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ABSTRACT

The present paper is concerned with differential forms on log canonical varieties. It is shown that any p-form de-
fined on the smooth locus of a variety with canonical or klt singularities extends regularly to any resolution of singularities.
In fact, a much more general theorem for log canonical pairs is established. The proof relies on vanishing theorems for
log canonical varieties and on methods of the minimal model program. In addition, a theory of differential forms on dlt
pairs is developed. It is shown that many of the fundamental theorems and techniques known for sheaves of logarithmic
differentials on smooth varieties also hold in the dlt setting.

Immediate applications include the existence of a pull-back map for reflexive differentials, generalisations of
Bogomolov-Sommese type vanishing results, and a positive answer to the Lipman-Zariski conjecture for klt spaces.
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PART I. INTRODUCTION

1. Introduction

Differential forms play an essential role in the study of algebraic varieties. On a
smooth complex variety X of dimension n the sheaf ωX = �n

X of n-forms is of particular
importance as it appears both in Serre duality and in the Kodaira vanishing theorem. As
observed by Grauert and Riemenschneider, these two roles do not generalise the same
way to the singular case. If X is singular, there are several possible definitions for the sheaf
of n-forms, depending on which of the properties one would like to keep. In general, there
is one definition that preserves the role of differentials in duality theory and another one
suitable for vanishing theorems.

A simple case. — Consider the case when X is normal and Gorenstein. In this setting
the dualising sheaf ωX is locally free, and Serre duality holds the same way as in the
smooth case. In contrast, the Kodaira vanishing theorem fails in general. There exist a
Gorenstein variety X with ample line bundle L ∈ Pic X such that H1(X,ωX ⊗ L ) �= 0,
[GR70, Section 3.3]. However, when π : ˜X → X is a resolution of singularities and ω̃X :=
π∗ω˜X, then there exists an inclusion ω̃X ⊆ ωX, the subsheaf ω̃X is independent of the
resolution, and Kodaira vanishing holds for ω̃X by [GR70, Theorem 2.1]. Consequently,
there are two sheaves on X that generalise the notion of the canonical line bundle of a
smooth variety: ωX works for duality, ω̃X for vanishing.

Given the importance of duality and vanishing theorems in complex algebraic
geometry, the following question seems natural in this context.

Question 1.1. — Given a normal Gorenstein variety X, when do the sheaves ωX

and ω̃X agree?

To answer this question, recall that ωX is locally free and therefore reflexive. If
U ⊆ X is any open subset, to give a section τ ∈ ωX(U), it is therefore equivalent to give
an n-form on the smooth locus of U. In other words, to give a section τ ∈ ωX(U), it is
equivalent to give an n-form τ ′ ∈ ω

˜X(π−1(U) \ E), where E ⊂ ˜X is the exceptional locus
of the resolution map π . In contrast, a section σ ∈ ω̃X(U) is, by definition, an n-form
σ ′ ∈ ω

˜X(π−1(U)).
In summary, we obtain the following equivalent reformulation of Question 1.1.
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DMS-0554697 and DMS-0856185, and the Craig McKibben and Sarah Merner Endowed Professorship in Mathematics.
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Question 1.2. — When is it true that any n-form, defined on an open set of the form
π−1(U) \ E ⊂ ˜X extends across E, to give a form on π−1(U)?

The answer to Question 1.2 is almost a tautology: it follows directly from the def-
inition that X has canonical singularities if and only if any n-form π−1(U) \ E extends
across E. The fact that spaces with canonical singularities have a single sheaf that works
for both duality and vanishing is one of the reasons for their importance in higher dimen-
sional algebraic geometry.

Main result of this paper. — This paper aims to answer Question 1.2 for differential
forms of degree p, where p ≤ n and where X is not necessarily Gorenstein. The main re-
sults, formulated in Theorems 1.4 and 1.5 below, assert that if X is log terminal, then any
p-form will extend. Our results also hold in the logarithmic setup, for log canonical pairs.
Immediate applications concern vanishing theorems and other properties of differential
forms on log canonical varieties.

Formulation using reflexive sheaves. — Extension properties of differential forms can be
expressed in terms of reflexivity of push-forward sheaves. Although perhaps not quite
intuitive at first sight, this language is technically convenient. The following observation
relates reflexivity and extension properties and will be used throughout the paper.

Observation 1.3. — Let X be a normal variety, and π : ˜X → X a resolution of
singularities, with exceptional set E ⊂ ˜X. If A is any locally free sheaf on ˜X, then π∗A
is torsion free, but not necessarily reflexive. Using that codimX π(E) ≥ 2, observe that
π∗A reflexive if and only if any section of π∗A |X\π(E) extends to X. Equivalently, π∗A is
reflexive if and only if any section of A , defined on an open set of the form π−1(U) \ E
extends to π−1(U).

1.A. Main results. — The main result of this paper gives necessary and sufficient
conditions that guarantee reflexivity of π∗�

p

˜X for all p ≤ dim X. Equivalently, the main
result gives necessary and sufficient conditions to guarantee that any differential p-form
on ˜X, defined away from the exceptional set E extends across E. The simplest form of
our main result is the following.

Theorem 1.4 (Extension theorem for differential forms on klt varieties). — Let X be a complex

quasi-projective variety with at most klt (Kawamata log terminal) singularities and π : ˜X → X a log

resolution. Then π∗�
p

˜X is reflexive for all p ≤ dim X.

Remark 1.4.1. — Gorenstein klt varieties have canonical singularities. The state-
ment of Theorem 1.4 therefore includes the results discussed in the introduction.

In fact, we prove much more. Our main result works in the category of log canon-
ical (lc) pairs.
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Theorem 1.5 (Extension theorem for differential forms on lc pairs). — Let X be a complex

quasi-projective variety of dimension n and let D be a Q-divisor on X such that the pair (X,D) is log

canonical. Let π : ˜X → X be a log resolution with π -exceptional set E and

˜D := largest reduced divisor contained in suppπ−1(non-klt locus),

where the non-klt locus is the smallest closed subset W ⊂ X such that (X,D) is klt away from W.

Then the sheaves π∗�
p

˜X(log ˜D) are reflexive, for all p ≤ n.

Remark 1.5.1. — In Section 3 we gathered a number of examples to illustrate
Theorem 1.5 and to show that its statement is sharp.

Remark 1.5.2. — The name “extension theorem” is justified by Observation 1.3,
which asserts that the sheaf π∗�

p

˜X(log ˜D) is reflexive if and only if for any open set U ⊆ X
and any number p, the restriction morphism

H0
(

U,π∗�
p

˜X(log ˜D)
) → H0

(

U \ π(E),�
p

X(log�D
))

is surjective. In other words, logarithmic p-forms defined on the non-singular part of X
can be extended to any resolution of singularities.

Remark 1.6. — A pair is log canonical if its sheaf of logarithmic n-forms satisfies
certain conditions, closely related to extension properties. For such pairs, Theorem 1.5
asserts that analogous extension properties hold for forms of arbitrary degrees. This
matches the philosophy that the geometry of a variety is governed by the behaviour of its
n-forms.

1.B. Previous results. — The extension problem has been studied in the literature,
mostly asking extension only for special values of p. For a variety X with only iso-
lated singularities, reflexivity of π∗�

p

˜X was shown by Steenbrink and van Straten for
p ≤ dim X − 2 without any further assumption on the nature of the singularities, [SvS85,
Theorem 1.3]. Flenner extended these results to normal varieties, subject to the condi-
tion that p ≤ codim Xsing − 2, [Fle88]. Namikawa proved reflexivity for p ∈ {1,2}, in case
X has canonical Gorenstein singularities, [Nam01, Theorem 4]. In the case of finite quo-
tient singularities similar results were obtained in [dJS04]. For a log canonical pair with
reduced boundary divisor, the cases p ∈ {1,dim X − 1,dim X} were settled in [GKK10,
Theorem 1.1].

A related setup where the pair (X,D) is snc, and where π : ˜X → X is the com-
position of a finite Galois covering and a subsequent resolution of singularities has been
studied by Esnault and Viehweg. In [EV82] they obtain in their special setting a result
similar to Theorem 1.5 and additionally prove vanishing of higher direct image sheaves.

We would also like to mention the paper [Bar78] where differential forms are
discussed even in non-normal settings.
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1.C. Applications. — In order to keep the length of this article reasonable, we
only give a few applications. These include the existence of a pull-back map for reflex-
ive differentials, rational connectivity of klt spaces, the Lipman-Zariski-conjecture, and
Bogomolov-Sommese type results. Many more applications, e.g., to rational connectiv-
ity, Kodaira-Akizuki-Nakano vanishing type results and varieties with trivial canonical
classes, will be published separately.

1.D. Further results of this paper. — Apart from the extension results, we develop a
theory of differential forms on dlt pairs, showing that many of the fundamental theorems
and techniques known for sheaves of logarithmic differentials on smooth varieties also
hold in the dlt setting. In particular, there is a satisfactory theory of relative differentials
and a residue theory. A detailed introduction is given in Section 8 on page 21.

We believe that these results are of independent interest. Sheaves of reflexive dif-
ferentials on singular spaces appear naturally when one uses minimal model theory to
study compactifications of moduli spaces, where differentials can often be constructed
using Hodge-theoretic methods, cf. [VZ02, Vie10]. For a concrete example, we refer to
[KK10a] where a study of reflexive differentials on dlt spaces was an important ingredi-
ent in a generalisation of Shafarevich hyperbolicity.

1.E. Outline of the paper. — The proof of our main theorem is given in two steps.
We first extend up to logarithmic poles and then we prove the stronger extension result.
This is done in Parts V and VI, respectively.

After a preliminary section, mainly devoted to setting up the basic notation, we first
give in Part II some applications of the Extension Theorem 1.5. Parts III and IV consist of
indispensable technical preparations which might, however, merit attention on their own.
In particular, Part III presents a systematic treatment of reflexive differential on dlt pairs.
Part IV presents two vanishing theorems for direct image sheaves on log canonical pairs,
one of them generalising and expanding Steenbrink’s vanishing theorem. A technical
vanishing theorem for cohomology with support is also included. In Section 2.D and
Appendix A, we present several important facts that are likely known to experts, but for
which we were unable to find complete references.

2. Notation, conventions and standard facts

The results of this paper are formulated and proven using the language of higher
dimensional algebraic geometry. While most of the definitions and much of the notation
we use is fairly standard in the field, we are aware of several instances where definitions
have evolved with time and are not always coherently used in the literature. To minimise
the potential for confusion, we have chosen to prepend this paper with the present section
that collects standard facts and specifies notation wherever misunderstandings seem likely.
We quote standard references where possible.
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2.A. Base field, Kähler differentials. — Throughout the paper, we will work over the
field of complex numbers. For a point on a scheme or complex analytic space, p ∈ X, the
residue field of p will be denoted by κ(p).

The central objects in this paper are differential forms on singular spaces. Tra-
ditionally that means (logarithmic) Kähler differentials: If X is a scheme or complex
space and D a reduced Weil divisor on X then we denote the sheaves of Kähler differen-
tials (resp. logarithmic Kähler differentials) by �1

X (resp. �1
X(log D)). For a p ∈ N we let

�
p

X = ∧p
�1

X and �
p

X(log D) = ∧p
�1

X(log D). In particular, �0
X = �0

X(log D) = OX.

Remark 2.1. — The sheaves of Kähler differentials do not behave well near singular
points. It is often more advantageous to work with their reflexive hulls. See Subsection 2.E
for definitions and remarks regarding reflexive differential forms.

2.B. Pairs. — The main results of this paper concern pairs of algebraic varieties
and effective divisors, which have long been central objects in higher dimensional alge-
braic geometry. In our discussion of pairs, we follow the language and notational con-
ventions of the book [KM98]. We recall the most important conventions for the reader’s
convenience.

Definition 2.2 (Pairs and reduced pairs). — A pair (or log variety) (X,D) consists of a
normal quasi-projective variety X and a boundary, i.e., an effective Q-Weil divisor D =
∑

diDi on X such that Di are reduced effective (integral) Weil-divisors and di ∈ [0,1]∩Q.
A reduced pair is a pair (X,D) such that D is reduced, that is, D = �D
, or equivalently all
components of D appear with coefficient 1.

Notation 2.3 (Singularities of pairs). — Given a pair (X,D), we will use the notions
lc (log canonical), klt, dlt without further explanation or comment and simply refer to
[KM98, Section 2.3] for a discussion and for their precise definitions.

Definition 2.4 (Snc pairs [KM98, 0.4(8)]). — Let (X,D) be a pair, and x ∈ X a point.
We say that (X,D) is snc at x if there exists a Zariski-open neighbourhood U of x such that
U is smooth and such that supp(D) ∩ U is either empty, or a divisor with simple normal
crossings. The pair (X,D) is called snc if it is snc at every point of X.

Given a pair (X,D), let (X,D)reg be the maximal open set of X where (X,D) is
snc, and let (X,D)sing be its complement, with the induced reduced subscheme structure.

Remark 2.5. — If (X,D) is a pair, then by definition X is normal. Furthermore,
near a general point of D, both X and D are smooth. In particular, codimX(X,D)sing ≥ 2.

Example 2.6. — In Definition 2.4, it is important that we work in the Zariski topol-
ogy. If X = P2 and D ⊂ X is a nodal cubic curve with singular point x ∈ D, then (X,D)

is not snc. In particular, (X,D)reg = X \ {x}.
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While snc pairs are the logarithmic analogues of smooth spaces, snc morphisms,
which we discuss next, are the analogues of smooth maps. Although relatively snc divisors

have long been used in the literature, cf. [Del70, Section 3], we are not aware of a good
reference that discusses them in detail, so that we include a full definition here.

Notation 2.7 (Intersection of boundary components). — Let (X,D) be a pair, where the
boundary divisor D is written as a sum of its irreducible components D = α1D1 + · · · +
αnDn. If I ⊆ {1, . . . , n} is any non-empty subset, we consider the scheme-theoretic inter-
section DI := ⋂

i∈I Di . If I is empty, set DI := X.

Remark 2.8 (Description of snc pairs). — In the setup of Notation 2.7, it is clear that
the pair (X,D) is snc if and only if all DI are smooth and of codimension equal to the
number of defining equations: codimX DI = |I| for all I where DI �= ∅.

Definition 2.9 (Snc morphism, relatively snc divisor, [VZ02, Definition 2.1]). — If (X,D) is
an snc pair and φ : X → T a surjective morphism to a smooth variety, we say that D is
relatively snc, or that φ is an snc morphism of the pair (X,D) if for any set I with DI �= ∅ all
restricted morphisms φ|DI : DI → T are smooth of relative dimension dim X − dim T −
|I|.

Remark 2.10 (Fibers of an snc morphisms). — If (X,D) is an snc pair and φ : X → T
is any surjective snc morphism of (X,D), it is clear from Remark 2.8 that if t ∈ T is any
point, with preimages Xt := φ−1(t) and Dt := D ∩ Xt then the pair (Xt,Dt) is again snc.

Remark 2.11 (All morphisms are generically snc). — If (X,D) is an snc pair and
φ : X → T is any surjective morphism, it is clear from generic smoothness that there
exists a dense open set T◦ ⊆ T, such that D ∩ φ−1(T◦) is relatively snc over T◦.

2.C. Strong log resolutions. — Resolutions of singularities have been in constant use
in algebraic geometry ever since Hironaka’s seminal work [Hir62]. There are several
incompatible definitions of “log resolutions” used in the literature, all serving different
purposes. In this paper, we use two variations of the resolution theme, called “log res-
olution” and “strong log resolution”, respectively. We refer to [KM98, p. 3] for further
explanations concerning these notions.

Definition 2.12 (Log resolution and strong log resolution [KM98, 0.4(10)]). — A log resolution

of a pair (X,D) is a surjective birational morphism π : ˜X → X such that

(2.12.1) the space ˜X is smooth,
(2.12.2) the π -exceptional set Exc(π) is of pure codimension one, and
(2.12.3) the set π−1(supp D) ∪ Exc(π) is a divisor with simple normal crossings.

A log resolution π is called a strong log resolution of (X,D) if the following property holds in
addition.
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(2.12.4) The rational map π−1 is a well-defined isomorphism over the open set
(X,D)reg.

Fact 2.13 (Hironaka’s theorem on resolutions, cf. [Kol07]). — Log resolutions and strong log

resolutions exist.

Remark 2.14. — Let (X,D) be a pair, and π : ˜X → X a strong log resolution. If
D′ ⊆ D is a subdivisor, it is not generally true that π is also a strong log resolution of the
pair (X,D′).

The following elementary lemma shows that the property (2.12.4) is the only prop-
erty that possibly fails when one replaces D by a smaller divisor. A complete proof is
found in the extended version of this paper, [GKKP10].

Lemma 2.15. — Let (X,D) be a pair, and π : ˜X → X a log resolution (X,D). If D′ ⊆ D
is an effective sub-Q-divisor, then π is a log resolution of (X,D′). �

2.D. Effective linear combinations of exceptional divisors. — The following “Negativity
Lemma” is well-known to experts. Variants are found in the literature, for instance in
[KM98, 3.39], [BCHM10, Lemma 3.6.2], [HK10, Lemma 5.23]. A detailed proof is
included in the expanded version of this paper, [GKKP10, Appendix A].

Lemma 2.16 (Negativity Lemma for exceptional divisors). — Let π : ˜X → X be a birational,

projective and surjective morphism between irreducible and normal quasi-projective varieties.

(2.16.1) If X is Q-factorial, then there exists an effective and π -anti-ample Cartier divisor D
on ˜X with supp(D) = E. In particular, the π -exceptional set is of pure codimension

one in ˜X.

(2.16.2) If D ⊂ ˜X is any non-trivial effective Q-Cartier divisor with supp(D) ⊆ E, then

D is not π -nef.

2.E. Reflexive sheaves and their tensor operations. — The main theme of this paper being
reflexive sheaves of differentials on singular spaces, we constantly need to discuss sheaves
that are not necessarily locally free. For this, we frequently use square brackets to indicate
taking the reflexive hull.

Notation 2.17 (Reflexive tensor operations). — Let X be a normal variety, D a reduced
Weil divisor, and A a coherent sheaf of OX-modules. For n ∈ N, set A [n] := (A ⊗n)∗∗ and
if π : X′ → X is a morphism of normal varieties, set π [∗](A ) := (π∗A )∗∗. In a similar
vein, let �

[p]
X := (�

p

X)∗∗ and �
[p]
X (log D) := (�

p

X(log D))∗∗. For the definition of �
p

X and
�

p

X(log D) see 2.A.
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Observe that if (X,D) is a pair and ι : U = (X,D)reg ↪→ X is the embedding of the
regular part of (X,D) in to X, then �

[p]
X (log D) � ι∗(�

p

U(log D
∣

∣

U)).

Notation 2.18 (Reflexive differential forms). — A section in �
[p]
X or �

[p]
X (log D) will be

called a reflexive form or a reflexive logarithmic form, respectively.

Generalising the vanishing theorem of Bogomolov-Sommese to singular spaces, we
need to discuss the Kodaira-Iitaka dimension of reflexive sheaves. Since this is perhaps
not quite standard, we recall the definition here.

Definition 2.19 (Kodaira-Iitaka dimension of a sheaf). — Let X be a normal projective
variety and A a reflexive sheaf of rank one on Z. If h0(X,A [n]) = 0 for all n ∈ N, then
we say that A has Kodaira-Iitaka dimension κ(A ) := −∞. Otherwise, set

M := {

n ∈ N|h0
(

X,A [n]) > 0
}

,

recall that the restriction of A to the smooth locus of X is locally free and consider the
natural rational mapping

φn : X ��� P
(

H0
(

X,A [n])∗)
for each n ∈ M.

The Kodaira-Iitaka dimension of A is then defined as

κ(A ) := max
n∈M

(

dimφn(X)
)

.

Definition 2.20. — Let X be a normal algebraic variety. A reflexive sheaf F of rank
one is called Q-Cartier if there exists an m ∈ N>0 such that F [m] is locally free.

Remark 2.21. — In the setup of Definition 2.20, there exists a reduced Weil divisor
D on X such that F = OX(D), see for example [Rei80, Appendix to §1]. Then, F is
Q-Cartier if and only if there exists an m ∈ N>0 such that OX(mD) is locally free.

2.F. Cutting down. — An important technical property of canonical, terminal, klt,
dlt and lc singularities is their stability under general hyperplane sections. This is partic-
ularly useful in inductive proofs, as we will see, e.g., in Section 9. We gather the relevant
facts here for later reference.

Notation 2.22. — For a line bundle L ∈ Pic X, the associated linear system of
effective Cartier divisors will be denoted by |L |.

Lemma 2.23 (Cutting down pairs I). — Let (X,D) be a pair, dim(X) ≥ 2, and let H ∈ |L |
be a general element of an ample basepoint-free linear system corresponding to L ∈ Pic X. Consider the

cycle-theoretic intersection DH := D ∩ H. Then the following holds.
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(2.23.1) The divisor H is irreducible and normal.

(2.23.2) If D = ∑

aiDi is the decomposition of D into irreducible components, then the

intersections Di ∩ H are distinct, irreducible and reduced divisors in H, and DH =
∑

ai(Di ∩ H).

(2.23.3) The tuple (H,DH) is a pair in the sense of Definition 2.2, and rounding-down D
commutes with restriction to H, i.e., supp(�DH
) = H ∩ supp(�D
).

(2.23.4) If H is smooth, then X is smooth along H.

(2.23.5) If (H,DH) is snc, then (X,D) is snc along H.

Proof. — Assertion (2.23.1) is a known generalisation of Seidenberg’s Theorem,
see [BS95, Theorem 1.7.1] and [Sei50, Theorem 1]. Assertion (2.23.2) is a well-known
consequence of Bertini’s theorem, (2.23.3) follows from (2.23.1) and (2.23.2). State-
ments (2.23.4)–(2.23.5) are consequences of the fact that a space is smooth along a Cartier
divisor if the divisor itself is smooth. �

Lemma 2.24 (Cutting down strong log resolutions). — Let (X,D) be a pair, dim X ≥ 2, and

let π : ˜X → X a strong log resolution (resp. a log resolution). Let H ∈ |L | be a general element of

an ample basepoint-free linear system on X corresponding to L ∈ Pic X. Set ˜H := π−1(H). Then

the restricted morphism π |
˜H : ˜H → H is a strong log resolution (resp. a log resolution) of the pair

(H,D ∩ H), with exceptional set Exc(π |
˜H) = Exc(π) ∩ ˜H. �

A proof of Lemma 2.24 can be found in the preprint version [GKKP10] of this
paper.

Lemma 2.25 (Cutting down pairs II). — Let (X,D) be a pair and let H ∈ |L | be a

general element of an ample basepoint-free linear system corresponding to L ∈ Pic X. Consider the

cycle-theoretic intersection DH := D ∩ H. If (X,D) is dlt (resp. canonical, klt, lc), then (H,DH) is

dlt (resp. canonical, klt, lc) as well.

Proof. — To prove Lemma 2.25 for dlt pairs, recall Szabó’s characterisation of
“dlt” [Sza94], [KM98, Theorem 2.44] which asserts that a pair is dlt if and only if there
exists a log resolution π : ˜X → X where all exceptional divisors have discrepancy greater
than −1. Choose one such resolution and set ˜H := π−1(H). Lemma 2.24 then asserts
that π

˜H : ˜H → H is a strong log resolution of the pair (H,DH), and it follows from the
adjunction formula that the discrepancy of any π

˜H-exceptional divisor is likewise greater
than −1. A second application of the characterisation of dlt pairs then yields the claim in
case (X,D) is dlt.

For canonical, klt, or lc pairs, Lemma 2.25 follows from a computation of discrep-
ancies, [KM98, Lemma 5.17]. �

2.G. Projection to subvarieties. — Let X be a normal variety such that Xsing is irre-
ducible and of dimension 1. One may study the singularities of X near general points
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of Xsing by looking at a family of sufficiently general hyperplane sections (Ht)t∈T, and by
studying the singularities of the hyperplanes Ht . Near the general point of Xsing the Ht

define a morphism, and it is often notationally convenient to discuss the family (Ht)t∈T as
being fibres of that morphism.

This idea is not new. We include the following proposition to fix notation, and to
specify a precise framework for later use.

Proposition 2.26 (Projection to a subvariety). — Let X be quasi-projective variety and T ⊆ X
an irreducible subvariety. Then there exists a Zariski-open subset X◦ ⊆ X such that T◦ := T ∩ X◦ is

not empty, and such that there exists a diagram

Z◦
γ

finite, étale

φ

X◦

S◦

with the property that the restriction of φ to any connected component of ˜T◦ := γ −1(T◦) is an isomor-

phism.

