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Abstract

Given a normal variety Z, a p-form σ defined on the smooth locus of Z and a resolution
of singularities π : Z̃→ Z, we study the problem of extending the pull-back π∗(σ) over
the π-exceptional set E ⊂ Z̃. For log canonical pairs and for certain values of p, we show
that an extension always exists, possibly with logarithmic poles along E. As a corollary,
it is shown that sheaves of reflexive differentials enjoy good pull-back properties. A
natural generalization of the well-known Bogomolov–Sommese vanishing theorem to
log canonical threefold pairs follows.
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D. Greb, S. Kebekus and S. J. Kovács

1. Introduction and statement of main result

1.1 Introduction
Let Z be a normal projective variety and σ ∈H0(Z, Ω[p]

Z ) a p-form which is defined away from
the singularities. A natural question to ask is: if π : Z̃→ Z is a resolution of singularities, can
one extend π∗(σ) as a differential form to all of Z̃, perhaps allowing logarithmic poles along the
π-exceptional set?

If p= dim Z and if the pair (Z, ∅) is log canonical, the answer is ‘yes’, almost by definition.
For other values of p, the problem has been studied by Hodge-theoretic methods; see the papers
of Steenbrink [Ste85], Steenbrink–van Straten [vSS85], Flenner [Fle88] and the references therein.
In a nutshell, the answer is ‘yes’ if the codimension of the singular set is large.

In this paper, we consider logarithmic varieties with log canonical singularities. We show that
for these varieties and certain values of p, the answer is ‘yes’, irrespective of the codimension of
the singular set.

As a corollary, we show that sheaves of reflexive differentials enjoy good pull-back
properties and prove a version of the well-known Bogomolov–Sommese vanishing theorem for
log canonical threefold pairs.

1.2 Main results
The following is the main result of this paper. In essence, it asserts that a (logarithmic) p-form
defined away from the singular set of a log canonical threefold pair gives rise to p-forms on any
log resolution.

Theorem 1.1 (Extension theorem for log canonical pairs). Let Z be a normal variety of

dimension n and ∆⊂ Z a reduced divisor such that the pair (Z,∆) is log canonical. Let π : Z̃→ Z
be a log resolution, and set

∆̃lc := largest reduced divisor contained in π−1(∆ ∪ non-klt locus of (Z,∆)),

where the non-klt locus is the minimal closed subset W ⊂ Z such that that pair (Z,∆) is klt

away from W . If p ∈ {n, n− 1, 1}, then the sheaf π∗Ω
p

Z̃
(log ∆̃lc) is reflexive.

Remark 1.1.1. Logarithmic differentials are introduced and discussed in [Iit82, ch. 11c]
or [Del70, ch. 3]. The notion of log resolution is recalled in Definition 2.6 below. We refer the
reader to [KM98, § 2.3] for the definition of log canonical and klt singularities.

Remark 1.1.2. Since the coefficients of its components are equal to 1 (cf. Definition 2.4), the
boundary divisor ∆ is contained in the non-klt locus of (X,∆). We have nevertheless chosen to
explicitly include it in the definition of ∆̃lc for reasons of clarity.

The name ‘extension theorem’ is justified by the following remark.

Remark 1.2. Theorem 1.1 asserts precisely that for any open set U ⊂ Z and any number
p ∈ {n, n− 1, 1}, the restriction morphism

H0(π−1(U), Ωp

Z̃
(log ∆̃lc))→H0(π−1(U) \ Exc(π), Ωp

Z̃
(log ∆̃lc)) (1.2.1)

is surjective, where Exc(π)⊂ Z̃ denotes the π-exceptional set,

Remark 1.3. After this paper appeared in preprint form, we learned that more general results
had been claimed in Langer [Lan03, Theorems 4.9 and 4.11]. However, in discussions with
Langer we found that the proof of [Lan03, Theorem 4.9] contains a gap that at present has
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Extension theorems on log canonical varieties

still not been filled: in the last paragraph of the proof, it is not clear that the prerequisites
of [Lan03, Lemma 4.8] are satisfied. For a special case of the statement for surfaces, see [Lan01,
Theorem 4.2].

For an application of Theorem 1.1, recall the well-known Bogomolov–Sommese vanishing
theorem for snc pairs, cf. [EV92, Corollary 6.9]: if Z is a smooth projective variety, ∆⊂ Z a divisor
with simple normal crossings and A ⊂ Ωp

Z(log ∆) an invertible subsheaf, then the Kodaira–Iitaka
dimension of A is not larger than p, i.e., κ(A ) 6 p. As a corollary to Theorem 1.1, we will show
in § 8 that a similar result holds for threefold pairs with log canonical singularities. We refer
to Definition 2.3 for the definition of the Kodaira–Iitaka dimension for sheaves that are not
necessarily locally free.

Theorem 1.4 (Bogomolov–Sommese vanishing for log canonical threefolds and surfaces). Let
Z be a normal variety of dimension dim Z 6 3 and let ∆⊂ Z be a reduced divisor such that the

pair (Z,∆) is log canonical. Let A ⊂ Ω[p]
Z (log ∆) be a reflexive subsheaf of rank one. If A is

Q-Cartier, then κ(A ) 6 p.

In fact, a stronger result holds, see Theorem 8.3.

1.3 Outline of the paper
We introduce notation and recall standard facts in § 2. In § 3 we prepare for the proof of
Theorem 1.1 by showing how extension properties of a given space Z can often be deduced from
extension properties of finite covers of Z. This already gives extension results for an important
class of surface singularities that appears naturally within the minimal model program. Because
of their importance in applications, we briefly discuss these singularities in § 3.2.

Theorem 1.1 is shown in §§ 5–7 for n-forms, (n− 1)-forms and 1-forms, respectively. The
proof of the extension result for (n− 1)-forms relies on universal properties of the functorial
resolution of singularities and on liftings of local group actions. The extension for 1-forms is
shown using results of Steenbrink and Namikawa that are Hodge theoretic in nature.

Section 8 discusses pull-back properties of sheaves of differentials and gives a proof of the
Bogomolov–Sommese vanishing theorem for log canonical threefolds and surfaces, Theorem 1.4.
For the reader’s convenience, an appendix recalling the variant of Hartshorne’s formal duality
theorem for cohomology with supports that is required in our context is included, cf. § 7.3.

Part I. Tools

2. Notation and standard facts

2.1 Reflexive tensor operations
When dealing with sheaves that are not necessarily locally free, we frequently use square brackets
to indicate taking the reflexive hull.

Notation 2.1. Let Z be a normal variety and A a coherent sheaf of OZ-modules. Let n ∈ N
and set A [n] :=⊗[n]A := (A ⊗n)∗∗, Sym[n] A := (Symn A )∗∗, etc. Likewise, for a morphism
γ :X → Z of normal varieties, set γ[∗]A := (γ∗A )∗∗. If A is reflexive of rank one, we say that
A is Q-Cartier if there exists an n ∈ N such that A [n] is invertible.

In the sequel, we will frequently state and prove results that hold for the sheaf of differentials
Ω[1]
Z , the reflexive hull of its symmetric products, exterior products, tensor products or any

combination of these tensor operations. The following shorthand notation is therefore useful.
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Notation 2.2. A reflexive tensor operation is any combination of the reflexive tensor product
⊗[k], the symmetric product Sym[l] or the exterior product

∧[m]. If T is a tensor operation, such
as T =⊗[2] Sym[3], and F is a sheaf of OZ-modules on a scheme Z, we often write TF instead
of ⊗[2]

OZ
Sym[3]

OZ
F .

We will be working with the Kodaira–Iitaka dimension of reflexive sheaves on normal spaces.
Since this is perhaps not quite standard, we recall the definition here.

Definition 2.3 (Kodaira–Iitaka dimension). Let Z be a normal projective variety and A a
reflexive sheaf of rank one on Z. If h0(Z, A [n]) = 0 for all n ∈ N, then we say that A has
Kodaira–Iitaka dimension κ(A ) :=−∞. Otherwise, set

M := {n ∈ N | h0(Z, A [n])> 0}.

Recall that the restriction of A to the smooth locus of Z is locally free and consider the rational
mapping

φn : Z 99K P(H0(Z,A [n])∗) for each n ∈M.

The Kodaira–Iitaka dimension of A is then defined as

κ(A ) := max
n∈M

(dim φn(Z)).

2.2 Logarithmic pairs and the extension theorem
For the reader’s convenience, we recall a few definitions of logarithmic geometry. Although not
quite standard, the following notion of a morphism of logarithmic pairs is useful for our purposes.

Definition 2.4 (Logarithmic pair). A logarithmic pair (Z,∆) consists of a normal variety or
complex space Z and a reduced, but not necessarily irreducible, Weil divisor ∆⊂ Z. A morphism
of logarithmic pairs γ : (Z̃, ∆̃)→ (Z,∆) is a morphism γ : Z̃→ Z such that γ−1(∆) = ∆̃ set-
theoretically.

Definition 2.5 (snc pairs). Let (Z,∆) be a logarithmic pair and z ∈ Z a point. We say that
(Z,∆) is snc at z if there exists a Zariski-open neighborhood U of z such that U is smooth and
∆ ∩ U has only simple normal crossings. The pair (Z,∆) is snc if it is snc at all z ∈ Z.

Given a logarithmic pair (Z,∆), let (Z,∆)reg be the maximal open set of Z where (Z,∆) is
snc, and let (Z,∆)sing be its complement, with the induced reduced subscheme structure.

Remark 2.5.1. If a logarithmic pair (Z,∆) is snc at a point z, this implies that all components
of ∆ are smooth at z. Without the condition that U is Zariski open this would no longer be
true, and Definition 2.5 would define normal crossing pairs rather than pairs with simple normal
crossing.

Definition 2.6 (Log resolution). A log resolution of (Z,∆) is a birational morphism of pairs
π : (Z̃, ∆̃)→ (Z,∆) such that the π-exceptional set Exc(π) is of pure codimension one, such that
(Z̃, supp(∆̃ ∪ Exc(π))) is snc and such that π is isomorphic over (Z,∆)reg.

The following definitions will be helpful in the proof of Theorem 1.1 and its corollaries.

