index

N automatically satisfy property V[N ] (by Assumption (2.4.2)).
Definition 2.10. Let V

[N ],d
h be the moduli functor of canonically polarized

Q-Gorenstein schemes of index N and Hilbert polynomial h satisfying the
following:

(2.10.1) for each s ∈ S, Xs is a reduced scheme of dimension d and has
semi-log canonical singularities.

We emphasize that we are retaining Assumptions (2.4.1) and (2.4.2). Note
that each fiber Xs automatically has index N .

Let N ′ = mN be a positive multiple of N and h′(t) = h(mt). There is a
natural transformation,

V
[N ],d
h → V

[N ′],d
h′ ,

induced by taking the mth power of the canonical polarization.
Kollár’s Functor (Property K). Consider a family of polarized varieties,

f : X → S, satisfying Assumption (2.4.1). We say that f satisfies property
K if

α∗Xω
[j]
X/S ' ω

[j]
XT /T

for any morphism, α : T → S, and each j ∈ Z.
For canonically polarized Q-Gorenstein schemes of index N , it suffices to

verify this for j = 1, . . . , N − 1. Indeed, Proposition 3.6 yields

ω
[j+νN ]
X/S = ω

[j]
X/S ⊗ (ω[N ]

X/S)ν .

Definition 2.11. Let K
[N ],d
h be the moduli functor of canonically polarized

Q-Gorenstein schemes of index N and Hilbert polynomial h satisfying the
following:

(2.11.1) for each s ∈ S, Xs is a reduced scheme of dimension d and has
semi-log canonical singularities;

(2.11.2) each family (f : X → S, ω
[N ]
X/S) ∈ K

[N ],d
h (S) satisfies property K.

If a family satisfies property K, then the family is in K
[N ],d
h if the indices

of the fibers all divide N . Let N ′ = mN be a positive multiple of N and
h′(t) = h(mt). Then the natural transformation,

K
[N ],d
h → K

[N ′],d
h′ ,

induced by taking the mth power of the canonical polarization, is an open
immersion.
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These conditions are stronger than those of Viehweg’s functor, so there is
a natural transformation of moduli functors,

K
[N ],d
h → V

[N ],d
h ,

inducing a bijection between K
[N ],d
h (k) and V

[N ],d
h (k).

Moduli of Surfaces: Smoothability and Boundedness.
Definition 2.12. Let V

[N ],2
h,sm (k) denote the following subset of V

[N ],2
h (k):

V
[N ],2
h,sm (k) = {X | X ∈ V

[N ],2
h (k), and ∃(g : Y → C) ∈ V

[N ],2
h (C), such that

C is an irreducible curve, X ' Xc for some c ∈ C, and

Xgen is a normal surface with at most rational double points.}

We define K
[N ],2
h,sm (k) analogously.

Once we construct the moduli schemes V [N ],2
h and K[N ],2

h , we may realize
V

[N ],2
h,sm (k) and K

[N ],2
h,sm (k) as the closed points of certain subvarieties. The points

satisfying the smoothability condition form a union of irreducible components,
and this union forms a closed subvariety. However, it is not known whether
this admits a functorial scheme structure.

Remark 2.13. Assume that k has characteristic zero for the remainder of
this subsection. [1, 5.11] implies that there exists an N ∈ N such that

Vh(k) :=
⋃
m∈N

V
[m],2
h(mt)(k) = V

[N ],2
h(Nt)(k)

and
Vh,sm(k) :=

⋃
m∈N

V
[m],2
h(mt),sm(k) = V

[N ],2
h(Nt),sm(k).

In order to construct moduli spaces for V
[N ],d
h and K

[N ],d
h , one has to verify

the assumptions of 2.8. All the properties listed in 2.8, except (2.8.1), are the
same for both V

[N ],d
h and K

[N ],d
h .