Proof. — Let X◦
0 ⊆ X be an affine open set that intersects T non-trivially. An ap-

plication of the Noether normalisation theorem, [Sha94, I. Theorem 10], to the affine
variety T◦

0 := T ∩ X◦
0 ⊆ X◦

0 yields a projection to an affine space, φ0 : X◦
0 → S◦

0, whose
restriction to T◦

0 is generically finite. Shrinking X◦
0 and S◦

0 further, if necessary, we may
assume that the restriction φ0|T◦

0
is finite and étale, say n-to-1. Next, we will construct a

commutative diagram of morphisms,

(2.26.1) X◦
d

φd

γd

étale
· · · γ2

étale
X◦

1

φ1

γ1

étale
X◦

0

φ0

S◦
d

étale
· · ·

étale
S◦

1
étale

S◦
0

such that

(2.26.2) for any index k, the restriction of φk to T◦
k := (γ1 ◦ · · ·γk)

−1(T◦
0) is étale,

and
(2.26.3) the restriction of φd to any component of T◦

d is isomorphic.

Once the diagram is constructed, the proof is finished by setting Z◦ := X◦
d , S◦ := S◦

d and
φ := φd .

To construct a diagram as in (2.26.1), we proceed inductively as follows. Assume
φk : X◦

k → S◦
k have already been constructed. If the restriction of φk to any component
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of T◦
k is an isomorphism then we stop. Otherwise, let S◦

k+1 ⊆ T◦
k be any component

where φk|S◦
k+1

is not isomorphic, and set X◦
k+1 := X◦

k ×S◦
k

S◦
k+1. Since étale morphisms

are stable under base change, [Gro71, I Proposition 4.6], it follows that the projection
γk+1 : X◦

k+1 → X◦
k and the restriction φk+1|T◦

k+1
are both étale.

We need to show that the inductive process terminates. For that, observe that all
restrictions φk|T◦

k
: T◦

k → S◦
k are finite, étale and n-to-1. Additionally, it follows inductively

from the fibre product construction that the restriction φk|T◦
k

admits at least k sections. It
is then immediate that the process terminates after no more than n steps. �

Example 2.27. — To illustrate how projections to subvarieties will be used, consider
a dlt pair (X,D) whose singular locus T := (X,D)sing is irreducible and of codimension
codimX T = 2. We are often interested in showing properties of the pair (X,D) that can
be checked on the étale cover Z◦ constructed in (2.26). Examples for such properties
include the following.

(2.27.1) The space X is analytically Q-factorial away from a set of codimension 3.
(2.27.2) Near the general point of T, the space X has only quotient singularities.
(2.27.3) For any strong log resolution π : ˜X → X, the sheaf π∗�

p

˜X is reflexive at
the general point of T.

Setting 
◦ := γ ∗(D) and considering general fibres

Z◦
t := φ−1(t) and 
◦

t := 
◦ ∩ Z◦
t ,

it follows from the Cutting-Down Lemma 2.23 that the fibre pairs (Z◦
t ,


◦
t ) are dlt sur-

faces, where the property in question may often be checked easily. Once it is known that
the fibres of φ have the desired property, it is often possible to prove that the property also
holds for the total space (Z◦,
◦) of the family, and hence for (X,D).

3. Examples

In this section we discuss a number of examples that show to what extent the main
result of this paper, the Extension Theorem 1.5, is optimal

3.A. Non-log canonical singularities. — The first example shows that log canonicity of
(X,D) is necessary to obtain any extension result allowing no worse than log poles along
the exceptional divisor. This example is discussed in greater detail in [GKK10, Ex. 6.3].

Example 3.1. — Let X be the affine cone over a smooth curve C of degree 4 in P2.
Observe that X is a normal hyperplane singularity. In particular, X is Gorenstein. Let ˜X
be the total space of the line bundle OC(−1). Then, the contraction of the zero section E
of ˜X yields a strong log resolution π : ˜X → X. An elementary computation shows that the
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discrepancy of E with respect to X is equal to −2 cf. [Rei87, p. 351, Example (1)]. Hence,
X has worse than log canonical singularities. If τ is a local generator of the locally free
sheaf �

[2]
X near the vertex P ∈ X, the discrepancy computation implies that τ acquires

poles of order 2 when pulled back to ˜X. By abusing notation we denote the rational form
obtained on ˜X by π∗τ .

Next, let ξ be the vector field induced by the natural C∗-action on ˜X coming from
the cone structure. By contracting π∗τ by ξ we obtain a regular 1-form on ˜X \ E that
does not extend to an element of H0(˜X,�1

˜X(log E)).

Hence, in the non-log canonical case there is in general no extension result for
differential forms, not even for special values of p.

3.B. Non-klt locus and discrepancies. — It follows from the definition of discrepancy

that for a given reflexive logarithmic n-form σ on a reduced pair (X,D) of dimension n

with log canonical singularities, the pull-back π∗σ acquires additional poles only along
those exceptional divisors Ei with discrepancy ai = −1, see [GKK10, Section 5]. It hence
extends without poles even over those divisors Ei with discrepancy ai > −1 that map to
the non-klt locus of (X,D). In the setup of Theorem 1.5, it is therefore natural to ask
whether it is necessary to include the full-preimage of the non-klt locus in ˜D in order
to obtain an extension result or if it suffices to include the non-klt places, that is, those
divisor with discrepancy −1. The next example shows that this does not work in general
for extending p-forms, when p < n.

Example 3.2. — Let X = {uw−v2} ⊂ C3
u,v,w be the quadric cone, and let D = {v =

0} ∩ X be the union of two rays through the vertex. The pair (X,D) is log canonical. Let
˜X ⊂ Bl(0,0,0)(C3) ⊂ C3

u,v,w × P2
[y1:y2:y3] be the strict transform of X in the blow-up of C3

at (0,0,0) and π : ˜X → X the corresponding resolution. The intersection U of ˜X with
{y1 �= 0} is isomorphic to C2 and choosing coordinates x, z on this C2, the blow-up is given
by ϕ : (x, z) �→ (z, xz, x2z). In these coordinates the exceptional divisor E is defined by
the equation {z = 0}. The form d logv := 1

v
dv defines an element in H0(X, �

[1]
X (log D)).

Pulling back we obtain

ϕ∗(d logv) = d log x + d log z

which has log-poles along the exceptional divisor. If f : ˜X′ → ˜X is the blow up at a point
p ∈ E \ π−1

∗ (D), we obtain a further resolution π ′ = π ◦ f of X. This resolution has
an additional exceptional divisor E′ ⊂ ˜X′ with discrepancy 0. Note however that the
pull-back of d logv via π ′ has logarithmic poles along E′. To be explicit we compute on
f −1(U): we have

f ∗ϕ∗(d logv) = d log(f ∗x) + d log(f ∗z)

and we note that f ∗z vanishes along E′ since we have blown up a point in E = {z = 0}.
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3.C. Other tensor powers. — The statement of Theorem 1.5 does not hold for arbi-
trary reflexive tensor powers of �1

X. We refer to [GKK10, Example 3.1.3] for an example
where the analogue of the Extension Theorem 1.5 fails for Sym[2] �1

X, even when X is
canonical.

PART II. APPLICATIONS OF THE EXTENSION THEOREM

4. Pull-back morphisms for reflexive differentials

Kähler differentials are characterised by a number of universal properties, one of
the most important being the existence of a pull-back map: if γ : Z → X is any morphism
of algebraic varieties and if p ∈ N, then there exists a canonically defined sheaf morphism

(4.1) dγ : γ ∗�p

X → �
p

Z.

The following example illustrates that for sheaves of reflexive differentials on normal
spaces, a pull-back map does not exist in general.

Example 4.2 (Pull-back morphism for dualising sheaves). — Let X be a normal Goren-
stein variety of dimension n, and let γ : Z → X be any resolution of singularities. Observ-
ing that the sheaf of reflexive n-forms is precisely the dualising sheaf, �

[n]
X � ωX, it follows

directly from the definition of canonical singularities that X has canonical singularities if
and only if a pull-back morphism dγ : γ ∗�[n]

X → �n
Z exists.

An important consequence of the Extension Theorem 1.5 is the existence of a
pull-back map for reflexive differentials of arbitrary degree, whenever γ : Z → X is a
morphism where the target is klt. The pull-back map exists also in the logarithmic setup
and—in a slightly generalised form—in cases where the target is only lc.

Theorem 4.3 (Pull-back map for reflexive differentials on lc pairs). — Let (X,D) be an lc pair,

and let γ : Z → X be a morphism from a normal variety Z such that the image of Z is not contained in

the reduced boundary or in the singular locus, i.e.,

γ (Z) �⊆ (X,D)sing ∪ supp�D
.
If 1 ≤ p ≤ dim X is any index and


 := largest reduced Weil divisor contained in γ −1(non-klt locus),

then there exists a sheaf morphism,

dγ : γ ∗�[p]
X (log�D
) → �

[p]
Z (log
),

that agrees with the usual pull-back morphism (4.1) of Kähler differentials at all points p ∈ Z where

γ (p) �∈ (X,D)sing ∪ supp�D
.
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Before proving Theorem 4.3 below, we illustrate the statement with one example
and add a remark concerning possible generalisations.

Example 4.4 (Restriction as a special case of Theorem 4.3). — For a special case of The-
orem 4.3, consider the case where (X,∅) is klt and Z ⊂ X is a smooth subvariety that
intersects Xreg non-trivially with inclusion map γ : Z → X. Under these assumptions,
Theorem 4.3 asserts that any reflexive differential form σ ∈ H0(X,�

[p]
X ) restricts to a

regular form on Z.

Remark 4.5 (Pull-back map when the image is contained in the boundary). — In the setup of
Theorem 4.3, if we assume additionally that the pair (X,D) is dlt, then one may use the
residue sequence (11.7.1) of Theorem 11.7 to define a pull-back map even in a setting
where the image of γ is contained in the boundary �D
. Details will be published in a
forthcoming paper.

The proof of Theorem 4.3 uses the following notation.

Notation 4.6. — Let (X,D) and (Z,
) be two pairs, and γ : Z → X a morphism
such that γ (Z) �⊆ (X,D)sing ∪ supp�D
. If σ is a rational section in �

[p]
X (log�D
), then one

may use the standard pull-back map for Kähler differentials to pull σ back to a rational
section of �

[p]
Z (log�

), which we denote by γ ∗(σ ).

Proof of Theorem 4.3. — Notice that to prove Theorem 4.3, it suffices to show that
for every open subset V ⊆ X the following holds:

(4.6.1) γ ∗(σ ) ∈ H0
(

γ −1(V),�
[p]
Z (log
)

)

for all σ ∈ H0
(

V,�
[p]
X (log�D
)).

Indeed, for every point p ∈ Z and every germ s ∈ (γ ∗�[p]
X (log�D
))p there exists an

open neighbourhood U of p in Z, an open neighbourhood V of γ (p) in X such that
γ (U) ⊆ V, and such that s is represented by a sum

∑

gj · γ ∗σj , where gj ∈ OZ(U) and
σj ∈ H0(V,�

[p]
X (log�D
)).

To prove (4.6.1), let σ ∈ H0(V,�
[p]
X (log�D
)) be any reflexive form. To simplify

notation, we may assume without loss of generality that V = X and γ −1(V) = Z. Let
π : ˜X → X be any strong resolution of the pair (X,D) and consider the following com-
mutative diagram of varieties,

˜Z

π̃ , birational

g

ψ , log resolution
Y

πZ, birational

π
˜X

˜X

π , log resolution of (X,D)

Z
γ

X,
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where Y is the normalisation of the unique component of Z ×X ˜X that dominates Z, and
where ψ is a log resolution of the pair (Y, (π ◦ π

˜X)∗D). Furthermore, set

˜D := largest reduced divisor in suppπ−1
(

non-klt locus of (X,D)
)

,

˜
 := largest reduced divisor in supp(π ◦ g)−1
(

non-klt locus of (X,D)
)

.

By definition, we immediately obtain two relations1 involving cycle-theoretic pull-back
and push-forward,

supp g∗
˜D ⊆ supp ˜
,(4.6.2)

supp π̃∗˜
 = supp
.(4.6.3)

It is then clear from (4.6.3) that (4.6.1) holds once we show that

(4.6.4) π̃∗(γ ∗(σ )
) = g∗(π∗(σ )

) ∈ H0
(

˜Z, �
[p]
˜Z (log ˜
)

)

.

The Extension Theorem 1.5 states that the pull-back π∗(σ ) is a regular logarithmic form
in H0(˜X,�

p

˜X(log ˜D)), for all reflexive forms σ . Using (4.6.2) and the standard pull-back
map for logarithmic forms on snc pairs to pull back π∗σ via the map g, the desired
inclusion in (4.6.4) follows. This completes the proof. �

5. Reflexive differentials on rationally chain connected spaces

Rationally chain connected manifolds are rationally connected, and do not carry
differential forms. Building on work of Hacon and McKernan, [HM07], we show that
the same holds for reflexive forms on klt pairs.

Theorem 5.1 (Reflexive differentials on rationally chain connected spaces). — Let (X,D) be a

klt pair. If X is rationally chain connected, then X is rationally connected, and H0(X,�
[p]
X ) = 0 for all

p ∈ N,1 ≤ p ≤ dim X.

Proof. — Choose a strong log resolution π : ˜X → X of the pair (X,D). Since
klt pairs are also dlt, a theorem of Hacon-McKernan, [HM07, Corollary 1.5(2)], ap-
plies to show that X and ˜X are both rationally connected. In particular, it follows that
H0(˜X,�

p

˜X) = 0 for all p > 0 by [Kol96, IV. Corollary 3.8].
Since (X,D) is klt, Theorem 4.3 asserts that there exists a pull-back morphism

dπ : π∗�[p]
X → �

p

˜X. As π is birational, dπ is generically injective and since �
[p]
X is torsion-

free, this means that the induced morphism on the level of sections is injective:

π∗ : H0
(

X,�
[p]
X

) → H0
(

˜X,�
p

˜X

) = 0.

The claim then follows. �

1 Note that the inclusion in (4.6.2) might be strict. This can happen when π−1(non-klt locus of (X,D)) contains
components of high codimension whose preimages under g become divisors.
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In this section, Theorem 5.1 is presented as a consequence of the Extension The-
orem 1.5. As a matter of fact, the proof of the Extension Theorem 1.5, which we give
in Part VI of the paper, involves a proof of Theorem 5.1 as part of the induction pro-
cess. This explains why the statement of Theorem 5.1 appears essentially unchanged as
Proposition 19.4 in Part VI, where the Extension Theorem 1.5 is proven.

In order to avoid confusion about the logic of this paper, we have chosen to present
an independent statement and an independent proof here.

6. The Lipman-Zariski conjecture for klt spaces

The Lipman-Zariski Conjecture asserts that a variety X with a locally free tangent
sheaf TX is necessarily smooth, [Lip65]. The conjecture has been shown in special cases;
for hypersurfaces or homogeneous complete intersections [Hoc75, SS72], for isolated
singularities in higher-dimensional varieties [SvS85, Section 1.6], and more generally,
for varieties whose singular locus has codimension at least 3 [Fle88]. In this section we
use the Extension Theorem 1.5 to prove the Lipman-Zariski Conjecture for klt spaces.
Notice that klt spaces in general have singularities in codimension 2. The proof follows
an argument that goes back at least as far as [SvS85]. It uses the notion of logarithmic

tangent sheaf, which we quickly recall: if Z is a smooth algebraic variety and 
 is an snc
divisor on Z, then the logarithmic tangent sheaf TZ(− log
) is defined to be the dual
of �1

Z(log
). A local computation shows that TZ(− log
) can be identified with the
subsheaf of TZ containing those vector fields that are tangent to 
 at smooth points
of 
.

Theorem 6.1 (Lipman-Zariski Conjecture for klt spaces). — Let X be a klt space such that the

tangent sheaf TX is locally free. Then X is smooth.

Proof. — We argue by contradiction and assume that X is not smooth. Recall that
there exists a uniquely defined strong log resolution π : ˜X → X of the pair (X,∅), called
the “functorial” resolution, that is universal in the sense that it commutes with smooth
morphisms, see [Kol07, Theorems 3.35 and 3.45]. The π -exceptional set E will then be
a non-empty divisor in ˜X, with snc support.

Next, let θ1, . . . , θn be sections in TX that freely generate TX in a neighbourhood U
of a given point x ∈ X. For simplicity of notation, we assume in the following that U = X.
Given that π is the functorial resolution, and that the singular set Xsing is invariant under
any automorphism, it follows from [GKK10, Corollary 4.7] that we may lift each θj to a
logarithmic vector field on ˜X,

(6.1.1) ˜θj ∈ H0
(

˜X,T
˜X(− log E)

) ⊆ H0
(

˜X,T
˜X

)

.
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Notice that away from E, the vector fields ˜θj are linearly independent. Choosing the dual
basis, we will therefore obtain a set of differential forms

ω1, . . . ,ωn ∈ H0
(

˜X \ E,�1
˜X

)

such that ∀i, j : ωi

(

˜θj|˜X\E

) = δij · 1
˜X\E,

where 1
˜X\E is the constant function on ˜X\E with value 1. By the Extension Theorem 1.5

and Remark 1.5.2, the ωi extend to differential forms that are defined on all of ˜X,

(6.1.2) ω̃1, . . . , ω̃n ∈ H0
(

˜X,�1
˜X

)

such that ∀i, j : ω̃i

(

˜θj

) = δij · 1
˜X.

Now, if we evaluate the vector fields ˜θj ∈ H0(˜X,T
˜X) at any smooth point p of E, the

inclusion in (6.1.1) shows that the tangent vectors obtained,

θ1(p), . . . , θn(p) ∈ T
˜X ⊗ κ(p)

actually lie in TE ⊗ κ(p). In particular, the tangent vectors θi(p) are linearly dependent.
This contradicts (6.1.2) and completes the proof. �

7. Bogomolov-Sommese type results on log canonical spaces

7.A. Introduction and statement of the result. — In this section, we use the Extension
Theorem 1.5 to generalise the Bogomolov-Sommese vanishing theorem to the log canon-
ical setting and to Campana’s “geometric orbifolds”. In its standard version, [EV92,
Corollary 6.9], the theorem limits positivity of invertible sheaves of differentials, asserting
that for any reduced snc pair (X,D), any invertible sheaf of p-forms has Kodaira-Iitaka
dimension no more than p, i.e.,

(7.1) ∀ invertible A ⊆ �
p

X(log D) : κ(A ) ≤ p,

Theorem 7.2, the main result of this section, asserts that the inequality (7.1) also holds
in the log canonical setting, for arbitrary Q-Cartier sheaves of rank one (in the sense of
Definition 2.20).

For three-dimensional reduced pairs (X,D) this was proven in [GKK10, Theo-
rem 1.4]. This three-dimensional case was an important ingredient in the generalisation
of Shafarevich hyperbolicity to families over two- and three-dimensional base manifolds,
[KK07, KK10a]. There is hope that Theorem 7.2 will allow to generalise Shafarevich
hyperbolicity to families over base manifolds of arbitrary dimension.

Theorem 7.2 (Bogomolov-Sommese vanishing for lc pairs). — Let (X,D) be an lc pair, where

X is projective. If A ⊆ �
[p]
X (log�D
) is a Q-Cartier reflexive subsheaf of rank one, then κ(A ) ≤ p.

Remark 7.2.1. — The number κ(A ) appearing in the statement of Theorem 7.2
is the generalised Kodaira-Iitaka dimension introduced in Definition 2.19 on page 9.

A proof of Theorem 7.2 is given in Section 7.C on page 19.
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7.B. Bogomolov-Sommese vanishing in the orbifold setting. — In [Cam04], Campana in-
troduced the category of “geometric orbifolds”. These are pairs (X,D) where all coeffi-
cients of the boundary divisor D are of special form. Geometric orbifolds can in many
ways be seen as interpolating between the compact and the logarithmic setup. As the
word “geometric orbifold” is perhaps not universally accepted in this context, we prefer
to call (X,D) a “C -pair” in this paper. A brief overview and precise definitions for all
notions that are relevant to our discussion are found in [JK09a, Part I].

Essentially all notions used in the compact or logarithmic setup can be generalised
to C -pairs. Examples include the following.

– Given p, q ∈ N, there exist reflexive sheaves of C -differentials Sym[q]
C �

p

X(log D),
[JK09a, Section 3.5], with inclusions

Sym[q] �[p]
X (log�D
) ⊆ Sym[q]

C �
p

X(log D) ⊆ Sym[q] �[p]
X (log�D�).

In case q = 1 one has the equality Sym[1]
C �

p

X(log D) = �
[p]
X (log�D
).

– Given a reflexive subsheaf A ⊆ Sym[1]
C �

p

X(log D) of rank one, there exists a
notion of a C -Kodaira dimension, denoted by κC(A ) that takes fractional parts
of D into account, [JK09a, Definition 4.3]. In general, one has κC(A ) ≥ κ(A ).

Sheaves of C -differentials seem particularly suitable for the discussion of positiv-
ity on moduli spaces, cf. [JK09b]. In this context, the following strengthening of Theo-
rem 7.2 promises to be of great importance.

Theorem 7.3 (Bogomolov-Sommese vanishing for lc C -pairs). — Let (X,D) be a C -pair.

Assume that X is projective and Q-factorial, that dim X ≤ 3, and that the pair (X,D) is lc. If

1 ≤ p ≤ dim X is any number and if A ⊆ Sym[1]
C �

p

X(log D) is a reflexive sheaf of rank one, then

κC(A ) ≤ p.

Remark 7.3.1. — The important point in Theorem 7.3 is the use of the C -Kodaira
dimension κC(A ) instead of the usual Kodaira dimension of A .

Proof of Theorem 7.3. — Using the Bogomolov-Sommese vanishing theorem for lc
pairs, Theorem 7.2 instead of the weaker version [GKK10, Theorem 1.4], the proof
from [JK09a, Section 7] applies verbatim. �

7.C. Proof of Theorem 7.2. — We argue by contradiction and assume that there
exists a reflexive subsheaf A ⊆ �

[p]
X (log�D
) with Kodaira-Iitaka dimension κ(A ) > p.

Let π : ˜X → X be a strong log resolution of the pair (X,D). We consider the following
reduced snc divisors on ˜X,

E := π -exceptional set,

E′ := supp
(

π−1
∗ D + E

)

,

˜D := largest reduced divisor in π−1
(

non-klt locus of (X,D)
)

.
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Since ˜D ⊆ E′, the Pull-Back Theorem 4.3 for reflexive differentials implies that there
exists an embedding π [∗]A ↪→ �

p

˜X(log E′). Let C ⊆ �
p

˜X(log E′) be the saturation of the
image, which is reflexive by [OSS80, Lemma 1.1.16 on p. 158], and in fact invertible
by [OSS80, Lemma 1.1.15 on p. 154]. Further observe that for any k ∈ N, the subsheaf
C ⊗k ⊆ Symk �

p

˜X(log E′) is likewise saturated. To prove Theorem 7.2 it suffices to show
that

(7.3.2) κ(C ) ≥ κ(A ) > p

which contradicts the standard Bogomolov-Sommese Vanishing Theorem for snc pairs,
[EV92, Corollary 6.9].

Choosing a basis of sections. — Choose a number m such that dimφm(X) = κ(A ) =: κ ,
where φm is the rational map used in the definition of Kodaira dimension, Definition 2.19
on page 9. Let B := {σ1, . . . , σκ} be a basis of H0(X,A [m]). If σ ∈ B is any element, con-
sider the pull-back π∗(σ ), which is a rational section in C ⊗m, possibly with poles along
the exceptional set E. To show (7.3.2), it suffices to prove that π∗(σ ) does not have any
poles as a section in C ⊗m, i.e., that

(7.3.3) π∗(σ ) ∈ H0
(

˜X,C ⊗m
) ∀σ ∈ B.

Since C ⊗m is saturated in Symm �
p

˜X(log E′), to show (7.3.3), it suffices to show that the
π∗(σ ) do not have any poles as sections in the sheaf of symmetric differentials, i.e., that

(7.3.4) π∗(σ ) ∈ H0
(

˜X,Symm �
p

˜X(log E′)
) ∀σ ∈ B.

Taking an index-one-cover. — The statement of (7.3.4) is local on X, hence we may
shrink X and assume that a suitable reflexive tensor power of A is trivial, say A [r] � OX.
Let γ : Z → X be the associated index-one-cover, cf. [KM98, Definition 2.52], [HK10,
Section 2.D]. Let D = ∑

i diDi where Di are reduced irreducible divisors and di ∈ Q>0.
Given any index i, let 
i := γ −1(Di) be the reduced irreducible divisor supported on
γ −1(supp Di), and set 
 := ∑

i di
i. Since γ is étale in codimension 1 by construction,
it follows that KZ + 
 = γ ∗(KX + D) and hence the pair (Z,
) is again lc by [KM98,
Proposition 5.20]. Furthermore, the sheaf B := γ [∗](A ) is a locally free subsheaf of
�

[p]
Z (log�

), with section

σZ := γ [∗](σ ) ∈ H0
(

Z,B⊗m
)

.



