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1. Introduction

Projective spaces and hyperquadrics are the simplest projective algebraic
varieties, and they can be characterized in many ways. The aim of this paper
is to provide a new characterization of them in terms of positivity properties
of the tangent bundle (Theorem 1.1).

The first result in this direction was Mori’s proof of the Hartshorne
conjecture in [Mor79] (see also Siu and Yau [SY80]), that characterizes
projective spaces as the only manifolds having ample tangent bundle. Then,
in [Wah83], Wahl characterized projective spaces as the only manifolds
whose tangent bundles contain ample invertible subsheaves. Interpolating
Mori’s and Wahl’s results, Andreatta and Wiśniewski gave the following
characterization:

Theorem [AW01]. Let X be a smooth complex projective n-dimensional
variety. Assume that the tangent bundle TX contains an ample locally free
subsheaf E of rank r. Then X � Pn and either E � OPn(1)⊕r or r = n and
E = TPn .
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We note that earlier, in [CP98], Campana and Peternell obtained the
same result for r ≥ n − 2.

Let E be an ample locally free subsheaf of TPn of rank p < n. By taking
its determinant, we obtain a non-zero section in H0(Pn,∧pTPn ⊗OPn(−p)).
On the other hand, most sections in H0(Pn,∧pTPn ⊗OPn(−p)) do not come
from ample locally free subsheaves of TPn .

This motivates the following characterization of projective spaces and
hyperquadrics, which was conjectured by Beauville in [Bea00]. Here Qp

denotes a smooth quadric hypersurface in Pp+1, and OQp(1) denotes the re-
striction of OPp+1(1) to Qp. When p = 1, (Q1,OQ1(1)) is just (P1,OP1(2)).

Theorem 1.1. Let X be a smooth complex projective n-dimensional variety
and L an ample line bundle on X. If H0(X,∧pTX ⊗ L −p) �= 0 for some
positive integer p, then either (X,L ) � (Pn,OPn (1)), or p = n and
(X,L ) � (Qp,OQp(1)).

The statement of this theorem can be interpreted in the following way.
Let X be a smooth complex projective n-dimensional variety and L an
ample line bundle on X. Consider the sheaf TL : = TX ⊗ L −1. Then
Wahl’s theorem [Wah83] says that if H0(X,TL ) �= 0 then X � Pn . The-
orem 1.1 generalizes this statement to the case when one only assumes that
H0(X,∧pTL ) �= 0 for some 0 < p ≤ n.

In order to prove Theorem 1.1, first notice that X is uniruled by [Miy87,
Corollary 8.6]. Next observe that if the Picard number of X is 1, then it
is necessarily a Fano variety. If the Picard number is larger than 1, then
we fix a minimal covering family H of rational curves on X, and follow
the strategy in [AW01] of looking at the H-rationally connected quotient
π : X◦ → Y ◦ of X (see Sect. 2 for definitions). We show that any non-
zero section s ∈ H0(X,∧pTX ⊗ L −p) restricts to a non-zero section s◦ ∈
H0(X◦,∧pTX◦/Y◦ ⊗ L −p), except in the very special case when p = 2 and
X � Q2. This is achieved in Sect. 5. Afterwards we need to deal with two
cases: the case when X is a Fano manifold with Picard number 1, and the
case in which the H-rationally connected quotient π : X◦ → Y ◦ is either
a projective space bundle or a quadric bundle, and H0(X◦,∧pTX◦/Y◦ ⊗
L −p) �= 0.

When X is a Fano manifold with Picard number ρ(X) = 1, the result
follows from the following.

Theorem 1.2 (= Theorem 6.3). Let X be a smooth n-dimensional complex
projective variety with ρ(X) = 1, L an ample line bundle on X, and
p a positive integer. If H0(X, T ⊗p

X ⊗ L −p) �= 0, then either (X,L ) �
(Pn,OPn(1)), or p = n ≥ 3 and (X,L ) � (Qp,OQp(1)).

The paper is organized as follows. In Sect. 2 we gather old and new re-
sults about minimal covering families of rational curves and their ration-
ally connected quotients. In Sect. 3 we show that the relative anticanonical
bundle of a generically smooth surjective morphism from a normal project-
ive Q-Gorenstein variety onto a smooth curve is never ample. This will be
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used to treat the case when the H-rationally connected quotient π : X◦ → Y ◦
is a quadric bundle. In Sect. 4, we show that p-derivations can be lifted to the
normalization. This technical result will be used in the following section,
which is the technical core of the paper. In Sect. 5, we study the behavior
of non-zero global sections of bundles of the form ∧pTX ⊗ M with respect
to fibrations X → Y . We also prove some general vanishing results, such
as the following.

Theorem 1.3 (= Corollary 5.5). Let X be a smooth complex projective
variety and L an ample line bundle on X. If H0(X,∧pTX ⊗L −p−1−k) �= 0
for integers p ≥ 1 and k ≥ 0, then k = 0 and (X,L ) � (Pp,OPp(1)).

Finally, in Sect. 6 we prove Theorem 1.2 and put things together to prove
Theorem 1.1.

Notation and definitions. Throughout the present article we work over the
field of complex numbers unless otherwise noted. By a vector bundle we
mean a locally free sheaf and by a line bundle an invertible sheaf. If X is
a variety and x ∈ X, then κ(x) denotes the residue field OX,x/mX,x . Given
a variety X, we denote by ρ(X) the Picard number of X. If E is a vector
bundle over a variety X, we denote by E ∗ its dual vector bundle, and by
P(E ) the Grothendieck projectivization ProjX(Sym(E )). For a morphism
f : X → T , the fiber of f over t ∈ T is denoted by Xt .