Notation 2.7. If (Z,∆) is a logarithmic pair and T a reflexive tensor operation, the sheaf
TΩ1

Z(log ∆) will be called the sheaf of T-forms.

Definition 2.8 (Extension theorem). If (Z,∆) is a logarithmic pair and T a reflexive tensor
operation, we say that the extension theorem holds for T-forms on (Z,∆) if the following holds:
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let π : (Z̃, ∆̃)→ (Z,∆) be a log resolution and E∆ the union of all π-exceptional components
not contained in ∆̃. Then the push-forward sheaf

π∗TΩ1
Z̃

(log(∆̃ + E∆))

is reflexive. Equivalently, the restriction morphism

H0(π−1(U), TΩ1
Z̃

(log(∆̃ + E∆)))→H0(π−1(U) \ Exc(π), TΩ1
Z̃

(log ∆̃)) (2.8.1)

is surjective for any open set U ⊆ Z.

2.3 Pull-back properties of logarithmic and regular differentials
Morphisms of snc pairs give rise to pull-back morphisms of logarithmic differentials. In this
section, we briefly recall the standard fact that the pull-back morphism associated with a finite
map is isomorphic if the branch locus is contained in the boundary. We refer to [Iit82, ch. 11]
for details.

Fact 2.9. Let γ : (Z̃, ∆̃)→ (Z,∆) be a morphism of snc pairs, U ⊆ Z an open set and Ũ =
γ−1(U). Then there exists a natural pull-back map of forms

γ∗ :H0(U, Ω1
Z(log ∆))→H0(Ũ , Ω1

Z̃
(log ∆̃))

and an associated sheaf morphism

dγ : γ∗Ω1
Z(log ∆)→ Ω1

Z̃
(log ∆̃).

If γ is finite and unramified over Z \∆, then dγ is an isomorphism. 2

Remark 2.10. If T is any reflexive tensor operation, then the pull-back morphism also gives a
pull-back of T-forms, γ∗ :H0(Z, TΩ1

Z(log ∆))→H0(Z̃, TΩ1
Z̃

(log ∆̃)), that obviously extends to
a pull-back of rational T-forms.

We state one immediate consequence for future reference. The following notation is useful in
the formulation.

Notation 2.11. Let X be a normal variety, Γ⊂X a reduced Weil divisor and F a reflexive
coherent sheaf of OX -modules. We will often consider sections of F |X\Γ. Equivalently, we
consider rational sections of F with poles of arbitrary order along Γ, and let F (∗Γ) be the
associated sheaf of these sections on X. More precisely, we define

F (∗Γ) := lim−→
m

((F ⊗ OX(m · Γ))∗∗).

With this notation, we have H0(X,F (∗Γ)) =H0(X \ Γ,F ).

Corollary 2.12. Under the conditions of Fact 2.9, let T be any reflexive tensor operation
and assume that γ is a finite morphism. Let Γ⊂ Z be a reduced divisor and σ ∈
H0(Z, TΩ1

Z(log ∆)(∗Γ)) a T-form that might have poles along Γ.

(2.12.i) If γ is unramified over Z \∆, then the form σ has only logarithmic poles along Γ if and
only if γ∗(σ) has only logarithmic poles along supp(γ−1(Γ)), i.e.,

σ ∈H0(Z, TΩ1
Z(log ∆))⇔ γ∗(σ) ∈H0(Z̃, TΩ1

Z̃
(log ∆̃)).

(2.12.ii) If T =
∧[p], then σ is a regular form if and only if γ∗(σ) is regular, i.e.,

σ ∈H0(Z, Ωp
Z)⇔ γ∗(σ) ∈H0(Z̃, Ωp

Z̃
).
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Proof. Assertion (2.12.i) follows immediately from Fact 2.9. The proof of (2.12.ii) is left to the
reader. 2

2.4 Comparing log resolutions
Reflexivity of the push-forward of sheaves of differentials from an arbitrary birational model of a
given pair can often be concluded if we know the reflexivity of the push-forward from a particular
log resolution. This is summarized in the following elementary lemma.

Lemma 2.13. Let (Z,∆) be a logarithmic pair and W ⊂ Z a subvariety. For i ∈ {1, 2}, let
πi : (Zi,∆i)→ (Z,∆) be a birational morphism of logarithmic pairs and

Γi := largest reduced divisor contained in π−1
i (∆ ∪W ).

If T is a reflexive tensor operation, (Z2, Γ2) is snc and (π2)∗TΩ1
Z2

(log Γ2) is reflexive, then
(π1)∗TΩ1

Z1
(log Γ1) is reflexive as well.

Remark 2.13.1. In the setup of Lemma 2.13, the sheaves (π1)∗TΩ1
Z1

(log Γ1) and
(π2)∗TΩ1

Z2
(log Γ2) are isomorphic away from a set of codimension at least two. If the sheaves are

reflexive, this implies that they are in fact isomorphic.

Proof of Lemma 2.13. Choose an snc logarithmic pair (Z̃, ∆̃), together with birational
morphisms of pairs ϕi : (Z̃, ∆̃)→ (Zi,∆i) such that Γ̃2 := supp(ϕ−1

2 (Γ2)) is a divisor with snc
support and such that the following diagram commutes.

(Z̃, ∆̃)
ϕ2 //

ϕ1

��

(Z2,∆2)

π2

��
(Z1,∆1) π1

// (Z,∆)

Let U ⊆ Z be open and σ ∈H0(U, TΩ1
Z(log ∆)) a T-form on U . For convenience, set ψ :=

π1 ◦ ϕ1 = π2 ◦ ϕ2 and denote the preimages of U on Z1, Z2 and Z̃ by U1, U2 and Ũ , respectively.
By assumption, π∗2(σ) extends to a T-form on (Z2, Γ2) without poles along the exceptional

set Exc(π2), i.e., π∗2(σ) ∈H0(U2, TΩ1
Z2

(log Γ2)). If we set

Γ̃ := largest reduced divisor contained in ψ−1(∆ ∪W ),

then Γ̃ contains Γ̃2 and Fact 2.9 implies that ψ∗(σ) extends to a T-form on (Ũ , Γ̃2). In particular,

ψ∗(σ) ∈H0(Ũ , TΩ1
Z̃

(log Γ̃2))⊆H0(Ũ , TΩ1
Z̃

(log Γ̃)).

Now, if Γ′1 ⊂ Exc(π1) is any irreducible component with strict transform Γ̃′1 ⊂ Z̃, it is clear
that the T-form π∗1(σ) has (logarithmic) poles along Γ′1 if and only if ϕ∗1π

∗
1(σ) = ψ∗(σ) has

(logarithmic) poles along Γ̃′1. The proof is then finished once we observe that Γ′1 ⊆ π
−1
1 (∆ ∪W )

if and only if Γ̃′1 ⊆ ψ−1(∆ ∪W ). 2

3. Finite covering tricks and log canonical singularities

3.1 The finite covering trick
In order to prove the extension theorem for a given pair (Z,∆), it is often convenient to go to a
cover of Z and argue there. For instance, if (Z,∆) is log canonical one might want to consider
local index-one covers where singularities are generally easier to describe.
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Proposition 3.1 (Finite covering trick). Consider a commutative diagram of surjective
morphisms of logarithmic pairs as follows,

(X̃, D̃)
γ̃, finite //

π̃
contracts EX ��

(Z̃, ∆̃)
π

log resolution
contracts EZ��

(X, D)
γ, finite

// (Z,∆)

where X̃ is the normalization of the fiber product Z̃ ×Z X. Let T be a reflexive tensor operation,
σ ∈H0(Z, TΩ1

Z(log ∆)) a T-form and EZ ⊂ Exc(π)⊂ Z̃ a π-exceptional divisor. Assume that
either:

(3.1.1) EZ is the union of all π-exceptional components not contained in ∆̃; or

(3.1.2) T =
∧[p], and no component of EZ ⊂ Z̃ is contained in ∆̃.

Then

π̃∗γ[∗](σ) ∈H0(X̃, TΩ1
X̃

(log(D̃ + EX))) =⇒ π∗(σ) ∈H0(Z̃, TΩ1
Z̃

(log(∆̃ + EZ))),

where EX := supp(γ̃−1(EZ)) is the reduced preimage of EZ .

Example 3.1.3. If T is not of the form
∧[p], the assumption made in (3.1.1) is indeed necessary.

For an example in the simple case where T = Sym[2] and ∆ = ∅, let Z̃ be the total space of
OP1(−2) and EZ the zero section. It is reasonably easy to write down a form

σ ∈H0(Z̃, Sym2 Ω1
Z̃

(log EZ)) \H0(Z̃, Sym2 Ω1
Z̃

).

Because EZ contracts to a quotient singularity that has a smooth 2:1 cover, this example shows
that the conclusion of Proposition 3.1 holds only for differentials with logarithmic poles along EZ ,
and that the boundary given there is indeed the smallest possible.

In order to give an explicit example for σ, consider the standard coordinate cover of Z̃ with
open sets U1, U2 ' A2, where Ui carries coordinates xi, yi and coordinate change is given as

φ1,2 : (x1, y1) 7→ (x2, y2) = (x−1
1 , x2

1y1).

In these coordinates the bundle map Ui→ P1 is given as (xi, yi)→ xi and the zero section EZ is
given as EZ ∩ Ui = {yi = 0}. Now take

σ2 := y−1
2 (dy2)2 ∈H0(U2, Sym2(Ω1

Z̃
(log EZ)))

and observe that φ∗1,2(σ2) extends to a form in H0(U1, Sym2(Ω1
Z̃

(log EZ))).