DIFFERENTIAL FORMS ON LOG CANONICAL SPACES

A partial resolution of Z. — Next, consider the commutative diagram

˜Z
γ̃ , finite

πZ

˜X

π

Z
γ , finite

X,

where ˜Z is the normalisation of the fibre product Z ×X ˜X. We consider the following
reduced divisors on ˜Z,

EZ := πZ-exceptional set = supp γ̃ ∗E,

E′
Z := supp

(

(π ◦ γ̃ )−1
∗ (D) +˜E

) = supp γ̃ ∗E′,
˜
 := largest reduced divisor in π−1

(

non-klt locus of (Z,
)
)

The inclusion ˜
 ⊆ E′
Z and Theorem 4.3 gives an embedding π∗

ZB ↪→ �
[p]
˜Z (log E′

Z). In
fact, since B is locally free, we also obtain an embedding of tensor powers,

ιm : π∗
ZB⊗m ↪→ Sym[m] �[p]

˜Z (log E′
Z).

Completion of proof. — Since the index-one-cover γ is étale away from the singulari-
ties of X, the morphism γ̃ is étale outside of E ⊆ E′. In particular, the standard pull-back
morphism of logarithmic differentials, defined on the smooth locus of ˜Z, gives an isomor-
phism

γ̃ [∗] (Symm �
p

˜X(log E′)
) � Sym[m] �[p]

˜Z

(

log E′
Z).

This isomorphism implies that in order to prove (7.3.4), it suffices to show that

(7.3.5) γ̃ [∗](π∗(σ )
) ∈ H0

(

˜Z,Sym[m] �[p]
˜Z (log E′

Z)
)

.

The inclusion in (7.3.5), however, follows when we observe that the rational section
γ̃ [∗](π∗(σ )) of Sym[m] �[p]

˜Z (log E′
Z) and the regular section ιm(σZ) = π̃ [∗](σZ) agree on

the open set ˜Z \ supp EZ. This finishes the proof Theorem 7.2.

PART III. REFLEXIVE FORMS ON DLT PAIRS

8. Overview and main results of Part III

8.A. Introduction. — Logarithmic Kähler differentials on snc pairs are canonically
defined. They are characterised by strong universal properties and appear accordingly
in a number of important sequences, filtered complexes and other constructions. First
examples include the following:
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(8.1.1) the pull-back property of differentials under arbitrary morphisms,
(8.1.2) relative differential sequences for smooth morphisms,
(8.1.3) residue sequences associated with snc pairs, and
(8.1.4) the description of Chern classes as the extension classes of the first residue

sequence.

On singular spaces, Kähler differentials enjoy similar universal properties, but the
sheaves of Kähler differentials are hardly ever normal, often contain torsion parts and are
notoriously hard to deal with. For one example of the problems arising with Kähler dif-
ferentials, observe that �

p

X is generally not pure in the sense of [HL97, Definition 1.1.2],
so that no Harder-Narasimhan filtration ever exists.

Many of these problems can be overcome by using the sheaves �
[p]
X of reflexive

differentials. For instance, Harder-Narasimhan filtrations exist for �
[p]
X , sheaves of reflex-

ive differentials enjoy good push-forward properties, [KK10a, Lemma 5.2], and reflexive
differential can be constructed using Hodge-theoretic methods in a number of settings
that are of interest for moduli theory, see for instance [VZ02, Theorem 1.4] and the
application in [KK10a, Theorem 5.3].

Reflexive differentials do in general not enjoy the same universal properties as
Kähler differentials. However, we have seen in Section 4.3 as one consequence of the
Extension Theorem that reflexive differentials do have good pull-back properties if we are
working with dlt pairs, and that an analogue of the property (8.1.1) holds. In the present
Part III of this paper, we would like to make the point that each of the Properties (8.1.2)–
(8.1.4) has a very good analogue for reflexive differentials if we are working with dlt pairs.
This makes reflexive differential extremely useful in practise. In a sense, it seems fair to
say that “reflexive differentials and dlt pairs are made for one another”.

8.B. Overview of Part III. — We recall the precise statements of the proper-
ties (8.1.2)–(8.1.4), formulate and prove generalisations to singular spaces in Sections 10–
12 below.

Unlike the property (8.1.1), whose generalisation to singular spaces is given in The-
orem 4.3 as a corollary of our main result, the results of this section do not depend on the
Extension Theorem 1.5, but follow from a detailed analysis of the local analytic codimen-
sion 2 structure of dlt pairs. We have therefore included a preparatory Section 9 devoted
to the discussion of dlt pairs.

9. The local structure of dlt pairs in codimension 2

The proofs of the results announced in the previous Section 8 will be given in
Sections 10–12 below. To prepare for the proofs, this section contains a detailed analy-
sis of singularities that appear in the minimal model program. Since we are concerned
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with reflexive differentials and their restrictions to boundary components, we are mostly
interested in structure results that hold in codimension 2.

Although the statements proven in this section are probably known to experts,
to the best of our knowledge, proofs of these are not available in the literature. Since
our arguments in other parts of the paper crucially depend on the detailed knowl-
edge about the structure of dlt pairs as presented in this section, we have therefore
chosen to include proofs of all statements required later, also for the reader’s conve-
nience.

9.A. Q-factoriality of dlt pairs in codimension 2. — If (X,D) is a dlt surface pair, it
is well-understood that X is automatically Q-factorial, [KM98, Proposition 4.11]. This
remains true even if (X,D) is only assumed to be numerically dlt and KX + D is not
assumed to be Q-Cartier. A higher dimensional dlt pair is not necessarily Q-factorial,
but the underlying space of a dlt pair is always Q-factorial in codimension 2 regardless of
its dimension.

Proposition 9.1 (Q-factoriality of dlt pairs in codim = 2). — Let (X,D) be a dlt pair. Then

there exists a closed subset Z ⊂ X with codimX Z ≥ 3 such that X \ Z is Q-factorial. �

A detailed proof of Proposition 9.1 can be found in the preprint version [GKKP10]
of this paper.

9.B. The local structure of canonical pairs in codimension 2. — If (X,D) is a canonical
(or log canonical) pair and x ∈ X a point, then the discrepancy of (X,D) at x is small if
either X is very singular at x or if D has high multiplicity at x. Conversely, it is true that
X cannot be very singular wherever the multiplicity of D is large. This principle leads to
the following description of canonical pairs along reduced components of the boundary
divisor D.

Proposition 9.2 (Codimension 2 structure of canonical pairs along the boundary). — Let

(X,D) be a canonical pair with �D
 �= 0. Then there exists a closed subset Z ⊂ supp�D
 with

codimX Z ≥ 3 such that for any point z ∈ (supp�D
) \ Z,

(9.2.1) the pair (X,D) is snc at z, and

(9.2.2) the subvariety supp D is smooth at z.

Proof. — Consider general hyperplanes H1, . . . ,Hdim X−2 ⊆ X and set

(H,DH) := (

H1 ∩ · · · ∩ Hdim X−2,D ∩ H1 ∩ · · · ∩ Hdim X−2

)

.

Lemma 2.25 then asserts that (H,DH) is a canonical surface pair. The classification of
these pairs, [KM98, Theorem 4.5(2)], therefore applies to show that both H and supp DH

are smooth along supp�DH
. The Cutting-Down Lemma 2.23 then gives that
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• the properties (9.2.1) and (9.2.2) hold for all points z ∈ supp�DH
, and
• we have an equality of sets, supp�DH
 = supp(�D
) ∩ H.

The claim then follows because the hyperplanes Hi are generic. �

9.C. The local structure of klt pairs in codimension 2. — We show that the underlying
space of a klt pair has quotient singularities in codimension 2. This result is used in
Sections 10–12, where we reduce the study of reflexive differentials on singular spaces
to the study of G-invariant differentials on suitable local Galois coverings with Galois
group G.

Proposition 9.3 (Klt spaces have quotient singularities in codimension 2). — Let (X,D) be a

klt pair. Then there exists a closed subset Z ⊂ X with codimX Z ≥ 3 such that X \ Z has quotient

singularities.

More precisely, every point x ∈ X \ Z has an analytic neighbourhood that is biholomorphic to an

analytic neighbourhood of the origin in a variety of the form Cdim X/G, where G is a finite subgroup of

GLdim X(C) that does not contain any quasi-reflections. The quotient map is a finite Galois map, totally

branched over the singular locus and étale outside of the singular set.

Remark 9.3.1. — For families of du Val singularities, similar statements appear in
the literature, e.g. in [Rei80, Corollary 1.14] or [Nam01, Proof of Proposition 1], but
with little or no indication of proof. Our proof of Proposition 9.3 employs Grauert’s
miniversal deformation space for analytic germs of isolated singularities, tautness of dlt
surface singularities and Teissier’s “economy of the miniversal deformation”, [Tei77].
We would like to thank Yujiro Kawamata and Gert-Martin Greuel for discussions on the
subject.

The remainder of the present Section 9.C is devoted to a proof of Proposition 9.3.
We subdivide the proof into a number of relatively independent steps.

9.C.1. Proof of Proposition 9.3: projection to the singular set. — Observe that the asser-
tion of Proposition 9.3 is local on X. Recalling from Proposition 9.1 that X is Q-factorial
in codimension 2, observe that it suffices to prove Proposition 9.3 under the following
additional assumption.

Additional Assumption 9.4. — The variety X is Q-factorial. In particular, we assume
that the pair (X,∅) is klt, cf. [KM98, Corollary 2.39]. The singular locus T := Xsing is
irreducible and of codimension codimX T = 2.
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Recall from Proposition 2.26 that there exists an open set X◦ ⊆ X such that T◦ :=
T ∩ X◦ is not empty, and a diagram

Z◦
γ

finite, étale

φ

X◦

S◦

such that the restriction of φ to any connected component of γ −1(T◦) is an isomorphism.
It is clear that X is smooth at all points of X \ (X◦ ∪ T), and that codimX(T \ T◦) ≥ 3.
Consequently, it suffices to prove Proposition 9.3 for points contained in X◦. Better still,
since the assertion of Proposition 9.3 is local in the analytic topology, it suffices to prove
Proposition 9.3 for the variety Z◦, even after removing all but one component of γ −1(T◦).
We may therefore assume the following.

Additional Assumption 9.5. — There exists a surjective morphism φ : X → S with
connected fibres whose restriction φ|T : T → S is isomorphic.

Observation 9.6. — Let U ⊆ S be any Zariski-open subset. As in the previous
paragraph, observe that X is smooth at all points of X \ (φ−1(U) ∪ T), and that
codimX T \ φ−1(U) ≥ 3. As above, we see that to prove Proposition 9.3, it suffices to
consider the open set φ−1(U) ⊆ X only.

Observation 9.6, together with the Generic Flatness Lemma, [FGI+05, Theo-
rem 5.12], and the Cutting-Down Lemma 2.23 allows to assume the following.

Additional Assumption 9.7. — The morphism φ is flat. Given any point s ∈ S, the
preimage Xs := φ−1(s) is a normal klt surface.2 If ts ∈ T is the unique point with φ(ts) = s,
then Xs is smooth away from ts.

9.C.2. Proof of Proposition 9.3: simultaneous resolution of singularities. — In this sub-
section, we aim to show that, possibly shrinking S further, there exists a simultaneous
minimal resolution of the surface singularities (Xs)s∈S.

Claim 9.8. — There exists a dense smooth open set S◦ ⊆ S with preimage X◦ :=
φ−1(S◦), and a resolution of singularities π : ˜X◦ → X◦ such that the composition ψ :=
φ ◦ π is smooth over S◦, and such that the fibre ˜Xs := ψ−1(s) is a minimal resolution of
the klt surface Xs, for every s ∈ S◦.

2 More precisely, we assume that the pair (Xs,∅) is klt.



DANIEL GREB, STEFAN KEBEKUS, SÁNDOR J KOVÁCS, AND THOMAS PETERNELL

Proof. — To start, let π : ˜X → X be any resolution of singularities. If s ∈ S is gen-
eral, it is then clear that ˜Xs is smooth. We may thus choose S◦ such that all scheme-
theoretic fibres (˜Xs)s∈S◦ are smooth. Set ˜X◦ := ˜φ−1(T◦).

Now, if K
˜X◦/X◦ is nef, then none of the surfaces ˜Xs contains a (−1)-curve, π is

a simultaneous minimal resolution of the surface singularities (Xs)s∈S◦ , and the proof is
complete.

If K
˜X◦/X◦ is not nef, then the Relative Cone Theorem, [KM98, Theorem 3.25]

asserts that there exists a factorisation of π via a birational, π -relative contraction of an
extremal ray,

˜X◦
π

π1
̂X◦

π2
X◦

φ

S◦.

If π1 is a divisorial contraction, then ̂X◦ is terminal, [KM98, Corollary 3.43.(3)], and
codim

̂X◦ ̂X◦
sing ≥ 3, [KM98, Corollary 5.18]. If π1 is a small contraction, it is likewise

clear that codim
̂X◦ ̂X◦

sing ≥ 3. In either case, the singular set ̂X◦
sing does not dominate S◦.

Replacing S◦ by a suitable subset, we may assume that π2 : ̂X◦ → X◦ is a resolution of
singularities with relative Picard-number ρ(̂X◦/X◦) < ρ(˜X◦/X◦). Replacing ˜X◦ by ̂X◦

and repeating the process finitely many times, we will end up with a resolution where
K

˜X◦/X◦ is nef. Claim 9.8 is thus shown. �

Claim 9.8 and Observation 9.6 together allow to assume the following.

Additional Assumption 9.9. — There exists a resolution of singularities π : ˜X → X
such that the composition ψ := φ ◦ π is smooth, and such that for any s ∈ S, the fibre
˜Xs := ψ−1(s) is a minimal resolution of the klt surface singularity Xs.

9.C.3. Proof of Proposition 9.3: the isomorphism type of the surface germs Xs. — Given a
point s ∈ S, we consider the germ of the pointed surface Xs at the point ts ∈ T, the unique
point of T that satisfies φ(ts) = s. We use the symbol (Xs � ts) to denote this germ.

Claim 9.10. — There exists a dense Zariski-open subset S◦ ⊆ S such that for
any two points s1, s2 ∈ S◦, the associated germs of the pointed surfaces are isomorphic,
(Xs1 � ts1) � (Xs2 � ts2).

Proof. — By [Ver76, Corollary 5.1], there exists a Zariski dense open subset S◦ ⊆ S
with preimage ˜X◦ := ψ−1(S◦) such that ψ |

˜X◦ : ˜X◦ → S◦ is a topological fibre bundle
(in the analytic topology). As a consequence of the classification of log-terminal surface
singularities, cf. [Kaw88, Theorem 9.6], the analytic isomorphism type of any such singu-
larity is uniquely determined by the resolution graph (labelled with self-intersection num-
bers) of its minimal resolution. In other words, log terminal surface singularities are taut



DIFFERENTIAL FORMS ON LOG CANONICAL SPACES

in the sense of Laufer [Lau73, Definition 1.1]. Since ψ |
˜X◦ is a fibre bundle, Claim 9.10

follows. �

Again, Observation 9.6 allows to shrink S and assume the following.

Additional Assumption 9.11. — For any two points s1, s2 ∈ S, we have an isomorphism
(Xs1 � ts1) � (Xs2 � ts2).

9.C.4. Proof of Proposition 9.3: the completion of the proof. — Let now t ∈ T = Xsing be
any point, with image s := φ(t). Note that by Assumption 9.7, the point t is the unique
singular point in the klt surface Xs. Since (Xs � t) is the germ of an isolated singular-
ity, a theorem of Grauert, [Gra72], asserts the existence of a miniversal deformation
space (U � 0) for (Xs � t), which is itself a germ of a pointed complex space; we refer to
[GLS07, Section II.1] for these matters. Since φ : X → S is flat, we obtain a holomorphic
map of pointed space germs, say η : (S � s) → (U � 0). Since all fibres of φ give isomor-
phic space germs by Assumption 9.11, it follows from the “economy of the miniversal
deformation”, [HM89, Corollary 2], [Tei77, Theorem 4.8.4] that η is the constant map
which maps the germ (T � t) to 0 ∈ U. The universal property of the miniversal defor-
mation space then gives an isomorphism of germs

(X � t) � (

S × Xs � (s, t)
)

.

Since T and S are smooth, there exists a neighbourhood U of t in X such that
U is biholomorphic to Bdim X−2 × (Xs ∩ U), where Bk denotes the unit ball in Ck . It
follows from the classification of log terminal surface singularities and from the general
description of quotient singularities, cf. [Kaw88, Theorem 9.6] and [Pri67], that the exits
a finite group G ⊂ GL2(C) without quasi-reflections such that a neighbourhood of t ∈ Xs

is biholomorphic to a neighbourhood of the origin in C2/G. The quotient map is totally
branched over the origin and étale elsewhere. Hence, t ∈ X possesses a neighbourhood
U′ ⊆ U that is biholomorphic to a complex space of the form (Bdim X−2 × B2)/G, where
G is a finite group acting linearly and without quasi-reflections on the second factor, and
where the quotient map is totally branched over the singular set and étale elsewhere.

9.D. The local structure of dlt pairs in codimension 2. — We conclude the present Sec-
tion 9 by describing the codimension 2 structure of dlt pairs along the reduced compo-
nents of the boundary, similarly to Proposition 9.2 above. Since dlt pairs are klt away from
the reduced components of the boundary, [KM98, Proposition 2.41], Propositions 9.3
and 9.12 together give a full account of the structure of dlt pairs in codimension 2. These
results are summarised in Corollary 9.14 at the end of this section.

Proposition 9.12 (Codimension 2 structure of dlt pairs along the reduced boundary). — Let

(X,D) be a dlt pair with �D
 �= 0. Then there exists a closed subset Z ⊂ X with codimX Z ≥ 3
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such that X \ Z is Q-factorial, and such that for every point x ∈ (supp�D
) \ Z one of the following

two conditions holds.

(9.12.1) The pair (X,D) is snc at x, and the point x is contained in precisely two components

of D. These components have coefficient one in D and intersect transversely at x.

(9.12.2) The divisor �D
 is smooth at x and the pair (X,D) is plt at x.

As with Proposition 9.2, the proof of Proposition 9.12 relies on cutting-down and
on classification results for surface pairs. Before starting with the proof, we recall the
relevant classification of dlt surface pairs for the reader’s convenience.

Fact 9.13 (Classification of dlt surface pairs, [KM98, Corollary 5.55]). — Let (X,D) be a

dlt surface pair, and let x ∈ supp�D
 be any point. Then either one of the following holds.

(9.13.1) The pair (X,D) is snc at x, and x is contained in precisely two components of D.

These components have coefficient one and intersect transversely at x.

(9.13.2) The divisor �D
 is smooth at x. �

With Fact 9.13 at hand, the proof of Proposition 9.12 becomes rather straightfor-
ward.

Proof of Proposition 9.12. — To start, recall from Proposition 9.1 that X is Q-factorial
in codimension 2. Removing a suitable small subset, we may therefore assume without
loss of generality that X is Q-factorial

Consider general hyperplanes H1, . . . ,Hdim X−2 ⊆ X, and set
(

H,DH

) := (

H1 ∩ · · · ∩ Hdim X−2,D ∩ H1 ∩ · · · ∩ Hdim X−2

)

.

Then (2.23.3) of the Cutting-Down Lemma 2.23 asserts that supp(�DH
) = H ∩
supp(�D
). By general choice of the Hi , it suffices to show that the properties (9.12.1)
or (9.12.2) hold for all points x ∈ supp(�DH
). Fix one such point for the remainder of
the proof.

By Lemma 2.25, the surface pair (H,DH) is dlt, so that the classification stated
in Fact 9.13 applies. If we are in case (9.13.1), it follows from (2.23.5) and (2.23.2) of
Lemma 2.23 that the pair (X,D) is snc at x, and that near x the pair (X,D) is of the
form stated in (9.12.1).

We may thus assume that we are in case (9.13.2), where smoothness of �D
 at x

follows from (2.23.4). The fact that pair (X,D) is plt at x follows from [KM98, Proposi-
tion 5.51]. �

Corollary 9.14. — Let (X,D) be a dlt pair. Then there exists a closed subset Z ⊂ X with

codimX Z ≥ 3 such that X◦ := X \ Z is Q-factorial, and such that there exists a covering of X◦ by

subsets (Uα)α∈A that are open in the analytic topology, and admit covering maps

γα : Vα → Uα finite Galois cover, étale in codimension one
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such that the pairs (Vα, γ
∗
α �D
) are snc for all indices α ∈ A. Furthermore, the covering may be chosen

to satisfy the following additional conditions.

(9.14.1) Only finitely many of the open sets, say Uα1, . . . ,Uαk
, intersect supp�D
. The

sets Uαi
are open in the Zariski topology, and the covering maps γαi

are algebraic

morphisms of quasi-projective varieties.

(9.14.2) For any index α with Uα ∩ supp�D
 = ∅, the covering map γα is totally branched

over the singular set, and étale elsewhere.

Remark 9.14.1. — Since the γα are étale in codimension one, round-down of di-
visors commutes with pulling-back. That is, we have equalities γ ∗

α �D
 = �γ ∗
α D
 for all

α ∈ A.

9.D.1. Proof of Corollary 9.14, setup of notation. — Removing a subset of codimen-
sion 3, Proposition 9.12 allows to assume that the variety X is Q-factorial. In particu-
lar, we assume that the pair (X, �D
) is likewise dlt, [KM98, Corollary 2.39]. We may
therefore assume that D is reduced, i.e., that D = �D
. Finally, consider the open set
X′ := X \ supp D and observe that the pair (X′,∅) is klt, [KM98, Proposition 2.41].

The open cover (Uα)α∈A will be constructed in two steps, first covering supp D
with finitely many Zariski-open sets, and then covering X′ by (possibly infinitely many)
sets that are open only in the analytic topology. In each step, we might need to remove
from X finitely many further sets of codimension 3.

9.D.2. Proof of Corollary 9.14, covering supp D. — Assuming that D �= 0 and remov-
ing a suitable subset of codimension 3, we may assume that for all points x ∈ supp D
either Condition (9.12.1) or Condition (9.12.2) of Proposition 9.12 holds.

We start the construction setting U1 := (X,D)reg, and taking for γ1 the identity
map. Observing that (X,D) is plt at all points of supp D \ U1, we can cover supp D \ U1

by finitely many affine Zariski-open subsets U2, . . . ,Uk such that the following holds for
all indices i,

– the pairs (Ui,D) are plt, and
– there are numbers mi > 0 and isomorphisms OUi

(mi(KX + D)) � OUi
.

Let γi : Vi → Ui be the associated index-one covers, which are finite cyclic Galois covers
that are étale in codimension one. Set 
i := γ ∗

i D. Since discrepancies do not increase un-
der this kind of covers, see [KM98, Proposition 5.20(3)], the pairs (Vi,
i) are again plt,
so the discrepancies of all exceptional divisors are greater than −1. Better still, since the
log-canonical divisors KVi

+ 
i are Cartier by construction, these discrepancies are inte-
gral, and therefore non-negative. The reduced pairs (Vi,
i) are thus canonical. In this
setup, Proposition 9.2 applies to show that there exists a subset Z′ ⊂ X of codimX Z′ ≥ 3
such that all pairs (Vi \ γ −1(Z′),
i \ γ −1(Z′)) are snc. Removing the subset Z′ from X,
we obtain the desired covering.
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9.D.3. Proof of Corollary 9.14, covering most of X◦. — Let Z′′ ⊂ X′ be the subset of
codimension 3 that is discussed in Proposition 9.3. Removing from X the closure of Z′′,
the existence of the covering follows from the assertion that X′ has quotient singularities
of the form described in Proposition 9.3 and therefore γα is totally branched over the
singular set.

10. Relative differential sequences on dlt pairs

In this section we start the systematic study of sheaves of reflexive differentials on
dlt pairs. Specifically we construct a standard exact sequence for forms of degree 1 with
respect to a morphism φ : X → T and study the induced filtration for forms of degree
p ≥ 2.

10.A. The relative differential sequence for snc pairs. — Here we recall the generalisation
of the standard sequence for relative differentials, [Har77, Proposition II.8.11], to the
logarithmic setup. Let (X,D) be a reduced snc pair, and φ : X → T an snc morphism of
(X,D), as introduced in Definition 2.9. In this setting, the standard pull-back morphism
of 1-forms extends to yield the following exact sequence of locally free sheaves on X,

(10.1) 0 → φ∗�1
T → �1

X(log D) → �1
X/T(log D) → 0,

called the “relative differential sequence for logarithmic differentials”. We refer to [EV90,
Section 4.1] or [Del70, Section 3.3] for a more detailed explanation. For forms of higher
degrees, the sequence (10.1) induces filtrations

(10.2) �
p

X(log D) = F 0(log) ⊇ F 1(log) ⊇ · · · ⊇ F p(log) ⊇ {0}
with quotients

(10.3) 0 → F r+1(log) → F r(log) → φ∗�r
T ⊗ �

p−r

X/T(log D) → 0

for all r. We refer to [Har77, Exercise II.5.16] for the construction of (10.2). For the
reader’s convenience, we recall without proof of the following elementary properties of
the relative differential sequence.