• [10, 2.1.2] implies (2.8.2).
• [13, 5.1] implies (2.8.3) and (2.8.4), at least for the irreducible

components satisying the smoothability condition. For the general
case, one has to construct a unique stable limit for a one-parameter
family of nonnormal stable surfaces. Consider its normalization
as a family of stable log surfaces with boundary equal to the con-
ductor. Apply the log minimal model program and the results of
[7] to obtain a unique limiting stable log surface. We glue back
together along the conductor to recover the stable limit of our
original family.
• [11, 4.12] implies (2.8.5).
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That leaves us to verify (2.8.1), and in the rest of the article we will con-
centrate on this property.

Proof of Local Closedness. To prove that V
[N ],d
h is locally closed, one

would naturally list the properties of the functor and prove one by one that
all of them are locally closed. However, this requires special attention. A po-
tentially tricky part is that the order of this procedure matters. For instance,
the requirement that ω[N ]

X/S be invertible should not be considered until only

open properties remain, because it may very well happen that ω[N ]
X/S is not

invertible along an admissible fiber Xs but ω[N ]
XT /T

becomes invertible after
restricting to some locally closed T ⊂ S containing s. In particular, the locus
where ω[N ]

X/S is invertible does not coincide with the locus where ω[N ]
Xs

is invert-
ible. The key problem is: taking reflexive powers does not generally commute
with base extension.

The next theorem is the main result of this article. Here we reduce local
closedness to a rather technical statement which will be proved in the next
section.

Theorem 2.14. The moduli functor of canonically polarized Q-Gorenstein
schemes of index N is locally closed.

Proof. In proving local closedness, we address the conditions imposed on
the fibers of f : X → S separately from the conditions imposed on the mor-
phism f itself. We have already observed in Remark 2.5 that condition (2.4.1)
is open. Now we turn to condition (2.4.2), i.e., ω[N ]

X/S is locally free. Suppose
we are given an arbitrary family of polarized varieties (f : X → S,L) with
fibers satisfying (2.4.1). We apply Theorem 3.11 with F = ω⊗NX/S . This sheaf
may be terribly singular, perhaps even with torsion along certain fibers. How-
ever, ω⊗NX/S does have one salient property; it commutes with arbitrary base
extensions α : T → S, i.e.,

α∗Xω
⊗N
X/S = ω⊗NXT /T .

By Theorem 3.11 there exists a locally closed subscheme Su ⊂ S with the
following universal property. Given a morphism α : T → S, there exists an
invertible sheaf N on T and an isomorphism

(ω⊗NXT /T )∗∗ '−→ LT ⊗ f∗TN
if and only if α factors through Su. By definition we have

ω
[N ]
XT /T

= (ω⊗NXT /T )∗∗,

so the proof that condition (2.4.2) is locally closed is complete. �
Theorem 2.15. If k is a field of characteristic zero, then V

[N ],2
h is a locally

closed moduli functor. In particular, V
[N ],2
h,sm (k) is locally closed.
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Proof. It remains to verify that condition (2.10.1) is locally closed once
conditions (2.4.1) and (2.4.2) are imposed. In particular, we may assume that
we have families of canonically polarized Q-Gorenstein varieties of index N .

The condition that the geometric fibers Xs are reduced is open by [5, IV3,
12.2.1]. The locus where the fibers have semi log canonical singularities is
open by [8, 2.6] (see also [13, §5]). �

Remark 2.16 (characteristic zero). If one assumes the existence of mini-
mal models in dimension d + 1, the results of [8] imply that having semi-log
canonical singularities is an open condition for families of canonically polar-
ized Q-Gorenstein varieties of index N . It follows that V

[N ],d
h is locally closed.

3. Local closedness of reflexive pull-backs

We first recall the following result from [5, IV, §6.3]:
Proposition 3.1. Let A and B be noetherian local rings, k the residue

field of A, φ : A → B a local homomorphism, M an A-module of finite type,
and N a B-module of finite type. If N is flat and nonzero as an A-module,
then

depthB(M ⊗A N) = depthA(M) + depthB⊗Ak(N ⊗A k).