Proof of Proposition 3.1. Suppose that we are given a T-form σ ∈H0(Z, TΩ1
Z(log ∆)) such that

π̃∗γ[∗](σ) ∈H0(X̃, TΩ1
X̃

(log(D̃ + EX))). (3.1.4)

We need to show that σ extends to all of Z̃ as a T-form, i.e., that

π∗(σ) ∈H0(Z̃, TΩ1
Z̃

(log(∆̃ + EZ))). (3.1.5)

Since (3.1.5) holds outside of Exc(π), and since TΩ1
Z̃

(log(∆̃ + EZ)) is locally free, it suffices
to show (3.1.5) near general points of components of Exc(π). Thus, let E′Z ⊂ Exc(π) be an
irreducible component and x ∈ E′Z a general point. Over a suitably small neighborhood of x, the
morphism γ̃ is branched only along E′Z , if at all.
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We will apply Corollary 2.12 for this small neighborhood of x. If E′Z ⊆ ∆̃ + EZ , then (3.1.5)
follows from (3.1.4) by (2.12.i). This proves the statement in case (3.1.1). If E′Z 6⊆ ∆̃ + EZ , we are
in case (3.1.2), so T =

∧[p]. Then inclusion (3.1.5) follows from (3.1.4) by (2.12.ii). This proves
the statement in case (3.1.2). 2

The following are two immediate consequences of Proposition 3.1.

Corollary 3.2. Let (Z,∆) be a logarithmic pair, T a reflexive tensor operation and assume
that there exists a finite morphism of pairs γ : (X, D)→ (Z,∆) such that the extension theorem
holds for T-forms on (X, D), in the sense of Definition 2.8. Then the extension theorem holds
for T-forms (Z,∆).

Proof. Let π : (Z̃, ∆̃)→ (Z,∆) be a log resolution and consider the snc divisor

ΓZ := supp(∆̃ ∪ Exc(π)).

Further, let U ⊆ Z be an open set and

σ ∈H0(U \ (Z,∆)sing, TΩ1
Z(log ∆)) =H0(π−1(U) \ Exc(π), TΩ1

Z̃
(log ΓZ))

a T-form defined away from the singularities. We need to show that its pull-back extends to a
T-form on (π−1(U), ΓZ), i.e.,

π∗(σ) ∈H0(π−1(U), TΩ1
Z̃

(log ΓZ)). (3.2.1)

For convenience of notation, we shrink Z and assume without loss of generality that U = Z. In
order to prove (3.2.1), consider a commutative diagram of surjective morphisms of pairs,

(X̃, D̃)
γ̃, finite //

π̃
��

(Z̃, ∆̃)
π

log resolution
��

(X, D)
γ, finite

// (Z,∆),

(3.2.2)

where X̃ is the normalization of the fiber product. Let

ΓX := supp(γ̃−1(ΓZ)) = supp(D̃ ∪ Exc(π̃)).

Then it follows from Lemma 2.13 that π̃∗γ∗(σ) extends to a T-form on (X̃, ΓX), i.e.,

γ̃∗π∗(σ) = π̃∗γ∗(σ) ∈H0(X̃, TΩ1
X̃

(log ΓX)).

Since Exc(π)⊆ ΓZ , (3.2.1) follows from case (3.1.1) of Proposition 3.1 with EZ := Exc(π) \ ∆̃. 2

Corollary 3.3. In order to prove the Theorem 1.1 in full generality, it suffices to show it under
the additional assumption that KZ + ∆ is Cartier.

Proof. Assume that Theorem 1.1 has been shown for all log canonical logarithmic pairs whose
log canonical divisor is Cartier. Let (Z,∆) be an arbitrary logarithmic pair that is log canonical
with log resolution π : (Z̃, ∆̃)→ (Z,∆) and assume that we are given an open subset U ⊆ Z and
a form σ ∈H0(U, Ω[p]

Z (log ∆)), with p ∈ {dim Z, dim Z − 1, 1}. We need to show that

π∗(σ) ∈H0(Ũ , Ω[p]

Z̃
(log ∆̃lc)), (3.3.1)

where Ũ := π−1(U) and

∆̃lc := largest reduced divisor contained in π−1(∆ ∪ non-klt locus of (Z,∆)).
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Since the assertion of Theorem 1.1 is local on Z in the Zariski topology, we can shrink Z and
assume without loss of generality that U = Z, and that KZ + ∆ is Q-torsion, i.e., that there exists
a number m ∈ N+ such that OZ(m(KZ + ∆))∼= OZ . Let γ : (X, D)→ (Z,∆) be the associated
index-one-cover, as described in [KM98, Definition 2.52] or [Rei87, § 3.6f]. By the inductive
assumption, the statement of Theorem 1.1 holds for the pair (X, D).

Since γ branches only over the singular points of (Z,∆), if at all, [KM98, Proposition 5.20]
immediately gives that (X, D) is again log canonical. Better still, [KM98, Proposition 5.20] imp-
lies that

non-klt locus of (X, D)⊆ γ−1(non-klt locus of (Z,∆)).

Thus, defining X̃ as the normalization of X ×Z Z̃, π̃ : X̃ →X the natural morphism and setting

D̃lc := largest reduced divisor contained in π̃−1(D ∪ non-klt locus of (X, D)),

gives that D̃lc ⊆ γ−1(∆̃lc). Now, applying the argument from the proof of Corollary 3.2 along
with case (3.1.2) of Proposition 3.1 implies (3.3.1), as desired. 2

3.2 Finitely dominated and boundary-lc pairs

It follows from Corollary 3.2 that the extension theorem holds for pairs with quotient
singularities, or in fact for pairs that can be locally finitely dominated by snc pairs.
Surface singularities that appear in minimal model theory often have this property. Because
of their importance in the applications, we discuss one class of examples in more detail here.

Definition 3.4 (Finitely dominated pair). A logarithmic pair (Z,∆) is said to be finitely
dominated by analytic snc pairs if, for any point z ∈ Z, there exists an analytic neighborhood U
of z and a finite, surjective morphism of logarithmic pairs (Ũ , D)→ (U,∆ ∩ U), where Ũ is
smooth and the divisor D has only simple normal crossings.

Remark 3.5. By Corollary 3.2, if T is any reflexive tensor operation, then the extension theorem
holds for T-forms on any pair (Z,∆) that is finitely dominated by analytic snc pairs.

Definition 3.6 (boundary-lc). A logarithmic pair (Z,∆) is called boundary-lc if (Z,∆) is log
canonical and (Z \∆, ∅) is log terminal.

Example 3.7. It follows immediately from the definition that dlt pairs are boundary-lc,
cf. [KM98, Definition 2.37]. For a less obvious example, let Z be the cone over a conic and
∆ the union of two rays through the vertex. Then (Z,∆) is boundary-lc, but not dlt.

The next example shows how boundary-lc pairs appear as limits of dlt pairs. These limits play
an important role in Keel–McKernan’s proof of the Miyanishi conjecture for surfaces, [KM99, § 6],
and in the last two authors’ recent attempts to generalize Shafarevich hyperbolicity to families
over higher-dimensional base manifolds, [KK07, KK08b], see also [KS06].

Example 3.8. Let (Z,∆) be a log canonical logarithmic pair. Suppose that ∆ is Q-Cartier
and that for any positive, sufficiently small rational number ε ∈Q+, the non-reduced pair
(Z, (1− ε)∆) is dlt, or equivalently klt. Then (Z,∆) is boundary-lc.

Lemma 3.9. Let (Z,∆) be a boundary-lc pair of dimension two. Then Z is Q-factorial and
(Z,∆) is finitely dominated by analytic snc pairs. In particular, dlt surface pairs are finitely
dominated by analytic snc pairs.
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The proof of Lemma 3.9 uses the notion of discrepancy, which we recall for the reader’s
convenience.

Definition 3.10 (Discrepancy, cf. [KM98, § 2.3]). Let (Z,∆) be a logarithmic pair and let
π : (Z̃, ∆̃)→ (Z,∆) be a log resolution. If ∆̃′ ⊂ ∆̃ is the strict transform of ∆, the Q-divisors
K
Z̃

+ ∆̃′ and π∗(KZ + ∆) differ only by a Q-linear combination of exceptional divisors. We can
therefore write

K
Z̃

+ ∆̃′ = π∗(KZ + ∆) +
∑
Ei⊂Z̃

π-exceptional divisors

a(Ei, Z,∆) · Ei.

The rational number a(Ei, Z,∆) is called the discrepancy of the divisor Ei.

Proof of Lemma 3.9. Let z ∈ (Z,∆)sing be an arbitrary singular point. If z 6∈∆, then the
statement follows from [KM98, Proposition 4.18]. We can thus assume without loss of generality
for the remainder of the proof that z ∈∆.

Next observe that for any rational number 0< ε < 1, the non-reduced pair (Z, (1− ε)∆) is
numerically dlt ; see [KM98, Notation 4.1] for the definition and use [KM98, Lemma 3.41] for an
explicit discrepancy computation. By [KM98, Proposition 4.11], Z is then Q-factorial. Using Q-
factoriality, we can then choose a sufficiently small Zariski neighborhood U of z and consider the
index-one cover for ∆ ∩ U . This gives a finite morphism of pairs γ : (Ũ , ∆̃)→ (U,∆ ∩ U), where
the morphism γ is branched only over the singularities of U , where γ−1(z) = {z̃} is a single point
and where ∆̃ = γ∗(∆ ∩ U) is Cartier; see [KM98, Definition 5.19] for the construction. Since
discrepancies only increase under taking finite covers [KM98, Proposition 5.20], the pair (Ũ , ∆̃)
will again be boundary-lc. In particular, it suffices to prove the claim for a neighborhood of z̃ in
(Ũ , ∆̃). We can thus assume without loss of generality that z ∈∆ and that ∆ is Cartier in our
original setup.

Next, we claim that (Z, ∅) is canonical at z. In fact, let E be any divisor centered above z,
as in [KM98, Definition 2.24]. Since z ∈∆, and since ∆ is Cartier, the pull-back of ∆ to any
resolution where E appears will contain E with multiplicity at least one. In particular, we have
the following inequality of discrepancies: 0 6 a(E, Z,∆) + 1 6 a(E, Z, ∅). This shows that (Z, ∅)
is canonical at z, as claimed.