Fact 10.4 (Composition with étale morphisms). — Let (X,D) be a reduced snc pair, and let

φ : X → T be an snc morphism of (X,D). If γ : Z → X is an étale morphism, and 
 := γ ∗(D),

then ψ := φ ◦ γ is an snc morphism of (Z,
), the natural pull-back map dγ : γ ∗�1
X(log D) →

�1
Z(log
) is isomorphic, and induces isomorphisms between the pull-back of the filtration (10.2) induced

by φ, and the filtration ˜F r(log) of �
p

Z(log
) induced by the composition ψ ,

dγ
(

γ ∗F r(log)
) = ˜F r(log), ∀r. �
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Fact 10.5 (Compatibility with fiber-preserving group actions). — Let G be a finite group which

acts on X, with associated isomorphisms φg : X → X. Assume in addition that the G-action is fibre pre-

serving, i.e., assume that φ ◦φg = φ for every g ∈ G. Then all sheaves that appear in Sequences (10.1)
and (10.3) as well as in the filtration in (10.2) can naturally be endowed with G-sheaf structures. All

the morphisms discussed above preserve this additional structure, i.e., they are morphisms of G-sheaves in

the sense of Definition A.1. �

10.B. Main result of this section. — The main result of this section, Theorem 10.6,
gives analogues of (10.1)–(10.3) in case where (X,D) is dlt. In the absolute case The-
orem 10.6 essentially says that all properties of the differential sequence discussed in
Section 10.A still hold on a dlt pair (X,D) if one removes from X a set Z of codimension
at least 3.

Theorem 10.6 (Relative differential sequence on dlt pairs). — Let (X,D) be a dlt pair with X
connected. Let φ : X → T be a surjective morphism to a normal variety T. Then, there exists a non-

empty smooth open subset T◦ ⊆ T with preimages X◦ = φ−1(T◦), D◦ = D ∩ X◦, and a filtration

(10.6.1) �
[p]
X◦(log�D◦
) = F [0](log) ⊇ · · · ⊇ F [p](log) ⊇ {0}

on X◦ with the following properties.

(10.6.2) The filtrations (10.2) and (10.6.1) agree wherever the pair (X◦, �D◦
) is snc, and

φ is an snc morphism of (X◦, �D◦
).
(10.6.3) For any r, the sheaf F [r](log) is reflexive, and F [r+1](log) is a saturated subsheaf

of F [r](log).
(10.6.4) For any r, there exists a sequence of sheaves of OX◦-modules,

0 → F [r+1](log) → F [r](log) → φ∗�r
T◦ ⊗ �

[p−r]
X◦/T◦(log�D◦
) → 0,

which is exact and analytically locally split in codimension 2.

(10.6.5) There exists an isomorphism F [p](log) � φ∗�p

T◦ .

Remark 10.6.6. — To construct the filtration in (10.6.1), one takes the filtra-
tion (10.2) which exists on the open set X \ Xsing wherever the morphism φ is snc, and
extends the sheaves to reflexive sheaves that are defined on all of X. It is then not very
difficult to show that the sequences (10.6.4) are exact and locally split away from a subset
Z ⊂ X of codimension codimX Z ≥ 2. The main point of Theorem 10.6 is, however, that
it suffices to remove from X a set of codimension codimX Z ≥ 3.

Before proving Theorem 10.6 in Section 10.C below, we first draw an important
corollary. The assertion that Sequences (10.6.4) are exact and locally split away from a
set of codimension three plays a pivotal role here.
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Corollary 10.7 (Restriction of the relative differentials sequence to boundary components). — In

the setup of Theorem 10.6, assume that �D
 �= 0 and let D0 ⊆ supp�D
 be any irreducible component

that dominates T. Recall that D0 is normal, [KM98, Corollary 5.52].

If r is any number, then Sequences (10.6.4) induce exact sequences of reflexive sheaves on D◦
0 :=

D0 ∩ X◦, as follows3

(10.7.1) 0 → F [r+1](log)|∗∗
D◦

0
→ F [r](log)|∗∗

D◦
0
→ φ∗�r

T ⊗ �
[p−r]
X◦/T◦(log�D◦
)|∗∗

D◦
0
.

Proof. — Since D0 is normal, there exists a subset Z ⊂ X◦ with codimX◦ Z ≥ 3 such
that

– the divisor D◦
0 := D0 ∩ X◦ is smooth away from Z, and

– the Sequences (10.6.4) are exact and locally split away from Z.

It follows from the local splitting of (10.6.4) that the sequence obtained by restriction,

0 → F [r+1](log)|D◦
0\Z → F [r](log)|D◦

0\Z → φ∗�r
T ⊗ �

[p−r]
X◦/T◦(log�D◦
)|D◦

0\Z → 0,

is still exact. The exactness of (10.7.1) follows when one recalls that the functor which
maps a sheaf to its double dual can be expressed in terms of a push-forward map and is
therefore exact on the left. �

10.C. Proof of Theorem 10.6. — We prove Theorem 10.6 in the remainder of Sec-
tion 10.

10.C.1. Proof of Theorem 10.6, setup and start of proof. — By Remark 2.11 we are
allowed to make the following assumption without loss of generality.

Additional Assumption 10.8. — The divisor D ∩ (X,D)reg is relatively snc over T. In
particular, T is smooth, and the restriction of φ to the smooth locus Xreg of X is a smooth
morphism.

As we have seen in Section 10.A, the morphism φ : X → T induces on the open
set (X,D)reg ⊆ X a filtration of �

p

(X,D)reg
(log�D
) by locally free saturated subsheaves, say

F r
◦(log). Let i : (X,D)reg → X be the inclusion map and set

F [r](log) := i∗
(

F r
◦(log)

)

.

We will then obtain a filtration as in (10.6.1). Notice that all sheaves F [r](log) are
saturated in �

[p]
X (log�D
) since F r

◦(log) is saturated in �
p

(X,D)reg
(log�D
), cf. [OSS80,

Lemma 1.1.16]. This shows the properties (10.6.2) and (10.6.3).

3 For brevity of notation, we write F [r](log)|∗∗
D0

and φ∗�r
T ⊗ �

[p−r]
X/T (log D0)|∗∗

D0
instead of the more correct forms

(F [r](log)|D0 )
∗∗ and φ∗�r

T|D0 ⊗OD0
(�

[p−r]
X/T (log D0)|D0 )

∗∗ here and throughout.
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Using that push-forward is a left-exact functor, we also obtain exact sequences of
reflexive sheaves on X as follows,

(10.8.1) 0 → F [r+1](log) → F [r](log) → φ∗�r
T ⊗ �

[p−r]
X/T (log�D
).

We have to check that (10.8.1) is also right exact and locally split in codimension 2, in
the analytic topology. For this we will compare the sheaves just defined with certain G-
invariant push-forward sheaves of local index-one covers. Once this is shown, the prop-
erty (10.6.5) will follow automatically.

10.C.2. Proof of Theorem 10.6, simplifications. — We use the description of the local
structure of dlt pairs in codimension 2, done in Chapter 9, to simplify our situation.

The assertion of Theorem 10.6 is local. Since the sheaves F [•](log) are reflexive,
and since we only claim right-exactness of (10.8.1) in codimension 2, we are allowed to re-
move subsets of codimension greater than or equal to 3 in X. We will use this observation
to make a number of reduction steps.

Recall from Proposition 9.1 that X is Q-factorial in codimension 2, and hence the
pair (X, �D
) is dlt in codimension 2, see [KM98, Corollary 2.39 (1)]. This justifies the
following.

Additional Assumption 10.9. — The variety X is Q-factorial, and the boundary divi-
sor D is reduced, that is, D = �D
.

Corollary 9.14 allows us to assume the following.

Additional Assumption 10.10. — There exists a cover X = ⋃

α∈A Uα by open subsets
and there are finite morphisms γα : Vα → Uα , as described in Corollary 9.14.

10.C.3. Proof of Theorem 10.6, study of composed morphisms. — In Section 10.C.4, we
study the sequence (10.8.1) by pulling it back to the smooth spaces Vα , and by discussing
relative differential sequences associated with the compositions ψα := φ ◦ γα . We will
show in this section that we may assume without loss of generality that these maps are
snc morphisms of the pairs (Vα, γ

∗
α D).

Shrinking T, if necessary, and removing from X a further set of codimension 3, the
following will hold.

Additional Assumption 10.11. — The singular locus Xsing (with its reduced structure)
is smooth, and so is the restriction φ|Xsing .

Additional Assumption 10.12. — If α ∈ A is one of the finitely many indices for which
Uα ∩ supp D �= ∅, then the composition ψα := φ ◦ γα is an snc morphism of the pair
(Vα, γ

∗
α D).
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As a matter of fact, Assumptions 10.8 and 10.11 guarantee that all pairs (Vα, γ
∗
α D)

are relatively snc over T, not just for those indices α ∈ A where Uα intersects supp D:

Claim 10.13. — If α ∈ A is any index, then the composition ψα := φ ◦ γα is an snc
morphism of the pair (Vα, γ

∗
α D).

Proof. — Let α ∈ A. If Uα ∩ supp D �= ∅, then Claim 10.13 follows directly from As-
sumption 10.12, and there is nothing to show. Otherwise, we have γ ∗

α D = 0. Claim 10.13
will follow once we show that ψα : Vα → T has maximal rank at all points v ∈ Vα . We
consider the cases where γα(v) is a smooth, (resp. singular) point of X separately.

If γα(v) is a smooth point of X, then (9.14.2) of Corollary 9.14 asserts that γα is
étale at v. Near v, the morphism ψα is thus a composition of an étale and a smooth map,
and therefore of maximal rank.

If γα(v) is a singular point of X, consider the preimage � := γ −1
α (Xsing) with its re-

duced structure, and observe that v ∈ �. In this setting, (9.14.2) of Corollary 9.14 asserts
that γα is totally branched along �. In particular, the restriction γα|� : � → Xsing is iso-
morphic and thus of maximal rank. By Assumption 10.11, the restriction ψα|� : � → T
is thus a composition of two morphisms with maximal rank, and has therefore maximal
rank itself. It follows that ψα : Vα → T has maximal rank at v. �

Right-exactness of the sequence (10.8.1) and its local splitting are properties that
can be checked locally in the analytic topology on the open subsets Uα . To simplify
notation, we replace X by one of the Uα . Claim 10.13 and Additional Assumption 10.12
then allow to assume the following.

Additional Assumption 10.14. — There exists a smooth manifold Z, endowed with an
action of a finite group G and associated quotient map γ : Z → X. The cycle-theoretic
preimage 
 := γ ∗(D) is a reduced snc divisor. Furthermore, the quotient map γ is étale
in codimension one, and the composition of ψ := φ ◦ γ : Z → T is an snc morphism of
the pair (Z,
).

10.C.4. Proof of Theorem 10.6, right-exactness of (10.8.1). — Since ψ is a G-invariant
snc morphism between of the pair (Z,
), Fact 10.5 yields a filtration of �

p

Z(log
) by
locally free G-subsheaves ˜F r(log) and G-equivariant exact sequences,

(10.14.1) 0 → ˜F r+1(log) → ˜F r(log) → ψ∗�r
T ⊗ �

p−r

Z/T(log
) → 0.

By the Reflexivity Lemma A.4 the G-invariant push-forward-sheaves γ∗ ˜F r(log)G are
then reflexive. By the Exactness Lemma A.3 these reflexive sheaves fit into the following
exact sequences

(10.14.2) 0 → γ∗ ˜F r+1(log)G → γ∗ ˜F r(log)G → γ∗
(

ψ∗�r
T ⊗ �

p−r

Z/T(log
)
)G → 0.
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Since γ is étale in codimension one, Fact 10.4 implies that the differential dγ induces
isomorphisms

(10.14.3) F [r](log)
�−→ γ∗ ˜F r(log)G.

Furthermore, since ψ = φ ◦ γ , since �r
T is locally free, and since G acts trivially on T, it

follows from the projection formula that there exist isomorphisms

φ∗�r
T ⊗ �

[p−r]
X/T (log D)

�−→ φ∗�r
T ⊗ γ∗�

p−r

Z/T(log D)G(10.14.4)
�−→ γ∗

(

ψ∗�r
T ⊗ �

p−r

Z/T(log D)
)G

.(10.14.5)

In summary, we note that the isomorphisms (10.14.3)–(10.14.5) make the following dia-
gram commutative:

γ∗ ˜F r+1(log)G γ∗ ˜F r(log)G γ∗
(

ψ∗�r
T ⊗ �

p−r

Z/T(log
)
)G

F [r+1](log)

�

F [r](log)

�

φ∗�r
T ⊗ �

[p−r]
X/T (log).

�

This shows that (10.8.1) is also right-exact, as claimed in (10.6.4).

10.C.5. Proof of Theorem 10.6, existence of local analytic splittings. — It remains to show
that (10.8.1) admits local analytic splittings in codimension 2. This follows directly from
the Splitting Lemma A.5, concluding the proof of Theorem 10.6.

11. Residue sequences for reflexive differential forms

A very important feature of logarithmic differentials is the existence of a residue
map. In its simplest form consider a smooth hypersurface D ⊂ X in a manifold X. The
residue map is then the cokernel map in the exact sequence

0 → �1
X → �1

X(log D) → OD → 0.

In Section 11.A, we first recall the general situation for an snc pair, for forms of arbitrary
degree and in a relative setting. A generalisation to dlt pairs is the established in Sec-
tions 11.B–11.C below. Without the dlt assumption, residue maps fail to exist in general.
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11.A. Residue sequences for snc pairs. — Let (X,D) be a reduced snc pair. Let D0 ⊆ D
be an irreducible component and recall from [EV92, 2.3(b)] that there exists a residue
sequence,

0 → �
p

X(log(D − D0)) �
p

X(log D)
ρp

�
p−1
D0

(log Dc
0) → 0,

where Dc
0 := (D − D0)|D0 denotes the “restricted complement” of D0. More generally, if

φ : X → T is an snc morphism of (X,D) we have a relative residue sequence

(11.1) 0 → �
p

X/T(log(D − D0)) �
p

X/T(log D)
ρp

�
p−1
D0/T(log Dc

0) → 0.

The sequence (11.1) is not a sequence of locally free sheaves on X, and its restriction
to D0 will never be exact on the left. However, an elementary argument, cf. [KK08,
Lemma 2.13.2], shows that restriction of (11.1) to D0 induces the following exact se-
quence

(11.2) 0 → �
p

D0/T(log Dc
0)

ip−→ �
p

X/T(log D)|D0

ρ
p

D−→ �
p−1
D0

(log Dc
0) → 0,

which is very useful for inductive purposes. We recall without proof several elementary
facts about the residue sequence.

Fact 11.3 (Residue map as a test for logarithmic poles). — If σ ∈ H0(X,�
p

X/T(log D)) is

any reflexive form, then σ ∈ H0(X,�
p

X/T(log(D − D0))) if and only if ρp(σ ) = 0. �

Fact 11.4. — In the simple case where T is a point, p = 1 and D = D0, the restricted residue

sequence (11.2) reads

0 → �1
D

i1−→ �1
X(log D)|D ρ1

D−→ OD → 0.

The sheaf morphisms i1 and ρ1
D are then described as follows. If V ⊆ X is any open set, and if

f ∈ OX(V) is a function that vanishes only along D, then

(11.4.1) ρ1
D

(

(d log f )|D) = ordD f · 1D∩V,

where 1D∩V is the constant function with value one. If g ∈ OX(V) is any function, then

(11.4.2) i1
(

d(g|D∩V)
) = (dg)|D∩V. �

Fact 11.5 (Base change property of the residue map). — Let (X,D) be a reduced snc pair,

and π : ˜X → X a surjective morphism such that the pair (˜X,˜D) is snc, where ˜D := suppπ∗D. If
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˜D0 ⊂ π−1(D0) is any irreducible component, then there exists a diagram

π∗(�p

X(log D)
)

π∗(ρp)

dπ

π∗(�p−1
D0

(log Dc
0)

)

d(π |
˜D0

)

�
p

˜X(log ˜D)
ρp

�
p−1
˜D0

(log ˜Dc
0).

�

Fact 11.6 (Compatibility with fiber-preserving group actions). — Let G be a finite group which

acts on X, with associated isomorphisms φg : X → X. Assume that the G-action stabilises both the

divisor D, and the component D0 ⊆ D, and assume that the action is fibre preserving, that is φ ◦φg = φ

for every g ∈ G. Then all sheaves that appear in Sequences (11.1) and (11.2) are G-sheaves, in the

sense of Definition A.1 on page 76, and all morphisms that appear in (11.1) and (11.2) are morphisms

of G-sheaves. �

11.B. Main result of this section. — If the pair (X,D) is not snc, no residue map
exists in general. However, if (X,D) is dlt, then [KM98, Corollary 5.52] applies to show
that D0 is normal, and an analogue of the residue map ρp exists for sheaves of reflexive
differentials, as we will show now.

To illustrate the problem we are dealing with, consider a normal space X that
contains a smooth Weil divisor D = D0. One can easily construct examples where the
singular set Z := Xsing is contained in D and has codimension 2 in X, but codimension
one in D. In this setting, a reflexive form σ ∈ H0(D0,�

[p]
D0

(log D0)|D0) is simply the re-
striction of a form defined outside of Z, and the form ρ[p](σ ) is the extension of the
well-defined form ρp(σ |D0\Z) over Z, as a rational form with poles along Z ⊂ D0. If the
singularities of X are bad, it will generally happen that the extension ρ[p](σ ) has poles
of arbitrarily high order. Theorem 11.7 asserts that this does not happen when (X,D) is
dlt.

Theorem 11.7 (Residue sequences for dlt pairs). — Let (X,D) be a dlt pair with �D
 �= ∅
and let D0 ⊆ �D
 be an irreducible component. Let φ : X → T be a surjective morphism to a normal

variety T such that the restricted map φ|D0 : D0 → T is still surjective. Then, there exists a non-empty

open subset T◦ ⊆ T, such that the following holds if we denote the preimages as X◦ = φ−1(T◦),
D◦ = D ∩ X◦, and the “complement” of D◦

0 as D◦,c
0 := (�D◦
 − D◦

0)|D◦
0
.

(11.7.1) There exists a sequence

0 → �
[r]
X◦/T◦(log(�D◦
 − D◦

0)) → �
[r]
X◦/T◦(log�D◦
)

ρ[r]−→ �
[r−1]
D◦

0/T◦(log D◦,c
0 ) → 0
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which is exact in X◦ outside a set of codimension at least 3. This sequence coincides

with the usual residue sequence (11.1) wherever the pair (X◦,D◦) is snc and the

map φ◦ : X◦ → T◦ is an snc morphism of (X◦,D◦).
(11.7.2) The restriction of Sequence (11.7.1) to D0 induces a sequence

0 → �
[r]
D◦

0/T◦(log D◦,c
0 ) → �

[r]
X◦/T◦(log�D◦
)|∗∗

D◦
0

ρ
[r]
D◦

0−→ �
[r−1]
D◦

0/T◦(log D◦,c
0 ) → 0

which is exact on D◦
0 outside a set of codimension at least 2 and coincides with the

usual restricted residue sequence (11.2) wherever the pair (X◦,D◦) is snc and the

map φ◦ : X◦ → T◦ is an snc morphism of (X◦,D◦).

Fact 11.3 and Theorem 11.7 together immediately imply that the residue map for
reflexive differentials can be used to check if a reflexive form has logarithmic poles along
a given boundary divisor.

Remark 11.8 (Residue map as a test for logarithmic poles). — In the setting of Theo-
rem 11.7, if σ ∈ H0(X,�

[p]
X (log�D
)) is any reflexive form, then σ ∈ H0(X,�

[p]
X (log�D
−

D0)) if and only if ρ[p](σ ) = 0.

11.C. Proof of Theorem 11.7. — We prove Theorem 11.7 in the remainder of the
present chapter. As in the setup of Theorem 10.6, discussed in Remark 10.6.6, it is not
difficult to construct Sequences (11.7.1) and (11.7.2) and to prove exactness outside a set
of codimension 2, but the main point is the exactness outside a set of codimension at
least 3.

11.C.1. Proof of Theorem 11.7, simplifications. — Again, as in Section 10.C.2 we use
the description of the codimension 2 structure of dlt pairs, obtained in Chapter 9, to
simplify our situation. Since all the sheaves appearing in Sequences (11.7.1) and (11.7.2)
are reflexive, it suffices to construct the sheaf morphism ρ[r] outside a set of codimension
at least 3. Notice also that existence and exactness of (11.7.1) and (11.7.2) are clear at
all points in (X,D)reg where φ is an snc morphism of (X,D). We will use these two
observations to make a number of reduction steps.

As in Section 10.C.2, removing from X a set of codimension 3, we may assume the
following without loss of generality.

Additional Assumption 11.9. — The variety X is Q-factorial, and the boundary divi-
sor D is reduced, that is, D = �D
.

Since the target of the residue map is a sheaf supported on D, we may work lo-
cally in a neighbourhood of D. Removing a further set of codimension more than 2,
Corollary 9.14 therefore allows to assume the following.
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Additional Assumption 11.10. — There exists a cover X = ⋃

α∈A Uα by a finite
number of affine Zariski open subsets Uα of X, and there exist finite Galois covers
γα : Vα → Uα , étale in codimension one, such that the pairs (Vα, γ

∗
α D) are snc for all

indices α.

Observe that the construction of the desired map ρ[p] can be done on the open
subsets Uα , once we have established the claim that the local maps constructed on the
Uα coincide with the usual residue maps wherever this makes sense. To simplify notation,
we will hence replace X by one of the Uα , writing γ := γα , Z := Uα and 
 := γ ∗D. The
Galois group of γ will be denoted by G. Shrinking T if necessary, we may suppose the
following.

Additional Assumption 11.11. — The restriction of φ to the snc locus (X,D)reg is an
snc morphism of (X,D). The composition ψ := φ ◦ γ is an snc morphism of (Z,
).

With Assumption 11.11 in place, and the assertion of Theorem 11.7 being clear
near points where (X,D) is snc, the description of the codimension 2 structure of dlt
pairs along the boundary, Proposition 9.12, allows us to assume the following.

Additional Assumption 11.12. — The pair (X,D) is plt. The divisors D ⊂ X and

 ⊂ Z are smooth and irreducible. In particular, we have D = D0, �D
−D0 = 0, Dc

0 = 0,
and the restricted maps ψ |
 : 
 → T and φ|D : D → T are smooth morphisms of smooth
varieties.

11.C.2. Proof of Theorem 11.7, construction and exactness of (11.7.1). — Since ψ : Z →
T is an snc morphism of (Z,
), and since the irreducible divisor 
 ⊂ Z is invariant
under the action of G, Fact 11.6 and the standard residue sequence (11.1) yield an exact
sequence of morphisms of G-sheaves, as follows

0 → �r
Z/T → �r

Z/T(log
)
ρr−→ �r−1

˜D/T → 0.

Recalling from Lemma A.3 that γ∗(·)G is an exact functor, this induces an exact sequence
of morphisms of G-sheaves, for the trivial G-action on X,

(11.12.1) 0 → γ∗(�r
Z/T)G → γ∗(�r

Z/T(log
))G γ∗(ρr)G−−−→ γ∗(�r−1

/T)G → 0.

Recall from Lemma A.4 that all the sheaves appearing in (11.12.1) are reflexive. The fact
that γ is étale in codimension one then implies that the pull-back of reflexive forms via γ

induces isomorphisms

�
[r]
X/T

�−→ γ∗(�r
Z/T)G and(11.12.2)

�
[r]
X/T(log D)

�−→ γ∗(�r
Z/T(log
))G.(11.12.3)
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It remains to describe the last term of (11.12.1).

Claim 11.13. — The restriction of γ to 
 induces an isomorphism γ∗(�r−1

/T)G �

�r−1
D/T.

Proof. — By Assumption 11.12, the restricted morphism γ |
 : 
 → D is a finite
morphism of smooth spaces. The branch locus S ⊂ D and the ramification locus ˜S ⊂ 


are therefore both of pure codimension one.
The pull-back map of differential forms associated with γ |
 yields an injection

�r−1
D/T ↪→ γ∗(�r−1


/T)G. To prove Claim 11.13, it remains to show surjectivity. To this end,
recall from Assumption 11.10 that D and 
 are affine, and let σ ∈ H0(
, �r−1


 )G be any
G-invariant (r − 1)-form on 
. Then there exists a rational differential form τ on D,
possibly with poles along the divisor S ⊂ D satisfying the relation

(11.13.1) (γ |
)∗(τ )|
\˜S = σ |
\˜S.