We assume that all schemes are noetherian.
Let f : X → S be a flat morphism of schemes and E a coherent OX -

module flat over S. We say E is Sr relative to f if the following holds: for
each x ∈ X, s = f(x), F = Xs we have

depthOF,x(E|F ) ≥ min(r, dimOX,x − dimOS,s).
In other words, the restriction of E to each fiber is Sr. By Proposition 3.1,
this is equivalent to

depthOX,x(E) ≥ depthOS,s(OS,s) + min(r, dimOX,x − dimOS,s).
Two special cases deserve further attention. If E = OX , then our definition
coincides with the ordinary definition of an Sr morphism (see [5, IV, §6]). If
S = Spec(K), where K is a field, then we recover a notion of an Sr sheaf. For
example, a sheaf is S1 provided it has no imbedded points. We can translate
the definition of Sr-sheaves using the cohomological interpretation of depth
(see [6, §III.3 Ex. 4]).

Proposition 3.2. Let f : X → S be a flat morphism of schemes and E a
coherent OX-module flat over S. Then E is Sr relative to f if and only if, for
each x ∈ X, s = f(x), we have

min{i : H i
x(E) 6= 0} ≥ depthOS,s(OS,s) + min(r, dimOX,x − dimOS,s).
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Here Hi
x(E) denotes cohomology on Spec(OX,x) with support at the closed

point and coefficients in Ex. If Z ⊂ X is closed, we use HiZ to denote the local
cohomology sheaf associated to cohomology on X with support along Z.

Proposition 3.3. Let f : X → S be a flat morphism of schemes and E
a coherent OX-module flat over S and Sr relative to f . Let Z ⊂ X be a
closed subscheme with ideal sheaf IZ . Assume that codim(Zs, Xs) ≥ r for
each s ∈ S. Then we have depthOX (IZ , E) ≥ r, or equivalently,

HkZ(E) = 0 for k = 0, . . . , r − 1.

Proof. The cohomological interpretation of depth gives the equivalence of
the two conclusions.

For each point x ∈ Z we have

H0
x = H0

x ◦ H0
Z

which induces a spectral sequence

Ep,q2 := Hp
x ◦ H

q
Z =⇒ Hp+q

x .

The proof is by induction on k, starting with k = 0. Assume that H0
Z(E) 6= 0

and its support contains a point x ∈ Z. We have H0
x(H0

Z(E)) 6= 0 and thus
H0
x(E) 6= 0. Writing s = f(x), we obtain a contradiction to Proposition

3.2. Now assume that HiZ(E) = 0 for i = 0, . . . , k − 1 where k < r, but
that HkZ(E) 6= 0 and its support contains x ∈ Z. It follows that Hk

x (E) =
H0
x(HkZ(E)) 6= 0, which again contradicts Proposition 3.2. �
Corollary 3.4. Let f : X → S be a flat Sr morphism, and Z ⊂ X a

subscheme such that codim(Zs, Xs) ≥ r for each s ∈ S. Then grade(IZ) ≥ r.
Proposition 3.5. Let f : X → S be a flat morphism of schemes, E a

coherent sheaf flat over S and S2 relative to f , and j : U ↪→ X an open
subscheme with complement Z. Assume that codim(Zs, Xs) ≥ 2 for each
s ∈ S. Then the natural map

E → j∗(E|U )

is an isomorphism.
Proof. The long exact sequence

(3.5.1) 0→ H0
Z(E)→ E → j∗(E|U )→ H1

Z(E)→ 0

yields the isomorphism. �
Proposition 3.6. Let f : X → S be a flat S2 morphism, F a reflexive co-

herent OX -module. Let Z ⊂ X be a closed subscheme so that codim(Zs, Xs) ≥
2 for each s ∈ S, and let U be the complement of Z.

(3.6.1) Then HkZ(F) = 0 for k = 0, 1 and the natural map F → j∗(F|U )
is an isomorphism.
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(3.6.2) Let F ′ be another coherent OX-module which is either S2 relative
to f or reflexive. If F|U'F ′|U , then F ' F ′.