By [KM98, Theorem 4.20], it is then clear that Z has a Du Val quotient singularity at z. Again
replacing Z by a finite cover of a suitable neighborhood of z, and replacing z by its preimage in
the covering space, we can henceforth assume without loss of generality that Z is smooth. But
then the claim follows from [KM98, Theorem 4.15]. 2

Remark 3.11. It follows from a result of Brieskorn [Bri68] that any two-dimensional pair
(X,∆) that is finitely dominated by analytic snc pairs has quotient singularities in the
following sense: for every point x ∈X there exists a finite subgroup G⊂GL2(C) without
quasi-reflections, an analytic neighborhood U in X and a biholomorphic map ϕ : U → V to
an analytic neighborhood V of π(0, 0) in C2/G, where π : C2→ C2/G denotes the quotient map.
Furthermore, the preimage π−1(ϕ(∆ ∩ V )) coincides with the intersection of a1D1 + a2D2 with
π−1(V ), where aj ∈ {0, 1} and Dj = {zj = 0} ⊂ C2.

4. Vector fields and local group actions on singular spaces

In this section, we discuss vector fields on singular complex spaces and their relation to local
Lie group actions. We will then show that local group actions and vector fields lift to functorial
resolutions. This will be used in the proof of the extension theorem for (n− 1)-forms in § 6.
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4.1 Local actions and logarithmic vector fields
For the reader’s convenience, we recall the standard definition of a local group action.

Definition 4.1 (Local group action, cf. [Kau65, § 4]). Let G be a connected complex Lie group
and Z a reduced complex space. A local G-action is given by a holomorphic map Φ : Θ→ Z,
where Θ is an open neighborhood of the neutral section {e} × Z in G× Z such that:

(4.1.1) for all z ∈ Z the subset Θ(z) := {g ∈G | (g, z) ∈Θ} is connected;

(4.1.2) setting Φ(g, z) =: g•z, we have e•z = z for all z ∈ Z and, if (gh, z) ∈Θ, if (h, z) ∈Θ and
if (g, h•z) ∈Θ, then (gh)•z = g•(h•z) holds.

There is a natural notion of equivalence of local G-actions on Z given by shrinking Θ to
a smaller neighborhood of {e} × Z in G× Z. To an equivalence class of actions one assigns a
linear map λ from the Lie algebra g of G into the Lie algebra H0

(
Z, TZ) of vector fields on Z, as

follows. If ξ ∈ g is any element of the Lie algebra, its image ξZ = λ(ξ) is defined by the equation

ξZ(f)(z) =
d

dt

∣∣∣∣
t=0

f(expG(−tξ)•z),

where f is an arbitrary holomorphic function defined near z and expG : g→G is the exponential
map of G. If we consider g as the Lie algebra of left-invariant vector fields on G, the map λ is a
homomorphism of Lie algebras. The converse statement is a classical result of complex analysis.

Fact 4.2 (Vector fields and local group actions [Kau65, Satz 3]). If λ : g→H0(Z, TZ) is a
homomorphism of Lie algebras, then, up to equivalence, there exists a unique local G-action on Z
that induces the given λ. In particular, any vector field η ∈H0(Z, TZ) induces a local C-action
Φη on Z. 2

We also note that if (Z,∆) is a logarithmic pair, then the local C-actions stabilizing ∆ are
precisely the ones that correspond to logarithmic vector fields, i.e., global sections of TZ(−log ∆).

The next result is crucial for the lifting property of local group actions.

Lemma 4.3 (Smoothness of the action map). The action map Φ : Θ→ Z of a local G-action is
smooth, i.e., a flat submersion.

Proof. Since the map Φ is locally equivariant, it suffices to show that it is smooth at points of
the form (e, z) ∈Θ. Given such a point (e, z) ∈Θ, there exist an open neighborhood Ξ =Ξ(e)
of the identity e ∈G and two open neighborhoods U, U ′ of z in Z such that

Ψ :Ξ × U →Ξ × U ′, (g, z) 7→ (g, Φ(g, z))

is well defined. The map Ψ is an open embedding; in particular, it is smooth. If we denote the
canonical (smooth) projection by π2 :Ξ × U ′→ U ′, the claim follows from the observation that
Φ|Ξ×U = π2 ◦ Ψ is the composition of smooth morphisms. 2

4.2 Lifting vector fields to functorial resolutions
Unlike in the surface case, there is no notion of a ‘minimal resolution of singularities’ in higher
dimensions. There is, however, a canonical resolution procedure that has certain universal
properties. We briefly recall the relevant facts.

Theorem 4.4 (Functorial resolution of singularities, cf. [Kol07, Theorems 3.35 and 3.45]). There
exists a resolution functor R : (Z,∆)→ (πZ,∆ :R(Z,∆)→ (Z,∆)) that assigns to any
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logarithmic pair (Z,∆) a new pair R(Z,∆) and a morphism πZ,∆ :R(Z,∆)→ (Z,∆), with the
following properties.

(4.4.1) The morphism π := πZ,∆ :R(Z,∆)→ (Z,∆) is a log resolution of (Z,∆).
(4.4.2) The morphism π is projective over any compact subset of Z.

(4.4.3) The functor R commutes with smooth holomorphic maps. That is to say, for any
smooth morphism f : (X, D)→ (Z,∆) of logarithmic pairs there exists a unique smooth
morphism R(f) :R(X, D)→R(Z,∆) giving a fiber product square as follows.

R(X, D)

πX,D

��

R(f) // R(Z,∆)

πZ,∆

��
(X, D)

f // (Z,∆) 2

Notation 4.5. We call a log resolution π : (Z̃, ∆̃)→ (Z,∆) functorial if it is of the form R(Z,∆).

Proposition 4.6 (Lifting of local actions to the functorial resolution). Let Φ : Θ→ Z be a
local G-action on a complex space Z. Let π : (Z̃, ∅)→ (Z, ∅) be a functorial log resolution. Then Φ
lifts to a local G-action on Z̃. More precisely, if Θ̃ := (IdG ×π)−1(Θ)⊂G× Z̃, then there exists
a local action Φ̃ : Θ̃→ Z̃ such that the following diagram commutes.

Θ̃
Φ̃ //

IdG ×π
��

Z̃

π

��
Θ

Φ // Z

Furthermore, if (Z,∆) is a logarithmic pair, if π : (Z̃, ∆̃)→ (Z,∆) is a functorial log resolution,
if Φ= Φξ for some ξ ∈H0(Z, TZ(−log ∆)) and if W is any Φ-invariant subvariety of Z, we set

∆̃W := largest reduced divisor contained in π−1(∆ ∪W ).

Then Φ̃ stabilizes ∆̃W .

Proof. Using Lemma 4.3 and the fact that R commutes with smooth holomorphic maps, we see
that the application of R to the diagram

G× Z←↩Θ→ Z

induces a holomorphic map Φ̃ : (IdG ×π)−1(Θ) =: Θ̃→ Z̃ such that the following diagram
commutes.

G× Z̃
IdG ×π

��

Θ̃
inclusionoo Φ̃ //

��

Z̃

π

��
G× Z Θ

inclusion
oo Φ // Z

It remains to check that Φ̃ : Θ̃→ Z̃ defines a local G-action. First, notice that Θ̃ is an open
neighborhood of the neutral section {e} × Z̃ in G× Z̃. By construction, for a point z̃ ∈ Z̃ we
have

Θ̃(z̃) = Θ(π(z̃)). (4.6.1)
Furthermore, we have g•π(z̃) = π(g•z̃) for all z̃ ∈ Z̃ and for all g ∈ Θ̃(z̃). It immediately follows
that Θ̃(z̃) is connected for all z̃ ∈ Z̃. Since the biholomorphic map Φ̃e : Z̃→ Z̃ fixes any point
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in Z̃ \ Exc(π), it coincides with Id
Z̃

. Given z̃ ∈ Z̃, let g, h ∈G be such that the assumptions
of (4.1.2) are fulfilled. By (4.6.1) there exists an open neighborhood U of π(z̃) in Z such that
both Φ̃gh and Φ̃g ◦ Φ̃h are defined on π−1(U). Since they coincide on π−1(U) \ Exc(π), they
coincide at z̃. Hence, we have shown that Φ̃ : Θ̃→ Z̃ is a local G-action.

If (Z,∆) is a logarithmic pair, if ξ ∈H0(Z, TZ(−log ∆)) is a logarithmic vector field and
if W is a Φξ-invariant subvariety of Z, for all z̃ ∈ ∆̃W and for all g ∈ Θ̃(z̃) = Θ(π(z̃)) we have
π(g•z̃) = g•π(z̃) ∈∆ ∪W . Since Θ̃(z̃) is connected, this shows the claim. 2

Corollary 4.7. Let (Z,∆) be a logarithmic pair, π : (Z̃, ∆̃)→ (Z,∆) a functorial log
resolution and W a subvariety of Z that is invariant under any local automorphism of (Z,∆).
Set

∆̃W := largest reduced divisor contained in π−1(∆ ∪W ).

Then π∗TZ̃
(−log ∆̃W ) is reflexive.

Proof. Let U ⊂ Z be an open subset and let ξ ∈H0(U \ (Z,∆)sing,TZ(−log ∆)) be a vector
field. Since TZ(−log ∆) = Ω1

Z(log ∆)∗ is reflexive, ξ extends to a logarithmic vector field on U ,
i.e., to an element ξ ∈H0(U,TZ(−log ∆)). Lifting the local C-action Φξ that corresponds to ξ
with the help of Proposition 4.6, we obtain a local C-action on π−1(U) that stabilizes ∆̃W . The
corresponding vector field ξ̃ ∈H0(π−1(U),T

Z̃
(−log ∆̃W )) is an extension of ξ considered as an

element of H0(π−1(U \ (Z,∆)sing),T
Z̃

(−log ∆̃W )). 2

Part II. Extension theorems for log canonical pairs

5. Proof of Theorem 1.1 for n-forms

In this section, we consider the extension problem for logarithmic n-forms. The proof of the
case p= n of Theorem 1.1 immediately follows from the following, slightly stronger result. The
discrepancy of an exceptional divisor has been introduced in Definition 3.10 above.

Proposition 5.1. Let (Z,∆) be an n-dimensional log canonical logarithmic pair. Let π :
(Z̃, ∆̃)→ (Z,∆) be a log resolution and Elc ⊂ Z̃ the union of all π-exceptional prime divisors
E 6⊆ ∆̃ with discrepancy a(E, Z,∆) =−1, endowed with the structure of a reduced subscheme
of Z̃. Then the sheaf π∗Ωn

Z̃
(log(∆̃ + Elc)) is reflexive.