Recalling that regularity of differential forms can be checked on any finite cover,
[GKK10, Corollary 2.12.ii], Equation (11.13.1) implies that τ is in fact a regular
form on D, that is, τ ∈ H0(D, �r−1

D ) with (γ |
)∗(τ ) = σ . This finishes the proof of
Claim 11.13. �

Finally, using the isomorphisms (11.12.2), (11.12.3) and Claim 11.13 established
above, Sequence (11.12.1) translates into

(11.13.2) 0 → �
[r]
X/T → �

[r]
X/T(log D)

ρ[r]−→ �r−1
D/T → 0,

which is the sequence whose existence is asserted in (11.7.1). Using Fact 11.5 and using
that the finite covering γ is étale away from the singular locus of (X,D), it follows by
construction that the map ρ[r] coincides with the usual relative residue map wherever the
pair (X,D) is snc.

11.C.3. Proof of Theorem 11.7, construction and exactness of (11.7.2). — Restricting the
morphism ρ[r] of the sequence (11.13.2) to the smooth variety D ⊂ X, and recalling that
restriction is a right-exact functor, we obtain a surjection

(11.13.3) ρ[r]|D : �[r]
X/T(log D)|D → �r−1

D/T → 0.

Since any sheaf morphism to a reflexive sheaf factors via the reflexive hull of the do-
main, (11.13.3) induces a surjective map between reflexive hulls, and therefore an exact
sequence

(11.13.4) 0 → ker
(

ρ
[r]
D

) → �
[r]
X/T(log D)|∗∗

D

ρ
[r]
D−→ �r−1

D/T → 0.
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Comparing (11.7.2) and (11.13.4), we see that to finish the proof of Theorem 11.7, we
need to show that

ker
(

ρ
[r]
D

) � �
[r]
D/T.

To this end, we consider the standard restricted residue sequence (11.2) for the morphism
ψ , and its G-invariant push-forward,

(11.13.5) 0 → γ∗
(

�r

/T

)G

︸ ︷︷ ︸

� �r
D/T by Claim 11.13

→ γ∗
(

�r
Z/T(log
)|


)G → γ∗
(

�r−1

/T

)G

︸ ︷︷ ︸

� �r−1
D/T by Claim 11.13

→ 0.

By Lemma A.3 from Appendix B, this sequence is exact. In order to describe the mid-
dle term of (11.13.5) and to relate (11.13.5) to (11.13.4), observe that the Restriction
Lemma A.6 together with the isomorphism (11.12.3) yields a surjective sheaf morphism

ϕ : �[r]
X/T(log D)|∗∗

D � γ∗(�r
Z/T(log
)|
)G.

Since γ is étale in codimension one, it is étale at the general point of 
, and hence ϕ

is generically an isomorphism. Consequently ϕ is an isomorphism as �
[r]
X/T(log D)|∗∗

D is
torsion-free. Additionally, it follows from Fact 11.5 that the map ϕ fits into the following
commutative diagram with exact rows,

0 ker
(

ρ
[r]
D

)

θ

�
[r]
X/T(log D)|∗∗

D

ρ
[r]
D

ϕ �

�r−1
D/T

�

0

0 �r
D/T γ∗(�r

Z/T(log
)|
)G �r−1
D/T 0.

This shows that θ is an isomorphism, and completes the proof of Theorem 11.7.

12. The residue map for 1-forms

Let X be a smooth variety and D ⊂ X a smooth, irreducible divisor. The first
residue sequence (11.1) of the pair (X,D) then reads

0 → �1
D → �1

X(log D)|D ρ1−→ OD → 0,

and we obtain a connecting morphism of the long exact cohomology sequence,

δ : H0
(

D,OD

) → H1
(

D,�1
D

)

.

In this setting, the standard description of the first Chern class in terms of the connecting
morphism, [Har77, III. Exercise 7.4], asserts that

(12.1) c1

(

OX(D)|D
) = δ(1D) ∈ H1

(

D,�1
D

)

,

where 1D is the constant function on D with value one.
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12.A. Main result of this section. — Theorem 12.2 generalises the Identity (12.1) to
the case where (X,D) is a reduced dlt pair with irreducible boundary divisor.

Theorem 12.2. — Let (X,D) be a dlt pair, D = �D
 irreducible. Then, there exists a closed

subset Z ⊂ X with codimX Z ≥ 3 and a number m ∈ N such that mD is Cartier on X◦ := X \ Z,

such that D◦ := D ∩ X◦ is smooth, and such that the restricted residue sequence

(12.2.1) 0 → �1
D → �

[1]
X (log D)|∗∗

D
ρD−→ OD → 0

defined in Theorem 11.7 is exact on D◦. Moreover, for the connecting homomorphism δ in the associated

long exact cohomology sequence

δ : H0
(

D◦,OD◦
) → H1

(

D◦,�1
D◦

)

we have

(12.2.2) δ(m · 1D◦) = c1(OX◦(mD◦)|D◦).

12.B. Proof of Theorem 12.2. — Using Propositions 9.1, 9.12 and Theorem 11.7 to
remove from X a suitable subset of codimension 3, we may assume that the following
holds.

Additional Assumption 12.3. — The divisor D is smooth. The variety X is Q-
factorial, so that there exists a number m such that mD is Cartier. The restricted residue
sequence,

(12.3.1) 0 → �1
D

i1−→ �
[1]
X (log D)|∗∗

D
ρD−→ OD → 0,

is exact.

Let X◦◦ = (X,D)reg be the snc locus of (X,D), and set D◦◦ = D ∩ X◦◦.

12.B.1. C̆ech-cocycles describing the line bundle OX(mD) and its Chern class. — Since
mD is Cartier, there exists a covering of D by open affine subsets (Uα)α∈I and there are
functions fα ∈ OX(Uα) cutting out the divisors mD|Uα

, for all α ∈ A.
Setting gαβ := fα/fβ ∈ H0(Uα ∩Uβ,O∗

Uα∩Uβ
), the line bundle OX(mD)|D ∈ Pic(D) =

H1(D,O∗
D) is represented by the C̆ech-cocycle

(gαβ |D)α,β ∈ C̆
1({Uα ∩ D}α∈I,O

∗
D

)

.

In particular, the first Chern class c1(OX(mD)|D) ∈ H1(D,�1
D) is represented by the

C̆ech-cocycle

(12.3.2) (d log(gαβ |D))α,β ∈ C̆
1({Uα ∩ D}α∈I,�

1
D

)

.
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12.B.2. Computation of the connecting morphism, completion of the proof. — We finish the
proof of Theorem 12.2 with an explicit computation of the connecting morphism. The
following claim will prove to be crucial.

Claim 12.4. — For any index α, consider the Kähler differential d log fα ∈
H0(Uα,�

1
X(log D)), with associated section

σα ∈ H0
(

Uα ∩ D,�
[1]
X (log D)|∗∗

D

)

.

Then ρD(σα) = m · 1D∩Uα
.

Proof. — Given an index α, Claim 12.4 needs only to be checked on the open set
Uα ∩ D◦◦ ⊆ Uα ∩ D. There, it follows from Equation (11.4.1) of Fact 11.4. �

Claim 12.5. — For any indices α, β , consider the Kähler differential

ταβ := d log(gαβ |D) ∈ H0
(

Uα ∩ Uβ ∩ D,�1
D

)

.

Then i1(ταβ) = σα − σβ .

Proof. — Given any two indices α, β , Claim 12.5 needs only to be checked on
Uα ∩ Uβ ∩ D◦◦. There, we have

i1
(

d log(gαβ |D◦◦)
) = 1

gαβ |D◦◦
i1
(

d(gαβ |D◦◦)
) = 1

gαβ

d(gαβ)

∣

∣

∣

∣

D◦◦

= (

d log gαβ

)|D◦◦ = (

d log fα − d log fβ
)|D◦◦

= (

σα − σβ

)|D◦◦,

the second equality coming from Equation (11.4.2) of Fact 11.4, proving Claim 12.5. �

As an immediate consequence of Claim 12.5, we obtain that δ(m · 1D) ∈
H1(D,�1

D) is represented by the C̆ech-cocycle

ταβ ∈ C̆
1({Uα ∩ D}α∈I,�

1
D

)

.

Since ταβ = d log(gαβ |D), a comparison with the C̆ech-cocycle that describes
c1(OX(mD)|D), as given in (12.3.2), then finishes the proof of Theorem 12.2.

PART IV. COHOMOLOGICAL METHODS

13. Vanishing results for pairs of Du Bois spaces

In this section we prove a vanishing theorem for reduced pairs (X,D) where both
X and D are Du Bois. A vanishing theorem for ideal sheaves on log canonical pairs (that
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are not necessarily reduced) will follow. Du Bois singularities are defined via Deligne’s
Hodge theory. We will briefly recall Du Bois’s construction of the generalised de Rham
complex, which is called the Deligne-Du Bois complex. Recall, that if X is a smooth complex
algebraic variety of dimension n, then the sheaves of differential p-forms with the usual
exterior differentiation give a resolution of the constant sheaf CX. I.e., one has a complex
of sheaves,

OX

d

�1
X

d

�2
X

d

�3
X

d · · · d
�n

X � ωX,

which is quasi-isomorphic to the constant sheaf CX via the natural map CX → OX given
by considering constants as holomorphic functions on X. Recall that this complex is not

a complex of quasi-coherent sheaves. The sheaves in the complex are quasi-coherent,
but the maps between them are not OX-module morphisms. Notice however that this
is actually not a shortcoming; as CX is not a quasi-coherent sheaf, one cannot expect a
resolution of it in the category of quasi-coherent sheaves.

The Deligne-Du Bois complex is a generalisation of the de Rham complex to sin-
gular varieties. It is a filtered complex of sheaves on X that is quasi-isomorphic to the
constant sheaf, CX. The terms of this complex are harder to describe but its properties,
especially cohomological properties are very similar to the de Rham complex of smooth
varieties. In fact, for a smooth variety the Deligne-Du Bois complex is quasi-isomorphic
to the de Rham complex, so it is indeed a direct generalisation.

The construction of this complex, �•
X, is based on simplicial resolutions. The

reader interested in the details is referred to the original article [DB81]. Note also that a
simplified construction was later obtained in [Car85] and [GNPP88] via the general the-
ory of polyhedral and cubic resolutions. An easily accessible introduction can be found in
[Ste85]. Other useful references are the recent book [PS08] and the survey [KS09]. The
word “hyperresolution” will refer to either a simplicial, polyhedral, or cubic resolution.
Formally, the construction of �•

X is the same regardless the type of resolution used and no
specific aspects of either types will be used. We will actually not use these resolutions here.
They are needed for the construction, but if one is willing to believe the basic properties
then one should be able follow the material presented here.

The bare minimum we need is that there exists a filtered complex �•
X unique up to

quasi-isomorphism satisfying a number of properties. As a filtered complex, it admits an
associated graded complex, which we denote by Gr

p

filt�
•
X. In order to make the formulas

work the way they do in the smooth case we need to make a shift. We will actually prefer
to use the following notation:

�
p

X := Gr
p

filt�
•
X[p].

Here “[p]” means that the mth object of the complex �
p

X is defined to be the (m + p)th

object of the complex Gr
p

filt�
•
X. In other words, these complexes are almost the same, only
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one is a shifted version of the other. They naturally live in the filtered derived category
of OX-modules with differentials of order ≤ 1. For an extensive list of their properties see
[DB81] or [KS09, 4.2]. Here we will only recall a few of them.

One of the most important characteristics of the Deligne-Du Bois complex is the
existence of a natural morphism in the derived category OX → �0

X, cf. [DB81, 4.1]. We
will be interested in situations where this map is a quasi-isomorphism. If this is the case
and if in addition X is proper over C, the degeneration of the Frölicher spectral sequence
at E1, cf. [DB81, 4.5] or [KS09, 4.2.4], implies that the natural map

Hi(Xan,C) → Hi(X,OX) = Hi(X,�0
X)

is surjective. Here Hi stands for hypercohomology of complexes, i.e., Hi = Ri�.

Definition 13.1. — A scheme X is said to have Du Bois singularities (or DB singularities

for short) if the natural map OX → �0
X is a quasi-isomorphism.

Example 13.2. — It is easy to see that smooth points are Du Bois. Deligne proved
that normal crossing singularities are Du Bois as well cf. [DBJ74, Lemma 2(b)].

We are now ready to state and prove our vanishing results for pairs of Du Bois
spaces. While we will only use Corollary 13.4 in this paper, we believe that these vanishing
results are interesting on their own. For instance, based on these observations one may
argue that a pair of Du Bois spaces is not too far from a space with rational singularities.
Indeed, if X has rational singularities and D = ∅, then the result of Theorem 13.3 follows
directly from the definition of rational singularities. Of course, Du Bois singularities are
not necessarily rational and hence one cannot expect vanishing theorems for the higher
direct images of the structure sheaf, but our result says that there are vanishing results for
ideal sheaves of Du Bois subspaces.

Theorem 13.3 (Vanishing for ideal sheaves on pairs of Du Bois spaces). — Let (X,D) be a

reduced pair such that X and D are both Du Bois, and let π : ˜X → X be a log resolution of (X,D)

with π -exceptional set E. If we set ˜D := supp(E + π−1(D)), then

Riπ∗O˜X(−˜D) = 0 for all i > max
(

dimπ(E) \ D,0
)

.

In particular, if X is of dimension n ≥ 2, then Rn−1π∗O˜X(−˜D) = 0.

Corollary 13.4 (Vanishing for ideal sheaves on log canonical pairs). — Let (X,D) be a log

canonical pair of dimension n ≥ 2. Let π : ˜X → X be a log resolution of (X,D) with π -exceptional

set E. If we set ˜D := supp(E + π−1�D
), then

Rn−1π∗O˜X(−˜D) = 0.
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Proof. — Recall from [KK10b, Theorem 1.4] that X is Du Bois, and that any finite
union of log canonical centres is likewise Du Bois. Since the components of �D
 are
log canonical centres, Theorem 13.3 applies to the reduced pair (X, �D
) to prove the
claim. For this, recall from Lemma 2.15 that the morphism π is a log resolution of the
pair (X, �D
) and therefore satisfies all the conditions listed in Theorem 13.3. �

13.A. Preparation for the proof of Theorem 13.3. — Before we give the proof of Theo-
rem 13.3 in Section 13.B, we need the following auxiliary result. This generalises parts of
[GNPP88, III.1.17].

Lemma 13.5. — Let X be a positive dimensional variety. Then the ith cohomology sheaf of �0
X

vanishes for all i ≥ dim X, i.e., hi(�0
X) = 0 for all i ≥ dim X.

Proof. — For i > dim X, the statement follows from [GNPP88, III.1.17], so we only
need to prove the case when i = n := dim X. Let S := Sing X and π : ˜X → X a strong
log resolution with exceptional divisor E. Recall from [DB81, 3.2] that there are natural
restriction maps, �0

X → �0
S and �0

˜X → �0
E that reduce to the usual restriction of regular

functions if the spaces are Du Bois. These maps are connected via an exact triangle by
[DB81, Proposition 4.11]:

(13.5.1) �0
X �0

S ⊕ Rπ∗�0
˜X

α

Rπ∗�0
E

+1
.

Since ˜X is smooth and E is an snc divisor, they are both Du Bois, cf. Example 13.2.
Hence, there exist quasi-isomorphisms �0

˜X � O
˜X and �0

E � OE. It follows that α(0,_) is
the map Rπ∗O˜X → Rπ∗OE induced by the short exact sequence

0 → O
˜X(−E) → O

˜X → OE → 0.

Next, consider the long exact sequence of cohomology sheaves induced by the exact
triangle (13.5.1),

· · · → hn−1(�0
S) ⊕ Rn−1π∗O˜X

αn−1−→ Rn−1π∗OE → hn(�0
X) → hn(�0

S) ⊕ Rnπ∗O˜X.

Since dim S < n, [GNPP88, III.1.17] implies that hn(�0
S) = 0. Furthermore, as π is bi-

rational, the dimension of any fibre of π is at most n − 1 and hence Rnπ∗O˜X = 0. This
implies that hn(�0

X) � cokerαn−1. The bound on the dimension of the fibres of π also im-
plies that Rnπ∗O˜X(−E) = 0, so taking into account the observation above about the map
(α,0), we obtain that αn−1(0,_) is surjective, and then naturally so is αn−1. Therefore,
hn(�0

X) � cokerαn−1 = 0. �
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13.B. Proof of Theorem 13.3. — Since the divisor D is assumed to be reduced, we
simplify notation in this proof and use the symbol D to denote both the divisor and
its support. To start the proof, set � := π(E) \ D and s := max(dim�,0). Let � :=
D ∪ π(E) and consider the exact triangle from [DB81, 4.11],

�0
X �0

� ⊕ Rπ∗�0
˜X Rπ∗�0

˜D

+1
.

Since ˜X is smooth and ˜D is a snc divisor, we have quasi-isomorphisms Rπ∗�0
˜X � Rπ∗O˜X

and Rπ∗�0
˜D � Rπ∗O˜D, so this exact triangle induces the following long exact sequence

of sheaves:

· · · → hi(�0
X) → hi(�0

�) ⊕ Riπ∗O˜X → Riπ∗O˜D → hi+1(�0
X) → ·· ·

By assumption hi(�0
X) = hi(�0

D) = 0 for i > 0. Furthermore, hi(�0
�) = 0 and

hi−1(�0
�∩D) = 0 for i ≥ s by Lemma 13.5. Hence, hi(�0

�) = 0 for i ≥ s by [DB81, 3.8]. As
in the proof of Lemma 13.5 we obtain that the natural restriction map

Riπ∗O˜X → Riπ∗O˜D

is surjective for i ≥ s and is an isomorphism for i > s. This in turn implies that
Riπ∗O˜X(−˜D) = 0 for i > s as desired.

14. Steenbrink-type vanishing results for log canonical pairs

The second vanishing theorem we shall need to prove the main result is concerned
with direct images of logarithmic sheaves.

Theorem 14.1 (Steenbrink-type vanishing for log canonical pairs). — Let (X,D) be a log

canonical pair of dimension n ≥ 2. If π : ˜X → X is a log resolution of (X,D) with π -exceptional set

E and ˜D := supp(E + π−1�D
), then

Rn−1π∗
(

�
p

˜X(log ˜D) ⊗ OX(−˜D)
) = 0 for all 0 ≤ p ≤ n.

Remark 14.1.1. — Recall from Lemma 2.15 that π is also a log resolution of the
pair (X, �D
). In particular, it follows from the definition that ˜D is of pure codimension
one and has simple normal crossing support.

Remark 14.1.2. — For p > 1 the claim of Theorem 14.1 is proven in [Ste85, Theo-
rem 2(b)] without any assumption on the nature of the singularities of X. The case p = 0
is covered by Theorem 13.3. Hence, the crucial statement is the vanishing for p = 1 in
the case of log canonical singularities.
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Corollary 14.2 (Steenbrink-type vanishing for cohomology with supports). — Let (X,D) be

a log canonical pair of dimension n ≥ 2. Let π : ˜X → X be a log resolution of (X,D) with π -

exceptional set E and set ˜D := supp(E + π−1 supp�D
). If x ∈ X is any point with set-theoretic

fibre Fx = π−1(x)red, then

H1
Fx

(

˜X,�
p

˜X(log ˜D)
) = 0 for all 0 ≤ p ≤ n.

Remark 14.2.1. — Using the standard exact sequence for cohomology with sup-
port, [Har77, Exercise III.2.3(e)], the conclusion of Corollary 14.2 can equivalently be
reformulated in terms of restriction maps as follows.

(14.2.1) The map H0(˜X,�
p

˜X(log ˜D)) → H0(˜X \ Fx,�
p

˜X(log ˜D)) is surjective, and
(14.2.2) the map H1(˜X,�

p

˜X(log ˜D)) → H1(˜X \ Fx,�
p

˜X(log ˜D)) is injective.

Proof of Corollary 14.2. — Duality for cohomology groups with support, cf. [GKK10,
Appendix], yields that

H1
Fx

(

˜X,�
p

˜X(log ˜D)
) dual∼ (

Rn−1π∗�
n−p

˜X (log ˜D)(−˜D)x

)

̂

,

wherêdenotes completion with respect to the maximal ideal mx of the point x ∈ X. The
latter group vanishes by Theorem 14.1. �

14.A. Preparation for the proof of Theorem 14.1: Topological vanishing. — To prepare for
the proof of Theorem 14.1, we first discuss the local topology of the pair (˜X,˜D) near
a fibre of π and derive a topological vanishing result, which is probably well-known to
experts. Subsequently, the vanishing for coherent cohomology groups claimed in Theo-
rem 14.1 follows from an argument going back to Wahl [Wah85, §1.5].

Remark 14.3. — Note that we will work in the complex topology of X and ˜X and
we will switch back and forth between cohomology of coherent algebraic sheaves and
the cohomology of their analytification without further indication. This is justified by the
relative version of Serre’s GAGA results, cf. [KM98, Theorem 2.48].

Lemma 14.4 (Topological vanishing). — In the setup of Theorem 14.1, if j : ˜X \ ˜D ↪→ ˜X is

the inclusion map, and if j!C˜X\˜D is the sheaf that is defined by the short exact sequence

(14.4.1) 0 j!C˜X\˜D C
˜X

restriction

C
˜D 0,

then Rkπ∗(j!C˜X\˜D) = 0 for all numbers k.

Proof. — Let Fx denote the reduced fiber of π over a point x ∈ Supp[D] ∪π(E). By
[Loj64, Theorems 2 and 3] we can find arbitrarily fine triangulations of ˜X and ˜D such
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that ˜D is a subcomplex of the triangulation of ˜X and such that Fx is a subcomplex of the
triangulation of ˜D. It follows that there exist arbitrarily small neighbourhoods ˜U = ˜U(Fx)

of Fx in ˜X such that the inclusions Fx ↪→ ˜D ∩ ˜U ↪→ ˜U are homotopy-equivalences. Since
π is proper, preimages of small open neighbourhoods of x in X form a neighbourhood
basis of the fibre Fx. As a consequence, there exist arbitrarily small neighbourhoods U of
x in X such that the natural morphisms

Hk
(

π−1(U),C
˜X|π−1(U)

) → Hk
(

˜D ∩ π−1(U),C
˜D|

˜D∩π−1(U)

)

are isomorphisms for all k. The long exact sequence derived from (14.4.1) then implies
the claimed vanishing. �

14.B. Proof of Theorem 14.1. — As observed in Remark 14.1.2, we may assume that
p = 1. Consequently, have to prove that Rn−1π∗(�1

˜X(log ˜D) ⊗ O
˜X(−˜D)) = 0. A straight-

forward local computation shows that the following sequence of sheaves is exact,

(14.4.2) 0 → j!C˜X\˜D → OX(−˜D)
d−→ �1

˜X(log ˜D) ⊗ O
˜X(−˜D)

d−→ · · ·
· · · d−→ �n−1

˜X (log ˜D) ⊗ O
˜X(−˜D)

d−→ �n
˜X

d−→ 0,

where d denotes the usual exterior differential. For brevity of notation, set Gp :=
�

p

˜X(log ˜D) ⊗ O
˜X(−˜D). In particular, set G0 := OX(−˜D).

Claim 14.5. — We have Rn−1π∗(dG0) = 0 and Rnπ∗(dG0) = 0.

Proof. — The following short exact sequence forms the first part of the long exact
sequence (14.4.2):

0 → j!C˜X\˜D → G0
d−→ dG0 → 0.

Hence it follows from topological vanishing, Lemma 14.4, that Rn−1π∗(dG0) � Rn−1π∗G0

and Rnπ∗(dG0) � Rnπ∗G0. While Rnπ∗G0 vanishes for dimensional reasons, the vanishing
of Rn−1π∗G0 follows from Theorem 13.3. This finishes the proof of Claim 14.5. �

Claim 14.6. — The differential d induces an isomorphism Rn−1π∗G1 � Rn−1π∗(dG1).

Proof. — The second short exact sequence derived from (14.4.2),

0 → dG0 → G1
d−→ dG1 → 0,

induces the following long exact sequence of higher push-forward sheaves,

· · · → Rn−1π∗(dG0)
︸ ︷︷ ︸

=0 by Claim 14.5

→ Rn−1π∗G1
d−→ Rn−1π∗(dG1) → Rnπ∗(dG0)

︸ ︷︷ ︸

=0 by Claim 14.5

→ ·· · .

Claim 14.6 then follows. �
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As a consequence of Claim 14.6, in order to prove Theorem 14.1, it suffices to
show that Rn−1π∗(dG1) = 0. This certainly follows from the following claim.