Proof. Consider a presentation of F∗ by locally free sheaves

E2 → E1 → F∗ → 0.

On dualizing we obtain
0→ F → E∗1 → E∗2 .

Since the E∗i are locally free and f is S2, Proposition 3.3 yields

HkZ(Ei) = 0 for k = 0, 1.

Taking the associated long exact sequences, we obtain the desired vanishing
for F . The long exact sequence in local cohomology (cf. (3.5.1)) yields the
first isomorphism. The isomorphism between F and F ′ is obtained by pushing
forward. �

We obtain a criterion for when push-forwards of reflexive sheaves are re-
flexive:

Corollary 3.7. Let f : X → S be a flat S2 morphism and j : U ↪→ X

an open subscheme with complement Z. Assume that codim(Zs, Xs) ≥ 2 for
each s ∈ S. If G is a reflexive coherent sheaf on U , then j∗G is also reflexive
and coherent.

Proof. Choose a coherent subsheaf E ⊂ j∗G so the induced map E|U → G
is an isomorphism [6, §II.5 Ex.15]. The reflexive hull E∗∗ is also coherent and
we have E∗∗|U ' G. An application of (3.6.2) implies

E∗∗ → j∗(E∗∗|U ) ' j∗G

is an isomorphism. �
We also obtain the following (cf. [2, 1.4.1]):
Corollary 3.8. Let f : X → S be a flat S2 morphism, E a coherent sheaf

flat over S and S2 relative to f , and j : U ↪→ X an open subscheme with
complement Z. Assume that codim(Zs, Xs) ≥ 2 for each s ∈ S and E|U
is reflexive. Then E is reflexive, and furthermore, for each α : T → S the
pull-back ET is reflexive.

Proof. We apply (3.6.2) to show that the natural map E → E∗∗ is an
isomorphism. Our hypotheses are preserved under base extension, so ET is
reflexive for each α : T → S. �

Suppose that f : X → S is a flat projective Cohen-Macaulay morphism of
relative dimension d. Then the relative dualizing sheaf ωX/S exists, commutes
with base extension, and is Sd relative to f [9, §9,21], [3, 3.6.1], [4, 21.8]. In
light of our previous results, it is natural to compare the relative dualizing
sheaf with the reflexive hull of a coherent sheaf.
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Theorem 3.9. Let f : X → S be a flat projective Cohen-Macaulay mor-
phism of relative dimension d with geometrically connected fibers. Let G be a
coherent sheaf on X, and U ↪→ X an open subset with complement Z so that
codim(Zs, Xs) ≥ 2 for each s ∈ S. Assume that ωX/S and G are locally free
on U . Then there exists a locally closed subscheme Su ⊂ S with the following
property. Given a morphism α : T → S, there exists an invertible sheaf N on
T and an isomorphism

(3.9.1) (GT )∗∗ '−→ ωXT /T ⊗ f∗TN

if and only if α factors through Su.
Proof. We produce a subscheme Su ⊂ S over which the isomorphism (3.9.1)

exists. Let W ′ ⊂ S denote the subscheme supporting Rdf∗G. Note that W ′

has a naturally defined scheme structure. Indeed, let P• → G be a presenta-
tion of G by locally free OX -modules. The proof of the cohomology and base
change theorem [5, III, §7.7] produces a complex of locally free OS-modules,

0→ E0 → E1 → . . .→ Ed−1
ψ→ Ed → 0

computing the direct image sheaves Ri(fT )∗P•T for any base extension T → S.
Since the maximal fibre dimension of f is d, Rj(fT )∗ = 0 for all j > d.
Furthermore, G is the highest nonzero cohomology sheaf of P•, so

Rdf∗P• ' Rdf∗G.