Proof. After shrinking Z if necessary, it suffices to show that the pull-back of any n-form σ ∈
H0(Z, Ω[n]

Z (log ∆)) extends to an element of H0(Z̃, Ωn
Z̃

(log(∆̃ + Elc))). Using the argument in the
proof of Corollary 3.3 and the discrepancy calculation in the proof of [KM98, Proposition 5.20],
we see that it is sufficient to prove the claim under the additional assumption that KZ + ∆ is
Cartier.

First, we renumber the exceptional prime divisors E1, . . . , Em of π in such a way that:

(5.1.1) π(Ej)⊂∆ if and only if j = 1, . . . , k;

(5.1.2) a(Ej , Z,∆) > 0 for j = k + 1, . . . , l;

(5.1.3) Elc =
⋃m
j=l+1 Ej .
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Using the assumption that a(Ej , Z,∆) >−1 for all j, we obtain that

K
Z̃

+ π−1
∗ (∆)−

k∑
j=1

a(Ej , Z,∆)Ej =K
Z̃

+ ∆̃−
k∑
j=1

cjEj (5.1.4)

for some cj > 0. From (5.1.4) and the definition of discrepancy, we conclude that

π∗(KZ + ∆) =K
Z̃

+ ∆̃ + Elc −
l∑

j=1

bjEj , (5.1.5)

for some bj > 0; note that the bj are integral because KZ + ∆ is Cartier. Equation (5.1.5) then
implies that any n-form σ ∈H0(Z, Ω[n]

Z (log ∆)) =H0(Z, OZ(KZ + ∆)) extends to an element of
H0(Z̃, Ωn

Z̃
(log(∆̃ + Elc))). 2

Remark 5.2. It follows from the proof of Proposition 5.1 that the assumption ‘log canonical’ is
indeed necessary for the case p= n of the Theorem 1.1.

6. Proof of Theorem 1.1 for (n − 1)-forms

In this section, we consider the case p= n− 1 of Theorem 1.1. We recall the statement as follows.

Proposition 6.1. Let (Z,∆) be a log canonical logarithmic pair of dimension n. Let π :
(Z̃, ∆̃)→ (Z,∆) be a log resolution and set

∆̃lc := largest reduced divisor contained in π−1(∆ ∪ non-klt locus of (Z,∆)).

Then π∗Ωn−1

Z̃
(log ∆̃lc) is reflexive.

Proof. After shrinking Z, it suffices to show that the pull-back π∗σ of any σ ∈
H0(Z, Ω[n−1]

Z (log ∆)) extends to an element of H0(Z̃, Ωn−1

Z̃
(log ∆̃lc)). By Corollary 3.3, we may

assume that KZ + ∆ is Cartier and, possibly after a further shrinking of Z, that KZ + ∆ is
trivial. Finally, due to Lemma 2.13 we may assume that π : (Z̃, ∆̃)→ (Z,∆) is a functorial log
resolution.

Since Ω[1]
Z (log ∆)∗ ∼= TZ(−log ∆), there exists a unique logarithmic vector field η ∈

H0(Z, TZ(−log ∆)) that corresponds to σ via the perfect pairing

Ω[1]
Z (log ∆)× Ω[n−1]

Z (log ∆)→ OZ(KZ + ∆)∼= OZ .

Since the non-klt locus is invariant under the local C-action Φη of η, we can lift η to a vector
field η̃ ∈H0(Z̃, T

Z̃
(−log ∆̃lc)) using Corollary 4.7. The assumption that (Z,∆) is log canonical

implies, via a discrepancy computation similar to (5.1.5) in the proof of Proposition 5.1, that
O
Z̃

(K
Z̃

+ ∆̃lc)∼= O
Z̃

(D) for some effective divisor D on Z̃. Hence, the logarithmic vector field η̃
corresponds to an element σ̃ ∈H0(Z̃, Ωn−1

Z̃
(log ∆̃lc)⊗ O

Z̃
(−D)) via the pairing

Ω1
Z̃

(log ∆̃lc)× Ωn−1

Z̃
(log ∆̃lc)→ O

Z̃
(K

Z̃
+ ∆̃lc)∼= O

Z̃
(D).

This yields the desired extension of σ. 2

Remark 6.2. If π : (Z̃, ∆̃)→ (Z,∆) is a log resolution of a log canonical surface pair (Z,∆), not
only π∗Ω1

Z̃
(log ∆̃lc) but also π∗Ω1

Z̃
(log ∆̃) is reflexive, i.e., 1-forms extend over the exceptional

set of π without acquiring further logarithmic poles, see [Wah85, Lemma 1.3].
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We conclude this section with an example showing that the assumption ‘log canonical’ in
Theorem 1.1 is necessary also for the cases p= 1 and n− 1, cf. Remark 5.2.

Example 6.3. Let Z be the affine cone over a smooth curve C of degree four in P2. Let Z̃ be the
total space of the line bundle OC(−1). Then the contraction of the zero section E of Z̃ yields
a log resolution π : (Z̃, ∅)→ (Z, ∅). An elementary intersection number computation shows that
the discrepancy of E with respect to Z is equal to −2. If Z = {f = 0} for some quartic form f
in three variables z0, z1, z2, the (rational) differential form

τ =
dz1 ∧ dz2

∂f/∂z0

yields a global generator for Ω[2]
Z , cf. [Rei87, Example 1.8]. Let τ̄ := π∗(τ) ∈H0(Z̃, Ω2

Z̃
(2E)) be

the associated rational 2-form on Z̃, and observe that τ̄ , seen as a section in Ω2
Z̃

(2E), does

not vanish along E. Finally, let ξ be the vector field induced by the canonical C∗-action on Z̃.
Contracting τ̄ by ξ, we obtain a regular 1-form σ = ıξ τ̄ on Z̃ \ E that does not extend to an
element of H0(Z̃, Ω1

Z̃
(log E)). To see this, let U be an open subset of C such that OC(−1)|U

is trivial, and such that there exists a local coordinate z on U . If the bundle projection is
denoted by p : Z̃→ C, consider Ũ := p−1(U)∼= U × C. If w is a linear fiber coordinate on Ũ ,
we have Ũ ∩ E = {w = 0}. In these coordinates, τ̄ |

Ũ
= (g(z, w)/w2) dz ∧ dw for some nowhere

vanishing g ∈ O
Ũ

(Ũ), and ξ|
Ũ

= w(∂/∂w). Hence, in the chosen coordinates we have σ|
Ũ

=
−(g(z, w)/w) dz /∈H0(Ũ , Ω1

Z̃
(log E)).

7. Proof of Theorem 1.1 for 1-forms

The aim of the present section is to prove the Theorem 1.1 for 1-forms. This is an immediate
consequence of the following stronger proposition.

Proposition 7.1. Let (Z,∆) be a reduced log canonical pair. Let π : Z̃→ Z be a birational

morphism such that Z̃ is smooth, the π-exceptional set Exc(π)⊂ Z̃ is of pure codimension one
and supp(π−1(∆) ∪ Exc(π)) is a divisor with simple normal crossings. Let

∆̃lc := largest reduced divisor contained in π−1(∆ ∪ non-klt locus of (Z,∆)). (7.1.1)

Then the sheaf π∗Ω1
Z̃

(log ∆̃lc) is reflexive.

Remark 7.1.2. Observe that the morphism π in Proposition 7.1 need not be a log resolution in
the sense of Definition 2.6, as we do not assume that π is isomorphic over the set where (Z,∆)
is snc. The setup of Proposition 7.1 has the advantage that it behaves well under hyperplane
sections. This makes it easier to proceed by induction.

We will prove Proposition 7.1 in the remainder of the present section. Since the proof
is somewhat involved, we chose to present it as a sequence of clearly marked and relatively
independent steps.

7.1 Proof of Proposition 7.1: setup of notation
For notational convenience, we call a birational morphism admissible if it satisfies the
assumptions made in Proposition 7.1.

Notation 7.2 (Admissible morphism). Throughout this section, if (X, D) is a logarithmic pair,
we call a birational morphism η : X̃ →X admissible if X̃ is smooth, the η-exceptional set Exc(η)
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is of pure codimension one and

supp(η−1(D) ∪ Exc(η))

has simple normal crossings.

Notation 7.3. In the setup of Proposition 7.1, we denote the irreducible components of Exc(π)
by Ei ⊂ Z̃. Further, let T ⊂X denote the set of fundamental points of π−1. For x ∈ T , let
Fx := π−1(x) be the associated fiber and Fx,i := Fx ∩ Ei the obvious decomposition.

7.2 Proof of Proposition 7.1: technical preparations
To prove Proposition 7.1, we argue using repeated hyperplane sections of Z. We show that the
induced resolutions of general hyperplanes are again admissible.

Lemma 7.4. In the setup of Proposition 7.1, assume that dim Z > 1 and let H ⊂ Z be a general
hyperplane section.

(7.4.1) If ∆H := supp(H ∩∆), then the pair (H,∆H) is again log canonical.

(7.4.2) If H̃ := π−1(H), then the restricted morphism π|
H̃

: H̃ →H is admissible.

(7.4.3) If ∆̃
H̃,lc

is the largest reduced divisor contained in

π−1(∆H ∪ non-klt locus of (H,∆H)),

then ∆̃
H̃,lc
⊂ ∆̃lc ∩ H̃.

Remark 7.4.4. The inclusion ∆̃
H̃,lc
⊂ ∆̃lc ∩ H̃ of (7.4.3) might be strict.

Proof. Seidenberg’s theorem asserts that H is normal, cf. [BS95, Theorem 1.7.1]. Recall
from [KM98, Lemma 5.17] that discrepancies do not decrease when taking general hyperplane
sections. It follows that the pair (H,∆H) is log canonical since (Z,∆) is. This shows (7.4.1).
Assertion (7.4.3) follows from [KM98, Lemma 5.17(1)].