Claim 14.7. — Rn−pπ∗(dGp) = 0 for all 1 ≤ p ≤ n.

We prove Claim 14.7 by descending induction on p. For p = n, the claim is true
since R0π∗(dGn) is isomorphic to the push-forward of the zero sheaf, and hence equals
the zero sheaf. In general, assume that Claim 14.7 has been shown for all numbers that
are larger than p, and consider the short exact sequence

0 → dGp → Gp+1 → dGp+1 → 0

derived from (14.4.2). This yields a long exact sequence

(14.7.1) · · · → Rn−(p+1)π∗(dGp+1) → Rn−pπ∗(dGp) → Rn−pπ∗Gp+1 → ·· · .

Observe that the first group in (14.7.1) vanishes by induction, and that the last group
vanishes by Steenbrink vanishing [Ste85, Theorem 2(b)]. This proves the claim and con-
cludes the proof of Theorem 14.1.

Remark 14.7.2. — Greuel proves a similar result for isolated complete intersection
singularities in [Gre80].

15. Generic base change for cohomology with supports

In this section we provide another technical tool for the proof of the main results:
we give a local-to-global statement for cohomology groups with support in a family of
normal varieties.

Theorem 15.1 (Generic base change for cohomology with supports). — Let φ : X → S be a

surjective morphism with connected fibres between normal, irreducible varieties, and let E ⊂ X be an

algebraic subset such that the restriction φ|E is proper. Further, let F be a locally free sheaf on X such

that

(15.1.1) H1
Es

(

Xs,F |Xs

) = 0 for all s ∈ S,

where Xs := φ−1(s) and Es := (φ|E)−1(s). Then there exists a non-empty Zariski-open subset

S◦ ⊆ S, with preimage X◦ := φ−1(S◦), such that

(15.1.2) H1
E∩X◦

(

X◦,F |X◦
) = 0.

We prove Theorem 15.1 in the remainder of the present Section 15.
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15.A. Proof of Theorem 15.1: simplifications. — To start, choose a normal, relative
compactification X of X, i.e., a normal variety X that contains X and a morphism � :
X → S, such that � is proper and �|X = φ. By [Gro60, I. Theorem 9.4.7] there exists a
coherent extension F of F , i.e., a coherent sheaf F of OX-modules such that F |X = F .
Then excision for cohomology with supports [Har77, III. Exercise 2.3(f)] asserts that the
cohomology groups of (15.1.1) and (15.1.2) can be computed on X. More precisely, if
S◦ ⊆ S is a subset with preimages X◦ := φ−1(S◦) and X◦ := �−1(S◦), then it follows from
the relative properness of E that

H1
E∩X◦

(

X◦,F
) � H1

E∩X
◦
(

X◦,F
)

.

As a consequence, we see that it suffices to show Theorem 15.1 under the following
additional assumptions.

Additional Assumption 15.2. — The morphism φ is proper. In particular, the higher
direct image sheaves Riφ∗F are coherent sheaves of OS-modules for all i.

Let Fs := F |Xs
. Using semicontinuity we can replace S by a suitable subset and

assume without loss of generality to be in the following situation.

Additional Assumption 15.3. — The variety S is affine, the morphism φ is flat and
the a priori upper-semicontinuous functions s �→ hi(Xs,Fs) are constant for all i. In par-
ticular, the higher direct image sheaves Riφ∗F are all locally free.

The following excerpt from the standard cohomology sequence for cohomology
with support [Har77, III. Exercise 2.3(e)]

H0
(

X,F
) α−→ H0

(

X \ E,F
) → H1

E

(

X,F
) → H1

(

X,F
) β−→ H1

(

X \ E,F
)

,

shows that to prove the claim of Theorem 15.1, it is equivalent to show that α is surjective
and that β is injective. This is what we do next.

15.B. Proof of Theorem 15.1: surjectivity of α. — To show surjectivity of α, let
σ ∈ H0(X \ E,F ) be any element. We need to show that there exists an element
σ ∈ H0(X,F ) such that σ |X\E = σ .

Decompose E = Ediv ∪ Esmall, where Ediv has pure codimension one in X, and
codimX Esmall ≥ 2. Since F is locally free in a neighbourhood of E, it follows immedi-
ately from the normality of X that there exists a section σ ′ ∈ H0(X \ Ediv,F ) such that
σ ′|X\E = σ . In other words, we may assume that the following holds.

Additional Assumption 15.4. — The algebraic set E has pure codimension one in X.



DANIEL GREB, STEFAN KEBEKUS, SÁNDOR J KOVÁCS, AND THOMAS PETERNELL

Since σ is algebraic, it is clear that there exists an extension of σ as a rational
section. In other words, there exists a minimal number k ∈ N and a section

τ ∈ H0
(

X,F ⊗ OX(kE)
)

with τ |X\E = σ . To prove surjectivity of α, it is then sufficient to show that k = 0. Now,
if s ∈ S is any point, it follows from the assumption made in (15.1.1) of Theorem 15.1
that there exists a section σ s ∈ H0(Xs,Fs) such that σ s|Xs\E = σ |Xs\E = τ |Xs\E. Since F
is locally free near E, this immediately implies that k = 0 and that σ is in the image of α,
as claimed.

15.C. Proof of Theorem 15.1: injectivity of β . — Concerning the injectivity of β , we
consider the following commutative diagram of restrictions

(15.4.1) H1
(

X,F
)

β

γ

restr. to φ-fibres

∏

s∈S H1
(

Xs,Fs

)

δ
restr. to open

part of fibres

H1
(

X \ E,F
) ∏

s∈S H1
(

Xs \ Es,Fs

)

.

To prove injectivity of β , it is then sufficient to prove injectivity of γ and δ.

15.C.1. Injectivity of γ . — Since S is affine by Assumption 15.3, we have that
Hp(S,Rqφ∗F ) = 0 for all p > 0 and all q. The Leray spectral sequence, [God73, II. The-
orem 4.17.1], thus gives a canonical identification

H1(X,F )
�−→ H0

(

S,R1φ∗F
)

.

By the second part of Assumption 15.3 we may apply Grauert’s Theorem [Har77,
III. Corollary 12.9] to obtain that the natural map

R1φ∗F ⊗ C(s)
�−→ H1(Xs,Fs)

is an isomorphism for any point s ∈ S. Hence the map γ may be identified with the
evaluation map,

H0
(

S,R1φ∗F
) →

∏

s∈S

R1φ∗F ⊗ κ(s),

that maps a section of the locally free sheaf R1φ∗F to its values at the points of S. This
map is clearly injective.

15.C.2. Injectivity of δ. — The injectivity of δ follows immediately from the as-
sumption made in (15.1.1) of Theorem 15.1 and from the cohomology sequence for
cohomology with support, [Har77, III. Exercise 2.3(e)], already discussed above. This
shows injectivity of β and completes the proof of Theorem 15.1.
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PART V. EXTENSION WITH LOGARITHMIC POLES

16. Main result of this part

In the present Part V of this paper, we make an important step towards a full
proof of the main Extension Theorem 1.5 by proving the following, weaker version of
Theorem 1.5.

Theorem 16.1 (Extension theorem for differential forms on log canonical pairs). — Let (X,D)

be a log canonical pair of dimension dim X ≥ 2. Let π : ˜X → X be a log resolution of (X,D) with

exceptional set E ⊂ ˜X, and consider the reduced divisor

˜D′ := supp(E + π−1�D
).
Then the sheaf π∗�

p

˜X(log ˜D′) is reflexive for any number 0 ≤ p ≤ n.

Theorem 1.5 and Theorem 16.1 differ only in the choice of the divisors ˜D and ˜D′,
respectively. Theorem 16.1 is weaker than Theorem 1.5 because ˜D′ is larger than ˜D, so
that Theorem 16.1 allows the extended differential forms to have poles along a larger
number of exceptional divisors then Theorem 1.5 would allow.

16.A. Reformulation of Theorem 16.1. — In Part VI of this paper, Theorem 16.1
will be used to give a proof of the main Extension Theorem 1.5, and the formulation of
Theorem 16.1 is designed to make this application as simple as possible. The formulation
is, however, not optimal for proof. Rather than proving Theorem 16.1 directly, we have
therefore found it easier to prove the following equivalent reformulation which is more
suitable for inductive arguments.

Theorem 16.2 (Reformulation of Theorem 16.1). — Let (X,D) be a log canonical pair and

let π : ˜X → X be a log resolution with exceptional set E = Exc(π). Consider the reduced divisor

˜D′ := supp(E + π−1 supp�D
).
If p is any index and E0 ⊆ E any irreducible component, then the injective restriction map

(16.2.1) r : H0
(

˜X \ supp(E − E0),�
p

˜X(log ˜D′)
) → H0

(

˜X \ E,�
p

˜X(log ˜D′)
)

is in fact an isomorphism.

Explanation 16.3. — We aim to show that Theorem 16.2 implies Theorem 16.1.
To prove Theorem 16.1 we need to show that for any open set U ⊆ X with preimage
˜U ⊆ ˜X, the natural restriction map

rU : H0
(

˜U,�
p

˜X(log ˜D′)
) → H0

(

˜U \ E,�
p

˜X(log ˜D′)
)



DANIEL GREB, STEFAN KEBEKUS, SÁNDOR J KOVÁCS, AND THOMAS PETERNELL

is in fact surjective. Thus, let U ⊆ X be any open set, and let σ ∈ H0(˜U \ E,�
p

˜X(log ˜D′))
be any form.

Assuming that Theorem 16.2 holds, it can be applied to the lc pair (U,D) and to
its log resolution π |

˜U : ˜U → U. A repeated application of (16.2.1) shows that σ extends
over every single component of E ∩ ˜U, and therefore over all of E ∩ ˜U. Surjectivity of the
map rU then follows, and Theorem 16.1 is shown.

17. Proof of Theorem 16.2

The proof of Theorem 16.2 will be presented in this section. We will maintain the
assumptions and the notation of (16.2). Since the proof is long, we chose to present it as
a sequence of clearly marked and relatively independent steps.

17.A. Setup of notation and of the main induction loop. — An elementary computation,
explained in all detail in [GKK10, Lemma 2.13], shows that to prove Theorem 16.2 for
all log resolutions of a given pair, it suffices to prove the result for one log resolution only.
We may therefore assume the following without loss of generality.

Additional Assumption 17.1. — The log resolution morphism π is a strong log reso-
lution.

The proof of Theorem 16.2 involves two nested induction loops. The main, outer
loop considers pairs of numbers (dim X, codimπ(E0)), which we order lexicographically
as indicated in Table 1.

TABLE 1. — Lexicographical ordering of dimensions and codimensions

No. 1 2 3 4 5 6 7 8 9 10 · · ·
dim X 2 3 3 4 4 4 5 5 5 5 · · ·
codimπ(E0) 2 2 3 2 3 4 2 3 4 5 · · ·

17.B. Main induction loop: start of induction. — The first column of Table 1 describes
the case where dim X = 2 and codimX π(E0) = 2. After some reductions, it will turn out
that this case has essentially been treated previously, in [GKK10]. Given a surface pair
(X,D) as in Theorem 16.2, consider the open subsets

X0 := X \ supp(D) and X1 := (X,D)reg ∪ supp(D).

Observe that X1 is open and that the complement of (X,D)reg is finite. For i ∈ {0,1},
we also consider the preimages ˜Xi := π−1(Xi) and induced log resolution π i : ˜Xi → Xi .
Since the statement of Theorem 16.2 is local on X, and since X = X0 ∪ X1 it suffices to
prove Theorem 16.2 for the two pairs (X0,∅) and (X1,D) independently.
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17.B.1. Resolutions of the pair (X0,∅). — Since X is a surface, the index p is either
zero, one or two. The case where p = 0 is trivial. Since (X0,∅) is reduced and log canon-
ical, the two remaining cases are covered by earlier results. For p = 1, Theorem 16.2
is shown in [GKK10, Proposition 7.1]. The case where p = 2 is covered by [GKK10,
Proposition 5.1].

17.B.2. Resolutions of the pair (X1,D). — Again, we aim to apply the results of
[GKK10], this time employing ideas from the discussion of boundary-lc pairs, [GKK10,
Section 3.2], for the reduction to known cases.

In complete analogy to the argument of the previous Section 17.B.1, Theo-
rem 16.2 follows if we can apply [GKK10, Propositions 5.1 and 7.1] to the reduced
pair (X1, �D
). For that, it suffices to show that the pair (X1, �D
) is log canonical. This
follows trivially from the monotonicity of discrepancies, [KM98, Lemma 2.27], once we
show that the variety X1 is Q-factorial.

To this end, observe that for any sufficiently small rational number ε > 0, the non-
reduced pair (X1, (1 − ε)D) is numerically dlt; see [KM98, Notation 4.1] for the defini-
tion and use [KM98, Lemma 3.41] for an explicit discrepancy computation. By [KM98,
Proposition 4.11], the space X1 is then Q-factorial, as required.

17.C. Main induction loop: proof of the inductive step. — We are now in a setting where
dim X ≥ 3. We assume that a number p ≤ dim X and an irreducible component E0 ⊆ E
are given.

Notation 17.2. — If E is reducible, we denote the irreducible components of E by
E0, . . . ,EN, numbered in a way such that dimπ(E1) ≤ dimπ(E2) ≤ · · · ≤ dimπ(EN). In
particular, if E is reducible, then there exists a number k ≥ 0 so that

(17.2.1) dimπ(Ei) > dimπ(E0) ⇔ N ≥ i > k.

If E is irreducible, we use the following obvious notational convention.

Convention 17.3. — If E is irreducible, set k := N := 0, and write

E1 ∪ · · · ∪ Ek := E1 ∪ · · · ∪ EN := ∅, and

E0 ∪ · · · ∪ Ek := E0 ∪ · · · ∪ EN := E0.

Convention 17.3 admittedly abuses notation. However, it has the advantage that
we can give uniform formulas that work both in the irreducible and the reducible case.
For instance, the restriction morphism (16.2.1) of Theorem 16.2 can now be written as

r : H0
(

˜X \ (E1 ∪ · · · ∪ EN),�
p

˜X(log ˜D′)
) → H0

(

˜X \ (E0 ∪ · · · ∪ EN),�
p

˜X(log ˜D′)
)

.
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17.C.1. Main induction loop: induction hypothesis. — The induction hypothesis as-
serts that Theorem 16.2 holds for all log resolutions of log canonical pairs (X,D) with
dim X < dim X, and if dim X = dim X, then (16.2.1) holds for all divisors Ei ⊆ E ⊂ ˜X
with dimπ(Ei) > dimπ(E0).

Using Convention 17.3 and Formula (17.2.1) of Notation 17.2, the second part
of the induction hypothesis implies that the horizontal arrows in following commutative
diagram of restriction morphisms are both isomorphic,

H0
(

˜X \ (E1 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
)

s

�
H0

(

˜X \ (E1 ∪ · · · ∪ EN),�
p

˜X(log ˜D′)
)

r, want surjectivity

H0
(

˜X \ (E0 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
) �

H0
(

˜X \ (E0 ∪ · · · ∪ EN),�
p

˜X(log ˜D′)
)

.

In particular, we obtain the following reformulation of the problem.

Claim 17.4. — To prove Theorem 16.2 and to show surjectivity of (16.2.1), it
suffices to show that the natural restriction map s is surjective.

17.C.2. Simplifications. — To show surjectivity of s and to prove Theorem 16.2, it
suffices to consider a Zariski-open subset of X that intersects π(E0) non-trivially. This
will allow us to simplify the setup substantially, here and in Section 17.C.4 below.

Claim 17.5. — Let X◦ ⊆ X be any open set that intersects π(E0) non-trivially, and
let ˜X◦ := π−1(X◦) be its preimage. If the restriction map

s◦ : H0
(

˜X◦ \ (E1 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
) → H0

(

˜X◦ \ (E0 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
)

is surjective, then the map s is surjective and Theorem 16.1 holds.

Proof. — Given an open set X◦ and assuming that the associated restriction map s◦

is surjective, we need to show surjectivity of s. As in Explanation 16.3, let

σ ∈ H0
(

˜X \ (E0 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
)

be any form defined away from E0 ∪ · · · ∪ Ek , and let c ∈ N be the minimal number such
that σ extends to a section

σ̃ ∈ H0
(

˜X \ (E1 ∪ · · · ∪ Ek),O˜X(cE0) ⊗ �
p

˜X(log ˜D′)
)

.

We need to show that c = 0. However, it follows from the surjectivity of (16.2.1) on ˜X◦

that

σ̃ |
˜X◦\(E1∪···∪Ek)

∈ H0
(

˜X◦ \ (E1 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
)

.

Since (˜X◦ \ (E1 ∪ · · · ∪ Ek)) ∩ E0 �= ∅, this shows the claim. �
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17.6. — We will use Claim 17.5 to simplify the situation by replacing X with appropriate

open subsets successively.

Additional Assumption 17.7. — The variety X is affine.

Claim 17.5 also allows to remove from X all images π(Ei) of exceptional divisors
Ei ⊆ E with π(E0) �⊆ π(Ei). This will again simplify notation substantially.

Additional Assumption 17.8. — If Ei ⊆ E is an irreducible component, then π(E0) ⊆
π(Ei).

Observation 17.9. — We have π(E0) = · · · = π(Ek), E0 ∪ · · · ∪ Ek ⊆ π−1(π(E0)),
and

(17.9.1) codim
˜X π−1

(

π(E0)
) \ (E0 ∪ · · · ∪ Ek) ≥ 2.

Assumption 17.8 has further consequences. Because of the inequality (17.9.1), and
because �

p

˜X(log ˜D′) is a locally free sheaf on ˜X, any p-form defined on ˜X\π−1(π(E0)) will
immediately extend to a p-form on ˜X \ (E0 ∪ · · · ∪ Ek). It follows that the bottom arrow
in the following commutative diagram of restriction maps is in fact an isomorphism,

H0
(

˜X,�
p

˜X(log ˜D′)
)

t

injective

H0
(

˜X \ (E1 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
)

s, want surjectivity

H0
(

˜X \ π−1
(

π(E0)
)

,�
p

˜X(log ˜D′)
)

H0
(

˜X \ (E0 ∪ · · · ∪ Ek),�
p

˜X(log ˜D′)
)

.
�

Maintaining Assumptions 17.7 and 17.8, the following is thus immediate.

Observation 17.10. — To show surjectivity of s and to prove Theorem 16.2, it suf-
fices to show that the natural restriction map t is surjective. �

17.C.3. The case dimπ(E0) = 0. — If the divisor E0 is mapped to a point,
Steenbrink-type vanishing for cohomology with supports, Corollary 14.2, applies. More
precisely, the surjectivity statement (14.2.1) of Remark 14.2.1 asserts that the restriction
morphism t is surjective. This will finish the proof in case where dimπ(E0) = 0. We can
therefore assume from now on that E0 is not mapped to a point.

Additional Assumption 17.11. — The variety π(E0) is smooth and has positive di-
mension.
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17.C.4. Projection to π(E0). — Given a base change diagram

Z ×X ˜X

π̃

�

étale, open
˜X

π

Z
γ

étale, open
X

such that γ −1(π(E0)) �= ∅, surjectivity of the restriction map t will follow as soon as we
prove surjectivity of the analogously defined map

H0
(

˜Z,�
p

˜Z(log ˜
′)
) → H0

(

˜Z \ π−1
(

π(F0)
)

,�
p

˜Z(log ˜
′)
)

,

where ˜Z := Z ×X ˜X, ˜
′ = �−1(˜D′), and F0 is a component of �−1(E0). Since X is affine
by Assumption 17.7, one such diagram is given by Proposition 2.26 when projecting to
the affine subvariety π(E0) ⊂ X. Observing that (Z, γ ∗(D)) is lc with log-resolution π̃ ,
that

˜
′ := supp
(

(π̃ -exceptional set) + π̃−1(supp�γ ∗D
)),
and that all additional assumptions made so far will also hold for π̃ : ˜Z → Z, we may
replace X by Z and assume the following without loss of generality.

Additional Assumption 17.12. — There exists a smooth affine variety T with a free
sheaf of differentials, �1

T � O⊕dim T
T , and a commutative diagram of surjective morphisms

˜X
π , log. resolution

ψ , smooth

X
φ

T

where the restriction φ|π(E0) : π(E0) → T is an isomorphism and both φ and ψ have
connected fibres.

Additional Assumption 17.13. — The composition ψ := φ ◦ π is an snc morphism
of the pair (˜X,˜D′), in the sense of Definition 2.9. In particular, recall from Remark 2.10
that if t ∈ T is any point, then the scheme-theoretic intersection ˜D′ ∩ ψ−1(t) is reduced,
of pure codimension one in ψ−1(t), and has simple normal crossing support.

Notation 17.14. — If t ∈ T is any point, we consider the varieties Xt := φ−1(t),
˜Xt := ψ−1(t), divisors Et := E ∩ ˜Xt , E0,t := E0 ∩ ˜Xt , ˜D′

t := ˜D′ ∩ ˜Xt , . . . , and morphisms
πt := π |

˜Xt
: ˜Xt → Xt , . . .
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We will now show that all assumptions made in Theorem 16.2 also hold for the
general fibre ˜Xt of ψ . Better still, the morphism πt maps E0,t to a point. In Section 17.C.5,
we will then be able to apply Corollary 14.2 to fibres of ψ . A vanishing result for coho-
mology with support will follow.

Claim 17.15. — If t ∈ T is a general point, then (Xt,Dt) is a log canonical pair,
and the morphism πt : ˜Xt → Xt is a log resolution of the pair (Xt,Dt) which has Et as its
exceptional set and contracts the divisor E0,t to a point. Further, we have

˜D′
t = (supp Et) ∪ π−1

t

(

supp�Dt

)

.

Proof. — The fact that πt(E0,t) is a point is immediate from Assumption 17.12. The
remaining assertions follow from Lemma 2.23 and 2.24 on page 10. �

Again, shrinking T and X to simplify notation, we may assume without loss of
generality that the following holds.

Additional Assumption 17.16. — The conclusion of Claim 17.15 holds for all points
t ∈ T.

17.C.5. Vanishing results for relative differentials. — Claim 17.15 asserts that π maps
E0,t := E0 ∩ ˜Xt to a single point. The Steenbrink-type vanishing result for cohomology
with supports, Corollary 14.2, therefore guarantees the vanishing of cohomology groups
with support on E0,t , for sheaves of differentials on ˜Xt .

Claim 17.17. — If t ∈ T is any point, and if z ∈ π(E0) is the unique point with
φ(z) = t, then H1

π−1(z)
(˜Xt,�

q

˜Xt
(log ˜D′

t)) = 0 for all numbers 0 ≤ q ≤ dim X − dim T.

Claim 17.17 and the Generic Base Change Theorem for cohomology with sup-
ports, Theorem 15.1, then immediately give the following vanishing of cohomology with
support on E0, for sheaves of relative differentials on ˜X, possibly after shrinking T.

Claim 17.18. — We have H1
π−1(π(E0))

(˜X,�
q

˜X/T(log ˜D′)) = 0 for all numbers 1 ≤ q ≤
dim X − dim T.

17.C.6. Relative differential sequences, completion of the proof. — By Assumption 17.13,
the divisor ˜D′ is relatively snc over T. As we have recalled in Section 10.A, this implies
the existence of a filtration

�
p

˜X(log ˜D′) = F 0 ⊇ F 1 ⊇ · · · ⊇ F p ⊇ F p+1 = 0,

with quotients

(17.18.1) 0 F r+1 F r ψ∗�r
T ⊗ �

p−r

˜X/T(log ˜D′) 0.
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TABLE 2. — Long exact cohomology sequences for relative differentials

H0
(

˜X,F r+1
)

ar

H0
(

˜X◦,F r+1
)

H0
(

˜X,F r
)

br

H0
(

˜X◦,F r
)

H0
(

˜X,�
p−r

˜X/T(log ˜D′)⊕•)
cr

�
H0

(

˜X◦,�p−r

˜X/T(log ˜D′)⊕•)

H1
(

˜X,F r+1
)

dr

H1
(

˜X◦,F r+1
)

H1
(

˜X,F r
)

er

H1
(

˜X◦,F r
)

H1
(

˜X,�
p−r

˜X/T
(log ˜D′)⊕•)

fr

H1
(

˜X◦,�p−r

˜X/T
(log ˜D′)⊕•)

By Assumption 17.12, the pull-backs ψ∗�r
T are trivial vector bundles, and the sheaves

F r/F r+1 are therefore isomorphic to direct sums of several copies of �
p−r

˜X/T(log ˜D′). For
simplicity, we will therefore use the somewhat sloppy notation

F r/F r+1 = �
p−r

˜X/T(log ˜D′)⊕•.