In particular, Rdf∗G is the cokernel of ψ and we define W ′ using the rank(Ed)-
minors of ψ. It also follows that the formation of Rdf∗G commutes with base
extension, i.e.,

(3.9.2) (Rdf∗G)s → Hd(Xs,Gs)

is an isomorphism for each s ∈ S.
LetW ⊂W ′ be the locally closed subset obtained by removing points where

rank(ψ) < rank(Ed) − 1 and fW : XW → W the corresponding morphism.
HenceM := Rd(fW )∗GW = (Rdf∗G)W is locally free of rank one. The relative
duality theorem of Kleiman [9, §10,21] gives an isomorphism of OW -modules

(3.9.3) HomfW (GW , ωXW /W ⊗ f∗WM) '−→ HomW (M,M) = OW .

The identity 1 ∈ OW gives a natural homomorphism φ : GW → ωXW /W ⊗
f∗WM which factors

GW
φ−→ ωXW /W ⊗ f∗WM

↓ ‖
(GW )∗∗

φ∗∗−→ ωXW /W ⊗ f∗WM
because ωXW /W is reflexive.
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Let Su ⊂ W be the open subset over which φ|U is an isomorphism. The
map φ∗∗ is an isomorphism over Su by Proposition 3.6. For any Su-scheme
T , the map

(φ∗∗)T : ((GW )∗∗)T −→ (ωXW /W )T ⊗ f∗TM
induced by base extension is also an isomorphism. Since (ωXW /W )T = ωXT /T
is flat and reflexive, the same holds for ((GW )∗∗)T . Hence Proposition 3.6
guarantees that the natural map ((GW )∗∗)T → (GT )∗∗ is an isomorphism.

It remains to show that Su satisfies the universal property. Let T be an
S-scheme, N an invertible sheaf on T , and

(3.9.4) ρ∗∗ : (GT )∗∗ '−→ ωXT /T ⊗ f∗TN

an isomorphism. For each t ∈ T , the natural map Gt → ((GT )∗∗)t is an iso-
morphism over Ut, a subset with codimension ≥ 2 complement. We therefore
obtain an isomorphism of cohomology groups

Hd(Xt,Gt) '−→ Hd(Xt, ((GT )∗∗)t)

and the base-change isomorphism (3.9.2) yields

Rd(fT )∗GT '−→ Rd(fT )∗[(GT )∗∗].

The composed morphism

ρ : GT → (GT )∗∗ → ωXT /T ⊗ f∗TN

induces
Rd(fT )∗GT '−→ Rd(fT )∗[ωXT /T ⊗ f∗TN ].

Since fT is Cohen-Macaulay, relative duality yields an isomorphism

Rd(fT )∗ωXT /T ' ExtdfT (OXT , ωXT /T ) '−→ HomT ((fT )∗OXT ,OT ) ' OT ,

where the last isomorphism follows from the fact that fT has geometrically
connected fibers. It follows that

Rd(fT )∗GT ' Rd(fT )∗[ωXT /T ⊗ f∗TN ] ' Rd(fT )∗ωXT /T ⊗N ' N ,

hence T → S factors as T →W ↪→ S and N 'MT . Applying duality again,
we may regard ρ as an element of HomT (N ,N ) ' (HomW (M,M))T and
compare ρ and φT over T . The identification in the isomorphism (3.9.3) is
functorial, hence φT corresponds to 1 ∈ HomT (N ,N ), ρ corresponds to some
r ∈ OT , and ρ = rφT .

To complete the proof it suffices to check that r ∈ O∗T . Consider the
restriction of the isomorphism (3.9.4) to the open subset UT where the sheaves
are all locally free

ρ|UT = ρ∗∗|UT : (GT )|UT
'−→ (ωXT /T ⊗ f∗TN )|UT .
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If r were not invertible at some t ∈ T , then ρ|UT would have nontrivial cokernel
over t, a contradiction. �

Corollary 3.10. Retain all the notation and hypotheses of Theorem 3.9.
Assume, in addition, that G is S2-relative to f . Then there exists a locally
closed subscheme Su ⊂ S with the following property. Given a morphism
α : T → S, there exists an invertible sheaf N on T and an isomorphism