Since H̃ is general in its linear system, Bertini’s theorem guarantees that H̃ is smooth.
Zariski’s main theorem [Har77, V Theorem 5.2] now asserts that a point z ∈ Z̃ is in Exc(π)
if and only if the fiber that contains z is positive dimensional; the same holds for π|

H̃
. By

construction, we then have that

Exc(π|
H̃

) = Exc(π) ∩ H̃, (7.4.5)

supp(π|−1

H̃
(∆H) ∪ Exc(π|

H̃
)) = supp(π−1(∆) ∪ Exc(π)) ∩ H̃. (7.4.6)

The left-hand side of (7.4.5) is thus of pure codimension one in H̃, and another application of
Bertini’s theorem implies that the left-hand side of (7.4.6) is a divisor in H̃ with simple normal
crossings. The admissibility asserted in (7.4.2) is thus shown. 2

The following elementary corollary of Mumford’s contractibility criterion [Mum61, p. 6] helps
in the discussion of linear systems of divisors supported on fibers over isolated points.

Proposition 7.5. Let φ : Ỹ → Y be a projective birational morphism between quasi-projective,
normal varieties of dimension dim Y > 1 and assume that Ỹ is smooth. Let y ∈ Y be a point
whose preimage φ−1(y) has codimension one1 and let F0, . . . , Fk ⊂ supp(φ−1(y)) be the reduced

1 We do not assume that φ−1(y) has pure codimension one.

208



Extension theorems on log canonical varieties

divisorial components. If all the Fi are smooth and if
∑
kiFi is a non-trivial, effective linear

combination, then there exists a number j, 0 6 j 6 k, such that kj 6= 0 and such that

h0

(
Fj , O

Ỹ

(∑
kiFi

)∣∣∣∣
Fj

)
= 0. (7.5.1)

Proof. If j is any number with kj = 0, then the trivial sheaf OFj injects into O
Ỹ

(
∑
kiFi)|Fj

and (7.5.1) cannot hold. To prove Proposition 7.5, it therefore suffices to find a number j such
that (7.5.1) holds; the assertion kj 6= 0 is then automatic.

In order to do this, consider general hyperplanes H̃1, . . . , H̃dim Y−2 ⊂ Ỹ , and let H̃ =
H̃1 ∩ · · · ∩ H̃dim Y−2 be their intersection. Then H̃ is a smooth surface and the intersections
Ci := H̃ ∩ Fi are smooth curves. The Stein factorization of φ|

H̃
,

H̃ α
//

φ|
H̃

((
H̃ ′ β

// Y

gives α : H̃ → H̃ ′, a birational morphism that maps to a normal surface and contracts precisely
the curves Ci ⊂ H̃. Using Mumford’s criterion that the intersection matrix (Ci · Cj)i,j is negative
definite, we see that there exists a j ∈ {1, . . . , k} such that

degCj
O
Ỹ

(∑
kiFi

)∣∣∣∣
Cj

= Cj ·
(∑

kiFi|H̃

)
< 0,

where the intersection product in the middle term is that of curves on the smooth surface H̃,
cf. [KMM87, Lemma 5-1-7]. In particular, any section σ ∈H0(Fj , OFj (

∑
kiFi|Fj )) vanishes on

Cj and on all of its deformations. Since the H̃i are general, those deformations dominate Fj , and
the section σ must vanish on all of Fj . This shows (7.5.1) and completes the proof.

7.3 Proof of Proposition 7.1: extendability over isolated points
Before proving Proposition 7.1 in full generality in § 7.4 below, we consider the case where
reflexivity of π∗Ω1

Z̃
(log ∆̃lc) is already known away from a finite set. This result will be used as

the anchor for the inductive argument used in § 7.4. The argument relies on a vanishing result
of Steenbrink [Ste85].

Proposition 7.6. In the setup of Proposition 7.1, let Σ⊂ T be a finite set of points. Assume
that π∗Ω1

Z̃
(log ∆̃lc) is reflexive away from Σ. Then π∗Ω1

Z̃
(log ∆̃lc) is reflexive.

Proof. If n := dim Z = 2, the result is shown in Proposition 6.1 above. We will thus assume for
the remainder of the proof that n > 3. Since the assertion is local on Z, we can shrink Z and
assume without loss of generality that the following holds:

(7.6.1) the set Σ contains only a single point, Σ = {z}; and

(7.6.2) either ∆ = ∅ or every irreducible component of ∆ contains z.

By Lemma 2.13, we are free to blow up Z̃ further, if necessary. Thus, we can also assume that
the following holds:

(7.6.3) the reduced fiber Fz := (π−1(z))red is a simple normal crossings divisor on Z̃; and

(7.6.4) the divisor ∆̃′lc := (∆̃lc + Fz)red is a simple normal crossings divisors on Z̃.
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To prove Proposition 7.6, after shrinking Z more, if necessary, we need to show that the
natural restriction map

H0(Z̃, Ω1
Z̃

(log ∆̃lc))→H0(Z̃ \ Fz, Ω1
Z̃

(log ∆̃lc)) (7.6.5)

is surjective. The proof proceeds in two steps. First, we show surjectivity of (7.6.5) when we
replace ∆̃lc by the slightly larger divisor ∆̃′lc. Surjectivity of (7.6.5) is then shown in a second
step.

Step 1: extension with logarithmic poles along ∆̃′lc. Since n > 3, a vanishing result of
Steenbrink [Ste85, Theorem 2.b] asserts that

Rn−1π∗(J∆̃′lc
⊗ Ωn−1

Z̃
(log ∆̃′lc)) = 0. (7.6.6)

Theorem A.1 states that for any locally free sheaf F on Z̃ and any number 0 6 j 6 n, there
exists an isomorphism

((Rjπ∗F )z)̂∼=Hn−j
π−1(z)

(Z̃, F ∗ ⊗ ω
Z̃

)∗,

where ̂ denotes completion with respect to the maximal ideal mz of the point z ∈ Z. Setting
F := J

∆̃′lc
⊗ Ωn−1

Z̃
(log ∆̃′lc) and using F ∗ ⊗ ω

Z̃
∼= Ω1

Z̃
(log ∆̃′lc), we see that the vanishing (7.6.6)

implies that the following cohomology group support vanishes:

H1
Fz

(Z̃, Ω1
Z̃

(log ∆̃′lc)) = {0}.

The standard sequence for cohomology with supports [Har77, III ex. 2.3e],

· · · →H0(Z̃, Ω1
Z̃

(log ∆̃′lc))→H0(Z̃ \ Fz, Ω1
Z̃

(log ∆̃′lc))→H1
Fz

(Z̃, Ω1
Z̃

(log ∆̃′lc))→ · · · ,

then shows surjectivity of the restriction map (7.6.5) for the larger boundary divisor ∆̃′lc.

Step 2: extension as a form with logarithmic poles along ∆̃lc. To prove surjectivity of (7.6.5),
we will show that the natural inclusion

H0(Z̃, Ω1
Z̃

(log ∆̃lc))→H0(Z̃, Ω1
Z̃

(log ∆̃′lc)) (7.6.7)

is surjective. The results of Step 1 will then finish the proof of Proposition 7.6.

If z ∈∆, or if z is contained in the non-klt locus, then the divisors ∆̃ and ∆̃′ agree after
some additional shrinking of Z, and (7.6.7) is the identity map. So, we may assume that z 6∈∆,
and that the pair (Z,∆) is log terminal (i.e., plt) in a neighborhood of z. Assumption (7.6.2)
then asserts that ∆ = ∅. It follows that ∆̃lc = ∅ and that ∆̃′lc = Fz. In this setup, recall the well-
known result that Z has only rational singularities at z, cf. [KM98, Theorem 5.22]. For rational
singularities, surjectivity of (7.6.7) has been shown by Namikawa [Nam01, Lemma 2]. 2

7.4 Proof of Proposition 7.1: end of proof

To finish the proof of Proposition 7.1, after possibly shrinking Z, let σ ∈H0(Z̃ \ E,
Ω1
Z̃

(log ∆̃lc)) be any form defined outside the π-exceptional set E := Exc(π) and let σ̃ ∈
H0(Z̃, Ω1

Z̃
(log ∆̃lc)(∗E)) be its extension to Z̃ as a logarithmic form, possibly with poles along E.

We need to show that indeed σ̃ does not have any poles as a logarithmic form. More precisely,
if E′ ⊂ E is any irreducible component, then we show that σ̃ does not have any poles along E′,
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i.e.,

σ̃ ∈H0(Z̃, Ω1
Z̃

(log ∆̃lc)(∗(E − E′))). (7.6.8)

To prove this, we proceed by induction on pairs (dim Z, codim π(E′)), which we order
lexicographically as indicated in Table 1.

Table 1. Lexicographical ordering of dimensions and codimensions.

No. 1 2 3 4 5 6 7 8 9 10 · · ·
dim Z 2 3 3 4 4 4 5 5 5 5 · · ·
codim π(E′) 2 2 3 2 3 4 2 3 4 5 · · ·

For convenience of notation, we renumber the irreducible components Ei of E, if necessary,
and assume that E′ = E0 and that there exists a number k such that

{E0, . . . , Ek}= {Ei ⊂ E an irreducible component|π(Ei) = π(E0)}.

Further, let ki ∈ N be the pole orders of σ̃ along the Ei, i.e., the minimal numbers such that

σ̃ ∈H0

(
Z̃, Ω1

Z̃
(log ∆̃lc)⊗ O

Z̃

(∑
kiEi

))
.

To prove (7.6.8), it is then equivalent to show that k0 = 0.

Start of induction. In the case dim Z = codim π(E0) = 2, the set T of fundamental points
is necessarily isolated, and Proposition 7.6 applies.2

Inductive step. Our induction hypothesis is that the extension statement as in (7.6.8) holds
for all log canonical pairs (X, D), all admissible morphisms πX : X̃ →X, all logarithmic forms
on X̃ defined outside the πX -exceptional set and all πX -exceptional divisors E′X ⊂ X̃, where
either

dimX < dim Z or (dimX = dim Z and codim πX(E′X)< codim π(E0)).