Recall Observation 17.10, which asserts that to prove Theorem 16.2, it suffices to
show that the injective restriction map

(17.18.2) t : H0
(

˜X,F 0
) → H0

(

˜X \ π−1(π(E0))
︸ ︷︷ ︸

=:˜X◦

,F 0
)

.

is surjective. To this end, we consider the long exact cohomology sequences associated
with (17.18.1), and with its restriction to ˜X◦ = ˜X \π−1(π(E0)). Table 2 shows an excerpt
of the commutative diagram that is relevant to our discussion.

Note that the restriction map t of (17.18.2) appears under the name b0 in Table 2.
While it is clear that the restriction morphisms ar , br and cr are injective, surjectivity of cr

and injectivity of fr both follow from Claim 17.18 when one applies the standard long
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exact sequence for cohomology with supports, [Har77, III. Exercise 2.3(e)], to the sheaf
A := �

p−r

˜X/T(log ˜D′)⊕•,

H0
π−1(π(E0))

(

˜X,A
)

︸ ︷︷ ︸

={0} because A is torsion free

→ H0
(

˜X,A
) cr−→ H0

(

˜X◦,A
)

→ H1
π−1(π(E0))

(

˜X,A
)

︸ ︷︷ ︸

={0} by Claim 17.18

→ H1
(

˜X,A
) fr−→ H1

(

˜X◦,A
) → ·· ·

In this setting, surjectivity of the restriction map t = b0 follows from an inductive argu-
ment. More precisely, we use descending induction to show that the following stronger
statement holds true.

Claim 17.19. — For all numbers r ≤ p the following two statements hold true.

(17.19.1) The map br : H0(˜X,F r) → H0(˜X◦,F r) is surjective.
(17.19.2) The map er : H1(˜X,F r) → H1(˜X◦,F r) is injective.

Proof of Claim 17.19, start of induction: r = p. — In this setup, F r+1 = 0, the map dr

is obviously injective, and ar is surjective. Statement (17.19.1) follows when one applies
the Four-Lemma for Surjectivity, [ML95, XII. Lemma 3.1(ii)], to the first four rows of
Table 2. Statement (17.19.2) then immediately follows when one applies the Four-Lemma
for Injectivity, [ML95, XII. Lemma 3.1(i)], to the last four rows of Table 2. �

Proof of Claim 17.19, inductive step. — Let r < p be any given number and assume
that Statements (17.19.1) and (17.19.2) were known for all indices larger than r. Since
dr = er+1 is injective by assumption, and ar = br+1 is surjective, we argue as in case
r = p above: Statement (17.19.1) follows from the Four-Lemma for Surjectivity, [ML95,
XII. Lemma 3.1(ii)], and the first four rows of Table 2. Statement (17.19.2) follows from
the Four-Lemma for Injectivity, [ML95, XII. Lemma 3.1(i)], and the last four rows of
Table 2. �

Summary. — In summary, we have shown surjectivity of the restriction map t = b0.
This completes the proof of Theorem 16.2 and hence of Theorem 16.1. �

PART VI. PROOF OF THE EXTENSION THEOREM 1.5

18. Proof of Theorem 1.5, idea of proof

To explain the main ideas in the proof of the Extension Theorem 1.5, consider the
case where X is a klt space that contains a single isolated singularity, and let π : ˜X → X be
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a strong log resolution of the pair (X,∅), with π -exceptional divisor E ⊂ ˜X. As explained
in Remark 1.5.2 on page 4, to prove Theorem 1.5 we need to show that for any open
set U ⊆ X with preimage ˜U, any differential form defined on ˜U \ E extends across E, to
give a differential form defined on all of ˜U. To this end, fix an open set U ⊆ X and let
σ ∈ H0(˜U \ E,�

p

˜X) be any form. For simplicity of notation, we assume without loss of
generality that U = X. Also, we consider only the case where p > 1 in this sketch.

As a first step towards the extension of σ , we have seen in Theorem 16.1 on page 53
that σ extends as a form with logarithmic poles along E, say σ ∈ H0(˜X \ E,�

p

˜X(log E)).
Next, we need to show that σ really does not have any poles along E. To motivate the
strategy of proof, we consider two simple cases first.

18.A. The case where E is irreducible. — Assume that E is irreducible. To show that
σ does not have any logarithmic poles along E, recall from Fact 11.3 on page 36 that it
suffices to show that σ is in the kernel of the residue map

ρp : H0
(

˜X,�
p

˜X(log E)
) → H0

(

E,�
p−1
E

)

.

On the other hand, we know from a result of Hacon-McKernan, [HM07, Corol-
lary 1.5(2)], that E is rationally connected, so that h0(E,�

p−1
E ) = 0. This clearly shows

that σ is in the kernel of ρp and completes the proof when E is irreducible.

18.B. The case where (˜X,E) has a simple mmp. — In general, the divisor E need not
be irreducible. Let us therefore consider the next difficult case that where E is reducible
with two components, say E = E1 ∪ E2. The strong log resolution π will then factor via a
π -relative minimal model program of the pair (˜X,E), which we assume for simplicity to
have the following particularly special form,

˜X = X0

λ1

contracts E1 to a point
X1

λ2

contracts E2,1 := (λ1)∗(E2) to a point
X.

In this setting, the arguments of Section 18.A apply to show that σ has no poles along
the divisor E1. To show that σ does not have any poles along the remaining component
E2, observe that it suffices to consider the induced reflexive form on the possibly singular
space X1, say σ 1 ∈ H0(X1,�

[p]
X1

(log E2,1)), where E2,1 := (λ1)∗(E2), and to show that σ 1

does not have any poles along E2,1. For that, we follow the arguments of Section 18.A
once more, carefully accounting for the singularities of the pair (X1,E2,1).

The pair (X1,E2,1) is dlt, and it follows that the divisor E2,1 is necessarily normal,
[KM98, Corollary 5.52]. Using the residue map for reflexive differentials on dlt pairs that
was constructed in Theorem 11.7 on page 37,

ρ[p] : H0
(

X1,�
[p]
X1

(log E2,1)
) → H0

(

E2,1,�
[p−1]
E2,1

)

,
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we have seen in Remark 11.8 that it suffices to show that ρ[p](σ 1) = 0. Because the mor-
phism λ2 contracts the divisor E2,1 to a point, the result of Hacon-McKernan will again
apply to show that E2,1 is rationally connected. Even though there are numerous exam-
ples of rationally connected spaces that carry non-trivial reflexive forms, we claim that in
our special setup we do have the vanishing

(18.1) h0
(

E2,1,�
[p−1]
E2,1

) = 0.

Recall from the adjunction theory for Weil divisors on normal spaces, [Kol92,
Chapter 16 and Proposition 16.5] and [Cor07, Section 3.9 and Glossary], that there ex-
ists a Weil divisor DE on the normal variety E2,1 which makes the pair (E2,1,DE) klt.
Now, if we knew that the extension theorem would hold for the pair (E2,1,DE), we can
prove the vanishing (18.1), arguing exactly as in the proof of Theorem 5.1 on page 16,
where we show the non-existence of reflexive forms on rationally connected klt spaces
as a corollary of the Extension Theorem 1.5. Since dim E2,1 < dim X, this suggests an
inductive proof, beginning with easy-to-prove extension theorems for reflexive forms on
surfaces, and working our way up to higher-dimensional varieties. The proof of Theo-
rem 1.5 follows this inductive pattern.

18.C. The general case. — The assumptions made in Sections 18.A–18.B of course
do not hold in general. To handle the general case, we need to work with pairs (X,D)

where D is not necessarily empty, the π -relative minimal model program might involve
flips, and the singularities of X need not be isolated. All this leads to a slightly protracted
inductive argument, which is outlined in all detail in the next section.

19. Proof of Theorem 1.5, overview of the proof

19.A. Notation used in the induction. — We aim to prove Theorem 1.5 for log canon-
ical pairs of arbitrary dimension. As we will argue by induction, we often need to prove
statements of the form “If Proposition 19.3 holds for all pairs of a given dimension n ≥ 2,
then Proposition 19.1 will hold for all pairs of the same dimension n”. It makes sense to
introduce the following shorthand notation for this,

∀n ≥ 2 : Proposition 19.3(n) =⇒ Proposition 19.1(n).

Likewise, to say that “Given any number n ≥ 2, if Proposition 19.4 holds for all pairs of
dimension n′ ≤ n, then Proposition 19.1 will hold for all pairs of dimension n + 1”, we
will write

∀n ≥ 2 : (Proposition 19.4(n′),∀n′ ≤ n
) =⇒ Proposition 19.3(n + 1)

If we want to say that Proposition 19.3 holds for surface pairs, we will often write

Proposition 19.3(n = 2).
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19.B. Theorems and propositions that appear in the induction. — Before giving an
overview of the induction process and listing the implications that we will prove, we have
gathered in this section a complete list of the theorems and propositions that will play a
role in the proof.

In the setup of the Extension Theorem 1.5, we have seen in Theorem 16.1 on
page 53 that any differential form on ˜X which is defined away from the π -exceptional
set E extends as a form with logarithmic poles along E. As a consequence, we will see in
Section 20 that to prove the Extension Theorem 1.5, it suffices to show that the following
Proposition holds for all numbers n ≥ 2.

Proposition 19.1 (Non-existence of logarithmic poles for pairs of dimension n). — Let (X,D)

be a log canonical pair of dimension dim X = n, and let π : ˜X → X be a log resolution of (X,D),

with exceptional set E ⊂ ˜X. Consider the two divisors

˜D := largest reduced divisor contained in suppπ−1(non-klt locus),

˜D′ := supp
(

E + π−1 supp�D
),
and observe that ˜D ⊆ ˜D′. Then the natural injection

(19.1.1) H0
(

˜X,�
p

˜X(log ˜D)
) → H0

(

˜X,�
p

˜X(log ˜D′)
)

is in fact isomorphic.

Remark 19.1.1. — Recall from Lemma 2.15 on page 8 that the pair (˜X,˜D′) is
reduced and snc. Being a subdivisor of a divisor with simple normal crossing support, the
pair (˜X,˜D) is likewise reduced and snc. In particular, it follows that the sheaves �

p

˜X(log ˜D)

and �
p

˜X(log ˜D′) mentioned in (19.1.1) are locally free.

As indicated in Section 18, we aim to prove Proposition 19.1 by using the π -relative
minimal model program of the pair (X,E), in order to contract one irreducible compo-
nent of E at a time. The proof of Proposition 19.1 will then depend on the following
statements, which assert that differential forms extend across irreducible, contractible di-
visors. For technical reasons, we handle the cases of 1-forms and of p-forms separately.

Proposition 19.2 (Extension of 1-forms over contractible divisors). — Let (X,D) be a dlt pair

of dimension dim X ≥ 2, where X is Q-factorial, and let λ : X → Xλ be a divisorial contraction

of a minimal model program associated with the pair (X,D), contracting an irreducible divisor D0 ⊆
supp�D
. Then the natural injection

H0
(

X,�
[1]
X

) → H0
(

X,�
[1]
X (log D0)

)

is isomorphic.
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Proposition 19.3 (Extension of p-forms over contractible divisors in dimension n). — Let (X,D)

be a dlt pair of dimension dim X = n, where X is Q-factorial, and let λ : X → Xλ be a divisorial

contraction of a minimal model program associated with the pair (X,D), contracting an irreducible

divisor D0 ⊆ supp�D
. Then the natural injection

H0
(

X,�
[p]
X

) → H0
(

X,�
[p]
X (log D0)

)

is isomorphic for all numbers 1 < p ≤ dim X.

Finally, we have seen in Section 18 that the non-existence of reflexive differentials
on rationally chain connected klt spaces enters the proof of Proposition 19.2. The relevant
statement is this, compare also Theorem 5.1 on page 16.

Proposition 19.4 (Reflexive differentials on rcc pairs of dimension n). — Let (X,D) be a klt

pair of dimension dim X = n. If X is rationally chain connected, then X is rationally connected and

H0(X,�
[p]
X ) = 0 for all numbers 1 ≤ p ≤ dim X.

19.C. Overview of the induction process. — Using the notation introduced in Sec-
tion 19.A on page 63, Table 3 shows the structure of the inductive proof of the Extension
Theorem 1.5. The steps are carried out in Sections 20–25, respectively, Step 5 being by
far the most involved.

TABLE 3. — Overview of the induction used to prove Theorem 1.5

Step Statement shown

0 (Proposition 19.1(n), ∀n ≥ 2) =⇒ Extension Theorem 1.5

1 Proposition 19.2

2 Proposition 19.3(n = 2)

3 ∀n ≥ 2 : Propositions 19.2 and 19.3(n) =⇒ Proposition 19.1(n)

4 ∀n ≥ 2 : Proposition 19.1(n) =⇒ Proposition 19.4(n).

5 ∀n ≥ 2 : ( Proposition 19.4(n′), ∀n′ ≤ n
) =⇒ Proposition 19.3(n + 1)

20. Step 0 in the proof of Theorem 1.5

Assuming that Proposition 19.1 holds for log canonical pairs of arbitrary dimen-
sion, we show in this section that the Extension Theorem 1.5 follows. To prove Theo-
rem 1.5, let (X,D) be an arbitrary lc pair, and let π : ˜X → X be an arbitrary log resolu-
tion, with exceptional set E ⊂ ˜X. Following Remark 1.5.2, we need to show that for any
open set U ⊆ X with preimage ˜U ⊆ ˜X, any differential form

σ ∈ H0
(

˜U \ E,�
p

˜X(log ˜D)
)

extends to a form σ̃ ∈ H0
(

˜U,�
p

˜X(log ˜D)
)

,

where ˜D is the divisor on ˜X defined in Theorem 1.5.
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As a first step in this direction, given an open set U and a form σ , apply Theo-
rem 16.1 to the pair (U,D), to obtain an extension of σ to a differential form

σ̃ ′ ∈ H0
(

˜U,�
p

˜X(log ˜D′)
)

,

where ˜D′ ⊇ ˜D is the larger divisor defined in Theorem 16.1. An application of Proposi-
tion 19.1 to the pair (U,D) will then show that σ̃ ′ in fact does not have any logarithmic
poles along the difference divisor ˜D′−˜D. This finishes Step 0 in the proof of Theorem 1.5.

21. Step 1 in the proof of Theorem 1.5

In this section, we will prove Proposition 19.2. We maintain the assumptions and
the notation of the proposition. As we will see, the assertion follows from the Extension
Theorem [GKK10, Theorem 1.1] for 1-forms on reduced, log canonical pairs. Let r :
˜X → Xλ be a log resolution of (Xλ,∅) that factors through X. We obtain a diagram

˜X
ρ

r=λ◦ρ

X
λ

Xλ.

Now let σ ∈ H0(X,�
[1]
X (log D0)) be any given reflexive form on X, possibly with loga-

rithmic poles along D0. Since the divisor D0 is contracted by λ, the form σ induces a
reflexive form σλ ∈ H0(Xλ,�

[1]
Xλ

), without any poles.

Claim 21.1. — The direct image sheaf r∗�1
˜X is reflexive. In particular, the pull-back

of σλ to ˜X by r defines a regular form σ̃ ∈ H0(˜X,�1
˜X), which agrees with the pull-back

of σ by ρ wherever the morphism ρ is isomorphic.

Remark 21.1.1. — We refer to Remark 1.5.2 on page 4 for an explanation why
reflexivity of r∗(�

p

˜X) and the extension of pull-back forms are equivalent.

Proof of Claim 21.1. — Let r′ : ˜X′ → Xλ be any strong log resolution of the pair
(Xλ,∅). The Comparison Lemma, [GKK10, Lemma 2.13], then asserts that the direct
image sheaf r∗(�1

˜X) is reflexive if (r′)∗(�1
˜X) is reflexive. Reflexivity of (r′)∗(�1

˜X), however,
follows from the Extension Theorem [GKK10, Theorem 1.1] for 1-forms on reduced,
log canonical pairs once we show that (Xλ,∅) is klt.

To this end, recall from [KM98, Section 3.31] that Xλ is Q-factorial, and that
the pair (Xλ, λ∗D) is again dlt. The fact that (Xλ,∅) is klt then follows from [KM98,
Corollary 2.39 and Proposition 2.41] because λ∗D will be Q-Cartier. This completes the
proof of Claim 21.1. �
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By Claim 21.1, the pull-back form σ̃ does not have any poles along the strict trans-
form of D0, this shows that σ does not have any poles along D0, as claimed. This com-
pletes the proof of Proposition 19.2 and therefore finishes Step 1 in the proof of Theo-
rem 1.5.

22. Step 2 in the proof of Theorem 1.5

We will now prove Proposition 19.3(n = 2). Thus n = dim X = 2 and p = 2. Let
σ ∈ H0(X,�

[2]
X (log D0)) be any given reflexive form on X. Recall from Theorem 11.7 on

page 37 that there exists a residue map for reflexive differentials,

ρ[2] : �[2]
X (log D0) → �

[1]
D0

,

which agrees with the residue map of the standard residue sequence (11.1) wherever the
dlt pair (X,D0) is snc. Also, recall from [KM98, Corollary 2.39(1) and Corollary 5.52]
that (X,D0) is dlt, and that D0 is normal. The divisor D0 is therefore a smooth curve,
and �

[1]
D0

= �1
D0

. Adjunction together with the fact that −(KX + D) is λ-ample implies
that D0 � P1. The space of differentials of D0 is therefore trivial, H0(D0,�

1
D0

) = 0. In
particular, it follows that ρ[2](σ ) = 0. It follows from the fact that the residue map acts
as a test for logarithmic poles, see Remark 11.8, that σ ∈ H0(X,�

[2]
X ), as claimed. This

completes the proof of Proposition 19.3(n = 2) and therefore finishes Step 2 in the proof
of Theorem 1.5.

23. Step 3 in the proof of Theorem 1.5

Let (X,D) be a log canonical pair of dimension n, and let π : ˜X → X be a log
resolution. We need to show surjectivity of the natural inclusion map (19.1.1), assuming
that Proposition 19.3(n) holds. Observing that the statement of Proposition 19.1(n) is local
on X, we may assume that the following holds.

Additional Assumption 23.1. — The space X is affine.

Furthermore, if ˜D′
0 ⊂ ˜D′ is any irreducible component such that π(˜D′

0) is con-
tained in the non-klt locus of (X,D), then ˜D′

0 is also contained in ˜D. We may therefore
assume without loss of generality that the following holds

Additional Assumption 23.2. — The pair (X,D) is klt.

Let E ⊂ ˜X denote the π -exceptional set. In order to prove surjectivity of (19.1.1) it
is equivalent to show that the natural map

(23.2.1) H0
(

˜X,�
p

˜X

) → H0
(

˜X,�
p

˜X(log E)
)
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is surjective. By the definition of klt there exist effective π -exceptional divisors F and G
without common components such that �F
 = 0 and such that the following Q-linear
equivalence holds:

(23.2.2) K
˜X + π−1

∗ D + F ∼Q π∗(KX + D) + G.

Let 
ε = π−1
∗ D + F + εE. Choosing a small enough 0 < ε � 1 we may assume that

the pair (X,
ε) is klt. Let H ⊂ ˜X be a π -ample divisor such that (X,
ε + H) is still
klt and K

˜X + 
ε + H is π -nef. We may then run the π -relative (˜X,
ε) minimal model
program with scaling of H cf. [BCHM10, Corollary 1.4.2], [HK10, Theorems 5.54,
5.63]. Therefore there exists a commutative diagram

˜X = X0

λ1

π=π0

X1

λ2

π1

X2 · · ·Xk−1

λk

Xk

πk

X

where the λi are either divisorial contractions or flips. The spaces Xi are normal,
Q-factorial, and if 
i ⊂ Xi denotes the cycle-theoretic image of 
ε, then the pairs
(Xi,
i) are klt for all i. The minimal model program terminates with a pair (Xk,
k)

whose associated Q-divisor KXk
+ 
k is πk-nef.

Notation 23.3. — Given any 0 ≤ i ≤ k, let Ei (respectively Gi ) denote the cycle-
theoretic image of E (respectively G) on Xi .

Claim 23.4. — The morphism πk is a small map. In particular, Ek = ∅.

Proof. — It is clear from the construction that supp Ei is precisely the divisorial part
of the πi-exceptional set. Then the Q-linear equivalence (23.2.1) implies that

KXi
+ 
i ∼Q π∗

i (KX + D) + Gi + εEi,

where Gi + εEi is effective and supp(Gi + εEi) = supp(Ei). By item (2.16.2) of
Lemma 2.16, this implies that KXi

+ 
i is not πi-nef as long as Ei �= ∅. It follows that Ek ,
the divisorial part of the πk-exceptional set, is empty. This shows Claim 23.4. �

Let σ ∈ H0(˜X,�
p

˜X(log E)) be arbitrary. In order to complete Step 3 we need to
show that σ ∈ H0(˜X,�

p

˜X). Clearly, σ induces reflexive forms σi ∈ H0(Xi,�
[p]
Xi

(log Ei)),
for all i. Since Ek = ∅, the reflexive form σk does not have any logarithmic poles at all,
that is, σk ∈ H0(Xk,�

[p]
Xk

). Now consider the map λk : Xk−1 ��� Xk .

• If λk is a flip, then λk is isomorphic in codimension one and it is clear that σk−1

again does not have logarithmic poles along any divisor.
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• If λk is a divisorial contraction, then the λk-exceptional set is contained in Ek−1,
and either Proposition 19.2 or Proposition 19.3(n) applies to the map λk .

In either case, we obtain that σk−1 ∈ H0(Xk−1,�
[p]
Xk−1

). Applying the same argument suc-
cessively to λk, λk−1, . . . , λ1, we find that

σ = σ0 ∈ H0
(

˜X,�
p

˜X

)

,

as claimed. This completes the proof of Proposition 19.1(n), once Propositions 19.2 and
19.3(n) are known to hold. Step 3 in the proof of Theorem 1.5 is thus finished.

24. Step 4 in the proof of Theorem 1.5

As in Proposition 19.4, let (X,D) be a klt pair of dimension dim X = n, and assume
that X is rationally chain connected. Assuming that Proposition 19.1(n) holds, we need to
show that X is rationally connected, and that H0(X,�

[p]
X ) = 0 for all numbers 1 ≤ p ≤ n.

To this end, choose a strong log resolution π : ˜X → X. Since klt pairs are also dlt,
a result of Hacon and McKernan, [HM07, Corollary 1.5(2)], applies to show that X and
˜X are both rationally connected. In particular, recall from [Kol96, IV. Corollary 3.8] that

(24.1) H0
(

˜X,�
p

˜X

) = 0 ∀p > 0.

Next, let σ ∈ H0(X,�
[p]
X ) be any reflexive form. We need to show that σ = 0. We con-

sider the pull-back σ̃ , which is a differential form on ˜X, possibly with poles along the π -
exceptional set E. However, since (X,D) is klt, Theorem 16.1 from page 53 asserts that
σ̃ has at most logarithmic poles along E. Proposition 19.1(n) then applies to show that σ̃

does in fact not have any poles at all. The assertion that σ̃ = 0 then follows from (24.1).
This shows that Proposition 19.4(n) follows from Proposition 19.1(n), and finishes

Step 4 in the proof of Theorem 1.5.

25. Step 5 in the proof of Theorem 1.5

25.A. Setup. — Throughout the present Section 25, we consider the following
setup.

Setup 25.1. — Let (X,D) be a dlt pair of dimension dim X = n+1 > 2, where X is
Q-factorial, and let λ : X → Xλ be a divisorial contraction of a minimal model program
associated with the pair (X,D), contracting a divisor D0 ⊆ supp�D
. We assume that
Proposition 19.4(n′) holds for all numbers n′ ≤ n.

Remark 25.2. — Since λ is a divisorial contraction of a minimal model program,
the space Xλ is again Q-factorial, and the pair (Xλ, λ∗D) is dlt. By Q-factoriality, the
pairs (X,D0), (X,∅) and (Xλ,∅) will likewise be dlt, [KM98, Corollary 2.39].
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In order to prove Proposition 19.3(n + 1) and thus to complete the proof of Theo-
rem 1.5, we need to show that the natural inclusion map

H0
(

X,�
[p]
X

) → H0
(

X,�
[p]
X (log D0)

)

is surjective for all numbers 1 < p ≤ dim X. To this end, let σ ∈ H0(X,�
[p]
X (log D0)) be

any given reflexive form on X. We show that the following holds.

Claim 25.3. — The reflexive form σ does not have any log poles, i.e., σ ∈
H0(X,�

[p]
X ).

We will prove Claim 25.3 in Sections 25.E and 25.F, considering the cases where
dimλ(D0) = 0 and dimλ(D0) > 0 separately. Before starting with the proof, we include
preparatory Sections 25.B–25.D where we recall facts used in the proof, set up notation,
and discuss the (non)existence of reflexive relative differentials on D0.