GT '−→ ωXT /T ⊗ f∗TN

if and only if α factors through Su.
Proof. This follows from Theorem 3.9 and Corollary 3.8. �
Theorem 3.11. Let f : X → S be a flat projective Cohen-Macaulay mor-

phism of relative dimension d with geometrically connected fibers. Let L be
an invertible sheaf on X, F a coherent sheaf on X, and U ↪→ X an open
subset with complement Z so that codim(Zs, Xs) ≥ 2 for each s ∈ S. Assume
that ωX/S and F are locally free on U . Then there exists a locally closed sub-
scheme Su ⊂ S with the following property. Given a morphism α : T → S,
there exists an invertible sheaf N on T and an isomorphism

(FT )∗∗ '−→ LT ⊗ f∗TN

if and only if α factors through Su.
Proof. Without loss of generality, we may assume that L is trivial (replace

F by F⊗L−1). Apply 3.9 with G = F⊗ωX/S , so that (GT )∗∗ ' ωXT /T ⊗f∗TN
iff T factors through Su. On the other hand, (GT )∗∗ ' ωXT /T ⊗ f∗TN if and
only if GT |UT ' (ωXT /T ⊗ f∗TN )|UT , which is the case exactly when FT |UT '
f∗TN|UT , or equivalently, when (FT )∗∗ ' f∗TN (by Proposition 3.6). �

Remark 3.12. It is natural to try to generalize this result for more general
sheaves L. The above argument is still valid provided L satisfies the following:

(3.12.1) L is S2 relative to f ;
(3.12.2) L|U is invertible.

Proof. We apply Theorem 3.9, with G = F ⊗ L∗ ⊗ ωX/S . We obtain a
locally closed subset Su ⊂ S such that (GT )∗∗ ' ωXT /T ⊗ f∗TN iff T factors
through Su. Again, this is the case if and only if

(F ⊗ L∗ ⊗ ωXT /T )T |UT ' f∗TN|UT ,

which by Assumption (3.12.2) is equivalent to

F|UT ' L⊗ f∗TN|UT ,

which in turn is equivalent to (FT )∗∗ ' (LT )∗∗ ⊗ f∗TN . Applying Corollary
3.8 along with Assumptions (3.12.1) and (3.12.2) yields that LT is reflexive
for each T , so the last isomorphism exists iff (FT )∗∗ ' LT ⊗ f∗TN . �
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Études Sci. Publ. Math. 4, 8, 11, 17, 20, 24, 28, 32, 1960–67.
6. R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York-Heidelberg, 1977.
7. B. Hassett, Stable limits of log surfaces and Cohen-Macaulay singularities, J. Algebra

242 (2001) no. 1, 225–235.
8. K. Karu, Minimal models and boundedness of stable varieties, J. Algebraic Geom. 9

(2000), no. 1, 93–109.

9. S. Kleiman, Relative duality for quasicoherent sheaves, Compositio Math. 41 (1980),
no. 1, 39–60.

10. J. Kollár, Toward moduli of singular varieties, Compositio Math. 56 (1985), no.3,
369–398.

11. J. Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990), no. 1, 235–
268.

12. J. Kollár, Push forward and base change for open immersions, unpublished manuscript,
1994.

13. J. Kollár and N. Shepherd-Barron, Threefolds and deformations of surface singulari-
ties, Invent. Math. 91 (1988), no. 2, 299–338.

14. E. Viehweg, Quasi-Projective Moduli of Polarized Manifolds, Springer-Verlag, Berlin,
1995.

Department of Mathematics–MS 136, Rice University, 6100 S. Main St., Hous-

ton Texas 77005-1892

E-mail address: hassett@math.rice.edu

Department of Mathematics, University of Washington, Box 354350, Seattle,

Washington 98195

E-mail address: kovacs@math.washington.edu


	1. Introduction
	Definitions and notation
	Acknowledgments

	2. Moduli functors
	Viehweg's Functor (Property V[N])
	Kollár's Functor (Property K)
	Moduli of Surfaces: Smoothability and Boundedness
	Proof of Local Closedness

	3. Local closedness of reflexive pull-backs
	References