If dim Z = codim π(E0), then the induction hypothesis asserts that the set of points where
π∗Ω1

Z̃
(log ∆̃lc) is not already known to be reflexive is at most finite. But then Proposition 7.6

again implies that π∗Ω1
Z̃

(log ∆̃lc) is reflexive everywhere, and the claim holds. We will therefore
assume without loss of generality for the remainder of this proof that dim Z > codim π(E0) or,
equivalently, that dim π(E0)> 0.

Now choose general hyperplanes H1, . . . , Hdim π(E0) ⊂ Z and consider their intersection
H :=H1 ∩ · · · ∩Hdim π(E0) and its preimage H̃ := π−1(H). Setting ∆H := supp(∆ ∩H) and
H̃ := π−1(H), a repeated application of Lemma 7.4 then guarantees that the pair (H,∆H) is log
canonical, and the restricted morphism π|

H̃
is admissible. If ∆̃H,lc ⊂ H̃ is the divisor discussed

in Lemma 7.4, the induction hypothesis applies to forms on H̃ with logarithmic poles along
∆̃H,lc ⊂ ∆̃lc|H̃ .

The variety H then intersects π(E0) in finitely many points, which are general in π(E0). Let
z ∈H ∩ π(E0) be one of them, and let Fz := π−1(z) be the fiber over z. Shrinking Z, if necessary,
we may assume without loss of generality that z is the only point of intersection, {z}=H ∩ π(E0).

2 Alternatively, Proposition 6.1 would also apply.
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The fiber Fz ⊂ H̃ will generally be reducible, and need not be of pure dimension. However, if
we set

Fz,i := Fz ∩ Ei
then an elementary computation of dimensions and codimensions shows that the first (k + 1)
intersections, Fz,0, . . . , Fz,k ⊂ Fz, are precisely those irreducible components of Fz that have
codimension one in H̃. For 0 6 i 6 k, we also obtain that

Fz,i := Ei ∩ H̃.

In particular, since π|
H̃

is admissible by Lemma 7.4 and the Ei are all smooth by assumption,
Bertini’s theorem applies to show that the (Fz,i)06i6k are smooth as well. Note that all
prerequisites of Proposition 7.5 are thus satisfied. We will apply that proposition later near
the end of the proof.

Now consider the standard restriction sequence for logarithmic forms, cf. [KK08a, Lemma 2.13
and references therein],

0 // N
∗
H̃/Z̃

// Ω1
Z̃

(log ∆̃lc)|H̃
% // Ω1

H̃
(log ∆̃lc|H̃) // 0,

its twist with F := O
H̃

(
∑
kiEi|H̃) and its restriction to Fz,j , for 0 6 j 6 k. We have the following.

N∗
H̃/Z̃
⊗F α //

��

Ω1
Z̃

(log ∆̃lc)|H̃ ⊗F
β //

r1,j

��

Ω1
H̃

(log ∆̃lc|H̃)⊗F

r2,j

��
N∗
H̃/Z̃
⊗F |Fz,j αj

// Ω1
Z̃

(log ∆̃lc)⊗F |Fz,j βj

// Ω1
H̃

(log ∆̃lc|H̃)⊗F |Fz,j

The induction hypothesis now asserts that σ̃|
H̃

is a regular logarithmic form on H̃. More precisely,
using the notation % : Ω1

Z̃
(log ∆̃lc)|H̃ → Ω1

H̃
(log ∆̃lc|H̃) from above, we have

%(σ̃|
H̃

) ∈ H0(H̃, Ω1
H̃

(log ∆̃H,lc)) by the induction hypothesis (7.6.9)

⊆ H0(H̃, Ω1
H̃

(log ∆̃lc|H̃)) because ∆̃H,lc ⊆ ∆̃lc|H̃ by (7.4) (7.6.10)

⊆ H0(H̃, Ω1
H̃

(log ∆̃lc|H̃)⊗F ) because O
H̃
⊆F . (7.6.11)

If j is any number with kj > 0, we can say more. The choice of the kj guarantees that σ̃|
H̃

is a section in Ω1
Z̃

(log ∆̃lc)|H̃ ⊗F that does not vanish along H̃ ∩ Ej . On the other hand,

(7.6.9)–(7.6.11) assert that β(σ̃|
H̃

), i.e., %(σ̃|
H̃

), viewed as a section of Ω1
H̃

(log ∆̃lc|H̃)⊗F , must

necessarily vanish along H̃ ∩ Ej . In other words, we obtain that

r1,j(σ̃|H̃) 6= 0 and (βj ◦ r1,j)(σ̃|H̃) = (r2,j ◦ β)(σ̃|
H̃

) = 0.

In other words, r1,j(σ̃|H̃) is a non-trivial section in the kernel of βj . Consequently,
h0(Fz,j , N∗H̃/Z̃ ⊗ O

H̃
(
∑
ki · Ei)) 6= 0 for all j with kj > 0. Note, however, that the restriction of

the conormal bundle N∗
H̃/Z̃

to Fz, and hence to Fz,j , is trivial because it is a pull-back from H,

that is, N∗
H̃/Z̃

= (π|
H̃

)∗(N∗H/Z).

Summing up, we obtain that

h0

(
Fz,j , OFz,j

(∑
kiEi|Fz,j

))
6= 0 for all j with kj > 0. (7.6.12)
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Now, if there was a number 0 6 j 6 k with kj > 0, then inequality (7.6.12) would clearly
contradict Proposition 7.5. It follows that all (kj)06j6k must be zero. In particular, k0 = 0,
as claimed. This completes the proof of Proposition 7.1 and thus the proof of Theorem 1.1 for
1-forms. 2

Part III. Bogomolov–Sommese vanishing on singular spaces

8. Pull-back properties for sheaves of differentials, proof of Theorem 1.4

In this section we apply the Theorem 1.1 to sheaves of reflexive differentials on singular pairs, i.e.,
sheaves of differentials that are defined away from the singular set. In good situations, we show
that the pull-back of a sheaf of reflexive differentials to a log resolution can still be interpreted as
a sheaf of differentials, and that the Kodaira–Iitaka dimension of the sheaves does not change in
the process. The Bogomolov–Sommese vanishing theorem, Theorem 1.4, follows as an immediate
corollary.

Theorem 8.1 (Extension for sheaves of differentials). Let (Z,∆) be a logarithmic pair and
π : (Z̃, ∆̃)→ (Z,∆) a log resolution. Let T be a reflexive tensor operation and suppose that
there exists a reflexive sheaf A with inclusion ι : A → TΩ1

Z(log ∆). Further, assume that one of
the following two additional assumptions holds:

(8.1.1) the pair (Z,∆) is finitely dominated by analytic snc pairs; or

(8.1.2) the pair (Z,∆) is log canonical, the sheaf A is Q-Cartier and T =
∧[p], where p ∈

{dim Z, dim Z − 1, 1}.

Then there exists a factorization

π[∗]A ↪→ C ↪→ TΩ1
Z̃

(log(∆̃ + E∆)),

where E∆ ⊂ Z̃ is the union of those π-exceptional divisors that are not contained in ∆̃, C is
invertible and κ(C ) = κ(A ).

Warning 8.2. Since π[∗]A is a subsheaf of C , it might be tempting to believe that the
equality κ(C ) = κ(A ) is immediate. Note, however, that the reflexive tensor products used in
Definition 2.3 of the Kodaira–Iitaka dimension generally do not commute with pull-back. The
Kodaira–Iitaka dimension κ(π[∗]A ) could therefore be strictly smaller than κ(A ).

Before proving Theorem 8.1 in § 8.2 below, we remark that the following, slightly stronger
variant of the Bogomolov–Sommese vanishing Theorem 1.4 for log canonical threefolds and
surfaces follows as an immediate corollary to Theorem 8.1.

Theorem 8.3 (Bogomolov–Sommese vanishing for log canonical pairs). Let (Z,∆) be a log

canonical logarithmic pair. If p ∈ {dim Z, dim Z − 1, 1} and if A ⊂ Ω[p]
Z (log ∆) is any Q-Cartier

reflexive subsheaf of rank one, then κ(A ) 6 p.

Proof of Theorems 8.3 and 1.4. We argue by contradiction and assume that there exist a number
p ∈ {dim Z, dim Z − 1, 1} and a Q-Cartier reflexive subsheaf A ⊂ Ω[p]

Z (log ∆) of rank one, with
Kodaira–Iitaka dimension κ(A )> p.
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Let π : (Z̃, ∆̃)→ (Z,∆) be any log resolution. Theorem 8.1 then asserts the existence
of an invertible sheaf C ⊂ Ωp

Z̃
(log ∆̃ + E∆) with κ(C ) = κ(A ). This contradicts the classical

Bogomolov–Sommese vanishing theorem for snc pairs [EV92, Corollary 6.9]. 2

8.1 Preparations for the proof of Theorem 8.1
As a preparation for the proof of Theorem 8.1, we show that the pull-back of a sheaf of reflexive
differentials can be interpreted as a sheaf of differentials if the extension theorem holds.

Proposition 8.4. Let (Z,∆) be a logarithmic pair, T a reflexive tensor operation and assume
that the extension theorem holds for T-forms on (Z,∆), in the sense of Definition 2.8. If π :
(Z̃, ∆̃)→ (Z,∆) is any log resolution and E∆ ⊂ Z̃ the union of those π-exceptional components
that are not contained in ∆̃, then there exists an embedding

π[∗]TΩ1
Z(log ∆) ↪→ TΩ1

Z̃
(log(∆̃ + E∆)). (8.4.1)

Proof. As π induces an isomorphism Z̃ \ Exc(π)' Z \ π(Exc(π)), the assumption that the
extension theorem holds for T-forms on (Z,∆) immediately implies that

TΩ1
Z(log ∆)' π∗TΩ1

Z̃
(log(∆̃ + E∆)),

because both sides are reflexive and agree in codimension one and Z is S2 since it is normal.
Consequently, we obtain a morphism

π∗TΩ1
Z(log ∆)' π∗π∗TΩ1

Z̃
(log(∆̃ + E∆))→ TΩ1

Z̃
(log(∆̃ + E∆)),

which is an isomorphism, in particular an embedding, on Z̃ \ Exc(π). This remains true after
taking the double dual of these sheaves. Therefore, the kernel of the map π[∗]TΩ1

Z(log ∆)→
TΩ1

Z̃
(log(∆̃ + E∆)) is a torsion sheaf. Since π[∗]TΩ1

Z(log ∆) is torsion free, this implies the
statement. 2

It is well understood that tensor operations commute with pull-back. However, this is
generally not true for reflexive tensor operations, cf. [HK04]. Thus, if we are in the setup
of Proposition 8.4 and if A ⊂ TΩ1

Z(log ∆) is any sheaf, it is generally not at all clear if the
embedding (8.4.1) induces a map between reflexive tensor products,

π[∗]A [m]
∃? // Symm TΩ1

Z̃
(log(∆̃ + E∆)).