25.B. Adjunction for the divisor D0 in X. — By inversion of adjunction the support
of the divisor D0 is normal, [KM98, Corollary 5.52]. A technical difficulty occurring
in our reasoning will be the fact that D0 need not be Cartier, so that one cannot apply
adjunction naïvely. It is generally not even true that KD0 or KD0 + (D − D0)|D0 are Q-
Cartier. In particular, it does not make sense to say that (D0, (D−D0)|D0) is klt. However,
a more elaborate adjunction procedure, which involves a correction term DiffD0(0) that
accounts for the failure of D0 to be Cartier, is known to give the following.

Lemma 25.4 (Existence of a divisor making D0 klt). — There exists an effective Q-Weil divisor

DiffD0(0) on D0 such that the pair (D0,DiffD0(0)) is klt.

Proof. — The divisor D0 being normal, it follows from the Adjunction Formula
for Weil divisors on normal spaces, [Kol92, Chapter 16 and Proposition 16.5] see also
[Cor07, Section 3.9 and Glossary], that there exists an effective Q-Weil divisor DiffD0(0)

on D0 such that KD0 +DiffD0(0) is Q-Cartier and such that the following Q-linear equiv-
alence holds,

KD0 + DiffD0(0) ∼Q (KX + D0)|D0 .

Better still, since D0 is irreducible, it follows from [KM98, Proposition 5.51] that
the pair (X,D0) is actually plt, and [Kol92, Theorem 17.6] then gives that the pair
(D0,DiffD0(0)) is klt, as claimed. �

25.C. Simplifications and notation. — Observe that Claim 25.3 may be checked lo-
cally on Xλ. Better still, we may always replace Xλ with an open subset X◦

λ ⊆ Xλ, as long
as X◦

λ ∩ π(D0) �= ∅. In complete analogy with the arguments of Section 17.C.2, we may
therefore assume the following.
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Additional Assumption 25.5. — The variety Xλ is affine. The image T := λ(D0),
taken with its reduced structure, is smooth and has a free sheaf of differentials, �1

T �
O⊕dim T

T .

Note that, as in Section 17.C.4, Assumption 25.5 allows to apply Noether normali-
sation to the affine variety T. Shrinking Xλ further, and performing an étale base change,
if necessary, Proposition 2.26 thus allows to assume the following.

Additional Assumption 25.6. — There exists a commutative diagram of surjective
morphisms

X
λ

ψ

Xλ
φ

T

where the restriction φ|λ(D0) : λ(D0) → T is isomorphic.

Notation 25.7. — If t ∈ T is any point, we consider the scheme-theoretic fibres
Xt := ψ−1(t), Xλ,t := φ−1(t) and D0,t := (ψ |D0)

−1(t).

Shrinking T—and thereby Xλ—yet further, if necessary, the Cutting-Down
Lemma 2.25 allows to assume that the appropriate fibre pairs are again dlt or klt. More
precisely, we may assume that the following holds.

Additional Assumption 25.8. — If t ∈ T is any point, then Xt and Xλ,t are normal.
The pairs (Xt,D0,t) and (Xλ,t,∅) are dlt, and (D0,t,DiffD0(0) ∩ D0,t) are klt.

Remark 25.2 asserts that (X,D0) and (X,∅) are both dlt. Theorems 10.6 and 11.7
therefore apply, showing the existence of a filtration for relative reflexive differentials and
the existence of a residue map over a suitable open set of T. Shrinking T again, we may
thus assume that the following holds.

Additional Assumption 25.9. — The conclusions of Theorems 10.6 and 11.7 hold for
the pairs (X,D0) and (X,∅) without further shrinking of T.

25.D. Vanishing of relative reflexive differentials on D0. — As we have seen in Section 18,
the non-existence of reflexive differentials on D0 is an important ingredient in the proof
of Theorem 1.5. Unlike the setup of Section 18, we do not assume that D0 maps to a
point, and a discussion of relative reflexive differentials is needed.

Lemma 25.10 (Vanishing of reflexive differentials on D0,t ). — If t ∈ T is any point, then

H0(D0,t,�
[q]
D0,t

) = 0 for all 1 ≤ q ≤ n.
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Proof. — Let t ∈ T be any point and recall from [HM07, Corollary 1.3(2)] that D0,t ,
which is a fibre of the map λ|Xt

: Xt → Xλ,t , is rationally chain connected. Since we argue
under the inductive hypothesis that Proposition 19.4(n′) holds for all numbers n′ ≤ n and
since the pair (D0,t,DiffD0(0) ∩ D0,t) is klt by Assumption 25.8, we obtain the vanishing
H0(D0,t,�

[q]
D0,t

) = 0 for all 1 ≤ q ≤ n, ending the proof. �

Lemma 25.11 (Vanishing of relative reflexive differentials on D0). — We have H0(D0,�
[q]
D0/T)

= 0 for all 1 ≤ q ≤ n.

Proof. — We argue by contradiction and assume that there exists a non-zero section
τ ∈ H0(D0,�

[q]
D0/T). Let D◦

0 ⊆ D0 be the maximal open subset where the morphism ψ |D0

is smooth, and let Z := D0 \ D◦
0 be its complement. As before, set D◦

0,t := D0,t ∩ D◦
0 and

Zt := D0,t ∩ Z. Since D0 is normal, it is clear that codimD0 Z ≥ 2. If t ∈ T is a general
point, it is likewise clear that codimD0,t

Zt ≥ 2.
If t ∈ T is general, the restriction of the non-zero section τ to D◦

0,t does not vanish,

(25.11.1) τ |D◦
0,t

∈ H0
(

D◦
0,t,�

[q]
D◦

0/T|D◦
0,t

) \ {0}.
However, since ψ |D0 is smooth along D◦

0,t , and since codimD0,t
Zt ≥ 2, we have isomor-

phisms

(25.11.2) H0
(

D◦
0,t,�

[q]
D◦

0/T|D◦
0,t

) � H0
(

D◦
0,t,�

q

D◦
0,t

) � H0
(

D0,t,�
[q]
D0,t

)

.

But Lemma 25.10 asserts that the right-hand side of (25.11.2) is zero, contradict-
ing (25.11.1). The assumption that there exists a non-zero section τ is thus absurd, and
Lemma 25.11 follows. �

25.E. Proof of Claim 25.3 if dimπ(D0) = 0. — Theorem 11.7 assert that a residue
map

ρ[p] : �[p]
X (log D0) → �

[p−1]
D0

exists. Since p > 1, Lemma 25.10 implies

H0
(

D0,�
[p−1]
D0

) = 0,

so that ρ[p](σ ) = 0. As observed in Remark 11.8 on page 38, this shows that σ ∈
H0(X,�

[p]
X ), finishing the proof of Proposition 19.3 in case dimπ(D0) = 0.

25.F. Proof of Claim 25.3 if dimπ(D0) > 0. — The proof of Claim 25.3 in case
dimπ(D0) > 0 is at its core rather similar to the arguments of the preceding Section 25.E.
However, rather than applying the residue sequence directly to obtain a reflexive differ-
ential on D0, we need to discuss the filtrations induced by relative differentials. Dealing
with reflexive sheaves on singular spaces poses a few technical problems which will be
discussed—and eventually overcome—in the following few subsections.
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25.F.1. Relating Claim 25.3 to the reflexive restriction of σ . — To prove Claim 25.3,
we need to show that σ ∈ H0(X,�

[p]
X ). Since all sheaves in question are torsion-free, this

may be checked on any open subset of X which intersects D0 non-trivially. To be more
specific, let X◦ ⊆ X be the maximal open set where the pair (X,D0) is snc, and where the
morphism ψ is an snc morphism both of (X,∅) and of (X,D0). To prove Claim 25.3, it
will then suffice to show that σ |X◦ ∈ H0(X◦,�p

X◦).
We aim to study σ by looking at its restriction σ |D◦

0
, where D◦

0 := D0 ∩ X◦. The
restriction is governed by the following commutative diagram, whose first row is the stan-
dard residue sequence (11.1). The second row is the obvious restriction to D◦

0,

0 �
p

X◦
γ

restriction

�
p

X◦(log D◦
0)

restriction

�
p−1
D◦

0

=

0

�
p

X◦ |D◦
0

γ |D◦
0

�
p

X◦(log D◦
0)|D◦

0
�

p−1
D◦

0
0.

A quick diagram chase thus reveals that to show σ |X◦ ∈ H0(X◦,�p

X◦), it suffices to show
that the restriction of σ |D◦

0
comes from �

p

X◦ |D◦
0
. More precisely, we see that to prove

Claim 25.3 it suffices to show that

(25.11.3) σ |D◦
0
∈ Im

[

γ |D◦
0
: H0

(

D◦
0,�

p

X◦ |D◦
0

) → H0
(

D◦
0,�

p

X◦(log D◦
0)|D◦

0

)]

.

Next, we aim to express the inclusion in (25.11.3) in terms of reflexive differentials
which are globally defined along the divisor D0, making the statement more amenable to
the methods developed in Part III of this paper. To this end, observe that

(�
[p]
X |∗∗

D0
)|D◦

0
� �

p

X◦ |D◦
0

and (�
[p]
X (log D0)|∗∗

D0
)|D◦

0
� �

p

X◦(log D◦
0)|D◦

0
.

Thus, if σ̃D0 ∈ H0(D0,�
[p]
X (log D0)|∗∗

D0
) denotes the image of σ |D0 in the reflexive hull of

�
[p]
X (log D0)|D0, then the inclusion in (25.11.3) will hold if we show that

(25.11.4) σ̃D0 ∈ Im
[

H0
(

D0,�
[p]
X |∗∗

D0

) → H0
(

D0,�
[p]
X (log D0)|∗∗

D0

)

]

.

We will show more, namely, that σ̃D0 is not only in the image of the sheaf �
[p]
X |∗∗

D0
, but that

it is already in the image of the subsheaf ψ∗�r
T|D0. The following lemma will be useful in

the formulation of that claim.

Lemma 25.12. — The natural inclusions ψ∗�p

T ↪→ �
[p]
X ↪→ �

[p]
X (log D0) yield a diagram

of sheaves as follows,

(25.12.1) ψ∗�p

T|D0

β, injective

�
[p]
X |∗∗

D0
�

[p]
X (log D0)|∗∗

D0
.
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Proof. — Assumption 25.9 allows to apply Theorem 10.6 from page 31 (existence
of relative differential sequences) to the sheaves �

[p]
X and �

[p]
X (log D0), obtaining a com-

mutative diagram of injective sheaf morphisms,

(25.12.2) F [p] = ψ∗�p

T �
[p]
X

F [p](log) = ψ∗�p

T �
[p]
X (log D0).

The diagram (25.12.1) is obtained by restricting (25.12.2) to D0 and taking double duals.
Injectivity of the map β follows from a repeated application of Corollary 10.7 to the sheaf
ψ∗�p

T = F [p](log)|∗∗
D0

. This finishes the proof of Lemma 25.12. �

Returning to the proof of Claim 25.3, observe that Lemma 25.12 allows us to view
ψ∗�p

T|D0 as a subsheaf

ψ∗�p

T|D0 ⊆ Im
[

(�
[p]
X |D0)

∗∗ → (�
[p]
X (log D0)|D0)

∗∗
]

.

With this notation, to prove the inclusion in (25.11.4), it is thus sufficient to prove the
following claim.

Claim 25.13 (Proves (25.11.4) and hence Proposition 19.3(n + 1)). — The section
σ̃D0 comes from T. More precisely, we claim that we have inclusions

σ̃D0 ∈ H0
(

D0, ψ∗�p

T|D0
︸ ︷︷ ︸

=F [p](log)|∗∗
D0

) ⊆ H0
(

D0, (�
[p]
X (log D0)|D0)

∗∗).

25.F.2. Filtrations induced by relative differentials and their inclusions. — Recall from
Assumption 25.9, Theorem 10.6 and Corollary 10.7 that there exists a filtration of
�

[p]
X (log D0),

�
[p]
X (log D0) = F [0](log) ⊇ F [1](log) ⊇ · · · ⊇ F [p](log) ⊇ {0}

giving rise to exact sequences

0 → F [r+1](log)|∗∗
D0

→ F [r](log)|∗∗
D0

→ ψ∗�r
T ⊗ �

[p−r]
X/T (log D0)|∗∗

D0
.

Since ψ∗�p

T is a trivial vector bundle, we see that to prove Claim 25.13 it is sufficient to
prove the following.

Claim 25.14. — For all numbers q > 0, we have H0(D0,�
[q]
X/T(log D0)|∗∗

D0
) = 0.
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25.F.3. Proof of Claim 25.14 in case q = 1. — We argue by contradiction and assume
that there exists a non-zero section τ ∈ H0(D0,�

[1]
X/T(log D0)|∗∗

D0
).

We maintain the notation introduced in Section 25.F.1. If t ∈ T is general, the
section τ will then induce a non-zero section

(25.14.1) τ |D◦
0,t

∈ H0
(

D◦
0,t,�

[1]
X/T(log D0)|∗∗

D◦
0,t

) = H0
(

D◦
0,t,�

1
Xt

(log D◦
0,t)|D◦

0,t

)

.

On the other hand, let β be the composition of the following canonical morphisms

H0
(

X,�
[1]
X/T(log D0)|∗∗

Xt

) �−−−−−→
restr. to X◦ H0

(

X◦,�1
X◦/T(log D◦

0)
)−→

−−−−−→
restr. to X◦

t

H0
(

X◦
t ,�

1
X◦/T(log D◦

0)|X◦
t

) �−−−−−→
ψ |X◦ is snc

H0
(

X◦
t ,�

1
X◦

t
(log D◦

0,t)
) −→

�−−−−−→
restr. to X◦

t

H0
(

Xt,�
[1]
Xt

(log D0,t)
) −−−−−→

restr. to D0,t

H0
(

D0,t,�
[1]
Xt

(log D0,t)|D0,t

) −→

−−−→
refl. hull

H0
(

D0,t,�
[1]
Xt

(log D0,t)|∗∗
D0,t

)

.

Then a comparison with (25.14.1) immediately shows that β(τ)|D◦
0,t

�= 0. In particular,
we obtain that

(25.14.2) H0
(

D0,t,�
[1]
Xt

(log D0,t)|∗∗
D0,t

) �= 0.

On the other hand, Theorem 12.2 on page 42 (description of Chern class by residue se-
quence) shows that there exists a smooth open subset D◦◦

0,t ⊆ D0,t with small complement,

(25.14.3) codimD0,t

(

D0,t \ D◦◦
0,t

) ≥ 2,

and an exact sequence,

(25.14.4) 0 → H0
(

D◦◦
0,t,�

1
D◦◦

0,t

)

︸ ︷︷ ︸

=:A

→ H0
(

D◦◦
0,t,�

[1]
Xt

(log D0,t)|∗∗
D◦◦

0,t

)

︸ ︷︷ ︸

=: B

→

→ H0
(

D◦◦
0,t,OD◦◦

0,t

)

︸ ︷︷ ︸

=:C

δ−→ H1
(

D◦◦
0,t,�

1
D◦◦

0,t

) → ·· · ,

where δ(m · 1) = c1(OD◦◦
0,t
(m · D◦◦

0,t)), for m sufficiently large and divisible. Observing that

A � H0
(

D0,t,�
[1]
D0,t

) = 0 25.14.3 and (25.10)

B � H0
(

D0,t,�
[1]
Xt

(log D0,t)|∗∗
D0,t

) �= 0 (25.14.3) and (25.14.2)

C � H0
(

D0,t,OD0,t

) � C (25.14.3)

The sequence (25.14.4) immediately implies that c1(OD◦◦
0,t
(mD◦◦

0,t)) = 0. That, however,
cannot be true, as the contraction λ|Xt

: Xt → Xλ,t contracts the divisor D0,t ⊂ Xt to a



DANIEL GREB, STEFAN KEBEKUS, SÁNDOR J KOVÁCS, AND THOMAS PETERNELL

point, so that Assertion (2.16.1) of the Negativity Lemma 2.16 implies that D0,t is actually
Q-anti-ample, relatively with respect to the contraction morphism λ|Xt

. By the inequality
(25.14.3), it is then also clear that c1(OD◦◦

0,t
(mD◦◦

0,t)) ∈ H2(D◦◦
0,t,R) cannot be zero. In fact,

choose a complete curve C ⊂ D◦◦
0,t and observe that the restriction OD◦◦

0,t
(mD◦◦

0,t)|C is a
negative line bundle. We obtain a contradiction which shows that the original assumption
about the existence of a non-zero section τ was absurd. This completes the proof of
Claim 25.14 in case q = 1.

25.F.4. Proof of Claim 25.14 in case q > 1. — Using Assumption 25.9 and applying
the left-exact section functor � to the residue sequence (11.7.1) constructed in Theo-
rem 11.7, we obtain an exact sequence,

0 → H0
(

D0,�
[q]
D0/T

)

︸ ︷︷ ︸

=0 by Lemma 25.11

→ H0
(

D0,�
[q]
X/T(log D0)|∗∗

D0

) → H0
(

D0,�
[q−1]
D0/T

)

︸ ︷︷ ︸

=0 by Lemma 25.11

,

and Claim 25.14 follows immediately. This finishes the proof of Proposition 19.3 in case
dimπ(D0) > 0. �
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PART VII. APPENDIX

Appendix A: Finite group actions on coherent sheaves

Let G be a finite group acting on a normal variety X. In this appendix, we consider
G-sheaves on X and their associated push-forward sheaves on the quotient space. Some
results presented here are well-known to experts. Lemma A.3 is contained for example in
the unpublished preprint [Kol]. However, since we were not able to find published proofs
of any of these result we decided to include them here in order to keep our exposition as
self-contained as possible.

Definition A.1 (G-sheaf and morphisms of G-sheaves). — Let G be a finite group acting
on a normal variety X. If g ∈ G is any element, we denote the associated automorphism
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of X by φg . A G-sheaf F on X is a coherent sheaf of OX-modules such that for any open
set U ⊆ X is any open set, there exist natural push-forward morphisms

(φg)∗ : F (U) → F
(

φg(U)
)

that satisfy the usual compatibility conditions. A morphism α : F → G of G-sheaves is
a sheaf morphism such that for any open set U and any element g ∈ G, then there are
commutative diagrams

F (U)
(φg)∗

α(U)

F
(

φg(U)
)

α(φg(U))

G (U)
(φg)∗

G
(

φg(U)
)

.

Definition A.2 (Invariant sheaves). — If G acts trivially on X, and if F is any G-sheaf,
the associated sheaf of invariants, denoted F G, is the sheaf associated to the complete
presheaf

F G(U) := (

F (U)
)G

where (F (U))G denotes the submodule of G-invariant elements of the OX(U)-module
F (U).

In the remainder of the present Section A, we consider the setup where G acts on
X, with quotient morphism q : X → X/G. Let G be a coherent G-sheaf of OX-modules.
Then, the push-forward q∗G is a G-sheaf on X/G for the trivial G-action on X/G, and
its associated sheaf of invariants will be denoted by (q∗G )G. The following lemmas collect
fundamental properties of the functor q∗(·)G.

Lemma A.3 (Exactness Lemma). — Let G be a finite group acting on a normal variety X, and

let q : X → X/G be the quotient morphism. Let G be a coherent G-sheaf of OX-modules. Then, the

G-invariant push-forward (q∗G )G is a coherent sheaf of OX/G-modules. Furthermore, if

0 → F → G → H → 0

is a G-equivariant exact sequence of OX-modules, the induced sequence

(A.3.1) 0 → (q∗F )G → (q∗G )G → (q∗H )G → 0

is likewise exact.
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Proof. — The sequence (A.3.1) is clearly left-exact. For right-exactness, it fol-
lows from a classical result of Maschke [Mas1899] that any finite group in charac-
teristic zero is linearly reductive. In other words, any finite-dimensional representation
of G splits as a direct sum of irreducible G-subrepresentations. It follows that for ev-
ery G-representation V, there exists a Reynolds operator, i.e., a G-invariant projection
R : V � VG, see for example, [Fog69, Section V-2]. It follows that VG is a direct sum-
mand of V.

So, if G is any coherent G-sheaf on X, it follows from the above that (q∗G )G is a
direct summand of the coherent sheaf q∗(G ) on X/G. Consequently, (q∗G )G is likewise
coherent.

Another consequence of the existence of the Reynolds operator is that for ev-
ery G-equivariant map ϕ : V → W between (not necessarily finite-dimensional) G-
representations, the induced map ϕG : VG → WG between the subspaces of invariants
is still surjective. This shows right-exactness of (A.3.1) and implies the claim. �

Lemma A.4 (Reflexivity Lemma). — Let G be a finite group, X a normal G-variety, and G a

reflexive coherent G-sheaf. Then, the G-invariant push-forward (q∗G )G is also reflexive.

Proof. — We have to show that (q∗G )G is torsion-free and normal. Since G is
torsion-free, q∗G is torsion-free, and hence (q∗G )G is torsion-free as a subsheaf of q∗G . To
prove normality, let U be an affine open subset of X/G and Z ⊂ U a closed subvariety of
codimension at least 2. Let

s ∈ H0
(

U \ Z, (q∗G )G
) = H0

(

q−1(U) \ q−1(Z), G
)G

.

Since q is finite, q−1(Z) has codimension at least 2 in q−1(U). Since G is reflexive, hence
normal, the section s extends to a G-invariant section of G over q−1(U). �

Lemma A.5 (Splitting Lemma). — Let G be a finite group acting on a normal variety X with

quotient q : X → X/G. Let

(A.5.1) 0 → H → F → G → 0

be a G-equivariant exact sequence of locally free G-sheaves on Y. Then, the induced exact sequence

(A.5.2) 0 → (q∗H )G → (q∗F )G → (q∗G )G → 0

is locally split in the analytic topology.

Proof. — Let z ∈ X/G be any point and x ∈ q−1(z) any preimage point, with
isotropy group Gx. By the holomorphic slice theorem, cf. [Hol61, Hilfssatz 1] or [Hei91,
Section 5.5], there exists an open Stein neighbourhood U = U(z) ⊆ X/G and an open



DIFFERENTIAL FORMS ON LOG CANONICAL SPACES

Gx-invariant Stein neighbourhood V = V(x) ⊆ X such that q−1(U) is G-equivariantly
biholomorphic to the twisted product

G ×Gx
V := (G × V)/Gx,

where Gx acts on G × V as

Gx × (G × V) → G × V
(

h, (g, v)
) �→ (gh−1, h · v).

Let q′ : V → V/Gx denote the quotient of V by Gx. Observe then that the inclusion
ı : V ↪→ q−1(U) induces a biholomorphic map

ı̄ : V/Gx

�−→ U = q−1(U)/G.

Shrinking U, if necessary, we may assume that the sequence (A.5.1) is split on
V with splitting s : G |V → F |V. By averaging s over Gx we obtain a sheaf morphism
s̄ : (q′

∗(G |V))Gx → (q′
∗(F |V))Gx that splits the exact sequence

0 → (

q′
∗(H |V)

)Gx → (

q′
∗(F |V)

)Gx → (

q′
∗(G |V)

)Gx → 0.

Finally we notice that for any coherent G-sheaf S on q−1(U), the inclusion ı induces a
canonical isomorphism

φS : ı̄∗(q∗S )G �−→ (

q′
∗(S |V)

)Gx
.

Applying this observation to F and G , we obtain a commutative diagram

ı̄∗(q∗F )G

φF

ı̄∗(q∗G )G

φG

(

q′
∗(F |V)

)Gx
(

q′
∗(G |V)

)Gx

s̄

The map φF ◦ s̄ ◦ φG then is the desired splitting. �

Lemma A.6 (Restriction Lemma). — Let G be a finite group, X a normal G-variety, and F
locally free coherent G-sheaf on X. Let q : X → X/G be the quotient map, and let 
 be a normal

G-invariant subvariety of X with image D = q(
). Then, we have a canonical surjection

((q∗F )G|D)∗∗ � (q|
)∗(F |
)G.
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Proof. — Let ı : 
 ↪→ X denote the inclusion. Clearly, the restriction morphism
F � ı∗(F |
) is G-equivariant. Since q is finite, we obtain a surjection q∗(F ) �
q∗(ı∗(F |
)). The Exactness Lemma A.3 implies that the induced map of invariants
(q∗F )G → q∗(ı∗(F |
))G is still surjective. This morphism stays surjective after restric-
tion to D, i.e. we obtain a surjection

ϕ : (q∗F )G|D � q∗(ı∗(F |
))G|D = (q|
)∗(F |
)G.

Since the restriction F |
 is locally free and 
 is normal by assumption, the Reflexivity
Lemma A.4 implies that (q|
)∗(F |
)G is reflexive and hence torsion-free. As a con-
sequence ϕ factors over the natural map (q∗F )G|D → ((q∗F )G|D)∗∗. This shows the
claim. �
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