If the sheaf A is invertible, we can obviously say more.

Lemma 8.5. In the setup of Proposition 8.4, let A ⊂ TΩ1
Z(log ∆) be an invertible subsheaf.

If m ∈ N is arbitrary, then the embedding (8.4.1) induces a map

π[∗]A [m] ↪→ Symm TΩ1
Z̃

(log(∆̃ + E∆)). (8.5.1)

Proof. Since A is invertible, all tensor operations on A are automatically reflexive. In particular,
we have that A [m] = A ⊗m and π[∗]A [m] ∼= π∗(A ⊗m)∼= (π∗A )⊗m. The existence of (8.5.1) then
follows from Proposition 8.4. 2

8.2 Proof of Theorem 8.1
We maintain the notation and the assumptions of Theorem 8.1. By Theorem 1.1 or Remark 3.5,
respectively, the extension theorem holds for the pair (Z,∆). Proposition 8.4 then gives an
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embedding ψ[∗]A ↪→ Symn Ω1
Z̃

(log(∆̃ + E∆)). Let C ⊂ TΩ1
Z̃

(log(∆̃ + E∆)) be the saturation of
the image, which is automatically reflexive by [OSS80, Lemma 1.1.16, p. 158]. By [OSS80,
Lemma 1.1.15, p. 154], C is then invertible, as desired. Further, observe that, for any m ∈ N, the
subsheaf C⊗m ⊂ Symm TΩ1

Z̃
(log(∆̃ + E∆)) is likewise saturated.

8.2.1 Proof of Theorem 8.1 if (Z,∆) is finitely dominated by analytic snc pairs. If
assumption (8.1.1) of Theorem 8.1 holds and m ∈ N is arbitrary, then again by Remark 3.5
and Proposition 8.4 there exists an embedding

ῑ[m] : ψ[∗]A [m] ↪→ Symm TΩ1
Z̃

(log(∆̃ + E∆)).

It is easy to see that ῑ[m] factors through C⊗m as it does so on the open set where ψ is isomorphic,
and because C⊗m is saturated in the locally free sheaf Symm TΩ1

Z̃
(log(∆̃ + E∆)). It follows that

κ(C ) = κ(A ). This completes the proof in the case when assumption (8.1.1) holds. 2

8.2.2 Proof of Theorem 8.1 if (Z,∆) is log canonical. It remains to consider the case when
assumption (8.1.2) of Theorem 8.1 holds. Let m ∈ N and σ ∈H0(Z, A [m]) a section. Then
π∗(σ) can be seen as a section in C⊗m, with poles along the exceptional set E := Exc(π),
i.e., π∗(σ) ∈H0(Z̃, C⊗m(∗E)). To show that κ(C ) = κ(A ), it suffices to prove that π∗(σ) does
not have any poles as a section in C⊗m, i.e., that

π∗(σ) ∈H0(Z̃, C⊗m)⊂H0(Z̃, C⊗m(∗E)). (8.5.2)

Since C⊗m is saturated in Symm Ωp

Z̃
(log(∆̃ + E∆)), to show (8.5.2) it suffices in turn to show

that π∗(σ) does not have any poles as a section in the sheaf of symmetric differentials, i.e., that

π∗(σ) ∈H0(Z̃, Symm Ωp

Z̃
(log(∆̃ + E∆))). (8.5.3)

Since that question is local in Z in the analytic topology, we can shrink Z, use that
A is Q-Cartier and assume without loss of generality that there exists a number r such that
A [r] ∼= OZ . Similar to the construction in the proof of the finite covering trick, Proposition 3.1,
we obtain a commutative diagram.

(X̃, D̃)
γ̃, finite //

π̃
contracts Ẽ ��

(Z̃, ∆̃)
π

log resolution
contracts E��

(X, D)
γ, finite

// (Z,∆)

Here γ is the index-one-cover associated with A , X̃ is the normalization of the fiber product
X ×Z Z̃ and D̃ ⊂ X̃ is the reduced preimage of ∆̃. As before, let

Ẽ := Exc(π̃) = supp(γ̃−1(E)) = supp((γ ◦ π̃)−1(Z,∆)sing)

be the exceptional set of the morphism π̃. Since γ is étale away from the singularities of Z, the
morphism γ̃ is étale outside of E ⊂ ∆̃ ∪ E∆. In particular, the pull-back morphism of differentials
gives an isomorphism

γ̃[∗](Symm Ωp

Z̃
(log ∆̃ + E∆))∼= Sym[m] Ω[p]

X̃
(log D̃ + ẼD),
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where again ẼD ⊂ X̃ is the union of the π̃-exceptional divisors not already contained in D̃. In
order to prove (8.5.3), it then suffices to show that

γ̃[∗](π∗(σ)) = π̃[∗]γ[∗](σ) ∈H0(X̃, Sym[m] Ω[p]

X̃
(log(D̃ + ẼD))), (8.5.4)

cf. case (2.12.(i)) of Corollary 2.12. Since the pair (X, D) is again log canonical by [KM98,
Proposition 5.20], Theorem 1.1 applies to show that the extension theorem holds for (X, D). In
particular, Lemma 8.5 applies to the invertible sheaf Ã := γ[∗](A )⊂ Ω[p]

X (log D). Inclusion (8.5.4)
follows if one applies the embedding

π̃[∗](Ã [m]) ↪→ Symm TΩ1
X̃

(log(D̃ + ẼD))

to the section σ̃ := γ[∗](σ) ∈H0(X, Ã ). This completes the proof of Theorem 8.1 in the case
when assumption (8.1.2) holds. 2
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Part IV. Appendix

Appendix A. Duality for cohomology with support

The proof of Proposition 7.6 relies on the following version of Hartshorne’s formal duality
theorem. Since this is not exactly the version contained in the main reference [Har70], we recall
the relevant facts and include a full proof for the reader’s convenience.

Theorem A.1 (Formal duality [Har70, Theorem 3.3]). Let π : Z̃→ Z be a projective birational
morphism of quasi-projective varieties, where Z̃ is non-singular and Z is normal. Let z ∈ Z and
F := π−1(z) the fiber over z. Then, for any locally free sheaf F on Z̃ and any number 0 6 j 6 n,
there exists a canonical isomorphism

(Rjπ∗Fz)̂∼=Hn−j
F (Z̃, F ∗ ⊗ ω

Z̃
)∗,

where ̂ denotes completion with respect to the maximal ideal mz of the point z ∈ Z.

We recall a few facts before giving the proof.

Fact A.2 (Excision for local cohomology [Har77, III Example 2.3f]). Let Z be an algebraic
variety, Y a subvariety and U ⊆ Z an open subset that contains Y . If i is any number and F
any sheaf, then there exists a canonical isomorphism H i

Y (Z, F )∼=H i
Y (U, F

∣∣
U ). 2

Fact A.3 (Serre duality on Z̃ [Har77, III Theorem 7.6]). Let Z̃ be a non-singular projective
variety of dimension n. Then there exists a canonical isomorphism

Hj(Z̃, G )∼= (Extn−j
Z̃

(G , ω
Z̃

))∗

for all j > 0 and for every coherent sheaf G on Z̃. 2

Fact A.4 (Approximation of cohomology with support [Har67, Theorem 2.8]). In the notation
of Theorem A.1 above, if I is any sheaf of ideals defining the subset F ⊆ Z̃, the local cohomology
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groups with support on F and values in a coherent algebraic sheaf G can be computed as follows:

Hj
F (Z̃, G ) = lim−→

m

Extj
Z̃

(O
Z̃

/
Im, G ). 2

Fact A.5 (Theorem on formal functions [Har77, ch. III.11]). In the notation of Theorem A.1
above, if J is the O

Z̃
-ideal generated by the image of the maximal ideal mz under the natural

map π−1OZ → O
Z̃

, and if G is any coherent sheaf on Z̃, then we have

(Rjπ∗Gz)̂∼= lim←−
m

Hj(Fm, Gm),

where Fm = (F, O
Z̃

/
Jm) is the mth infinitesimal neighborhood of the fiber F and where

Gm = G ⊗ O
Z̃

/
Jm. 2

Fact A.6 [Har77, ch. III.6, Proposition 6.7]. Let Z̃ be an algebraic variety. For coherent
sheaves M and N on Z̃, we have

Extj
Z̃

(F ⊗M ,N )∼= Extj
Z̃

(M ,F ∗ ⊗N )

for every locally free sheaf F on Z̃. 2

Proof of Theorem A.1. Using the excision theorem for local cohomology, Fact A.2, we may
compactify Z and Z̃ and assume without loss of generality that both Z and Z̃ are projective.
By Fact A.5, we have

(Rjπ∗Fz)̂= lim←−H
j(Fm,Fm). (A1)

The cohomology group on the right-hand side of (A1) is computed as follows.

Hj(Fm,Fm) = Hj(Z̃,Fm)
∼= (Extn−j

Z̃
(Fm, ωZ̃))∗ by Fact A.3

∼= (Extn−j
Z̃

(O
Z̃

/
Jm,F ∗ ⊗ ω

Z̃
))∗ by Fact A.6.

Substituting this into (A1), we obtain

(Rjπ∗Fz)̂ ∼= lim←−(Extn−j
Z̃

(O
Z̃
/Jm,F ∗ ⊗ ω

Z̃
))∗

= (lim−→ Extn−j
Z̃

(O
Z̃
/Jm,F ∗ ⊗ ω

Z̃
))∗

= (Hn−j
F (Z̃,F ∗ ⊗ ω

Z̃
))∗ by Fact A.4,

as claimed. 2
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