Acknowledgements. The work on this project benefitted from support from various institu-
tions and from discussions with some of our colleagues. In particular, the second and third
named authors’ visits to the Instituto Nacional de Matemática Pura e Aplicada and the first
and second named authors’ visit to the Korea Institute of Advanced Studies were essentially
helpful. The former visits were made possible by support from the ANR, the NSF and IMPA.
The latter took place during a workshop organized by Jun-Muk Hwang with support from
KIAS. We would like to thank these institutions for their support and Jun-Muk Hwang for
his hospitality and for helpful discussions. We would also like to thank János Kollár for
helpful discussions and suggestions that improved both the content and the presentation of
this article. Finally, we would like to thank the referee for helpful comments.

2. Minimal rational curves on uniruled varieties

In this section we gather some properties of minimal covering families of
rational curves and their corresponding rationally connected quotients. For
more details see [Kol96], [Deb01], or [AK03].

Let X be a smooth complex projective uniruled variety and H an irre-
ducible component of RatCurvesn(X). Recall that only general points in H
are in 1:1-correpondence with the associated curves in X.

We say that H is a covering family of rational curves on X if the cor-
responding universal family dominates X. A covering family H of rational
curves on X is called unsplit if it is proper. It is called minimal if, for a gen-
eral point x ∈ X, the subfamily of H parametrizing curves through x is
proper. As X is uniruled, a minimal covering family of rational curves on X
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always exists. One can take, for instance, among all covering families of
rational curves on X one whose members have minimal degree with respect
to a fixed ample line bundle.

Fix a minimal covering family H of rational curves on X. Let C be
a rational curve corresponding to a general point in H , with normalization
morphism f : P1 → C ⊂ X. We denote by [C] or [ f ] the point in H
corresponding to C. We denote by f ∗T +

X the subbundle of f ∗TX defined by

f ∗T +
X = im

[
H0

(
P

1, f ∗TX(−1)
) ⊗ OP1(1) → f ∗TX

]
↪→ f ∗TX .

By [Kol96, IV.2.9], if [ f ] is a general member of H , then f ∗TX � OP1(2)⊕
OP1(1)⊕d ⊕ O⊕(n−d−1)

P1 , where d = deg( f ∗TX ) − 2 ≥ 0.
Given a point x ∈ X, we denote by Hx the normalization of the sub-

scheme of H parametrizing rational curves passing through x. By [Kol96,
II.1.7, II.2.16], if x ∈ X is a general point, then Hx is a smooth projective
variety of dimension d = deg( f ∗TX ) − 2. We remark that a rational curve
that is smooth at x is parametrized by at most one element of Hx .

Let H1, . . . , Hk be minimal covering families of rational curves on X.
For each i, let Hi denote the closure of Hi in Chow(X). We define the fol-
lowing equivalence relation on X, which we call (H1, . . . , Hk)-equivalence.
Two points x, y ∈ X are (H1, . . . , Hk)-equivalent if they can be connected
by a chain of 1-cycles from H1 ∪ · · · ∪ Hk . By [Cam92] (see also [Kol96,
IV.4.16]), there exists a proper surjective morphism π◦ : X◦ → Y ◦
from a dense open subset of X onto a normal variety whose fibers are
(H1, . . . , Hk)-equivalence classes. We call this map the (H1, . . . , Hk)-
rationally connected quotient of X. When Y ◦ is a point we say that X
is (H1, . . . , Hk)-rationally connected.

Remark 2.1. By [Kol96, IV.4.16], there is a universal constant c, depending
only on the dimension of X, with the following property. If H1, . . . , Hk are
minimal covering families of rational curves on X, and x, y ∈ X are general
points on a general (H1, . . . , Hk)-equivalence class, then x and y can be
connected by a chain of at most c rational cycles from H1 ∪ · · · ∪ Hk.

The next two results are special features of the (H1, . . . , Hk)-rationally
connected quotient of X when the families H1, . . . , Hk are unsplit. The first
one says that π◦ can be extended in codimension 1 to an equidimensional
proper morphism with integral fibers, but possibly allowing singular fibers.
The second one describes the general fiber of the H-rationally connected
quotient of X when H is unsplit and Hx is irreducible for general x ∈ X.

Lemma 2.2. Let X be a smooth complex projective variety and H1, . . . , Hk
unsplit covering families of rational curves on X. Then there is an open
subset X◦ of X, with codimX(X\X◦) ≥ 2, a smooth variety Y ◦, and a proper
surjective equidimensional morphism with irreducible and reduced fibers
π◦ : X◦ → Y ◦ which is the (H1, . . . , Hk)-rationally connected quotient
of X.
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Proof. The fact that the (H1, . . . , Hk)-rationally connected quotient of X
can be extended in codimension 1 to an equidimensional proper morphism
follows from the proof of [BCD07, Proposition 1], see also [AW01, 3.1,3.2].
This holds even in the more general context of quasi-unsplit covering fam-
ilies on Q-factorial varieties. In [BCD07, Proposition 1] this is established
for a single quasi-unsplit family, but the same proof works for finitely many
quasi-unsplit families. For convenience we review the construction of that
extension.

Let π◦ : X◦ → Y ◦ be the (H1, . . . , Hk)-rationally connected quotient
of X. By shrinking Y ◦ if necessary, we may assume that π◦ is smooth. Let
Y → Chow(X) be the normalization of the closure of the image of Y ◦ in
Chow(X), and let U ⊂ Y × X be the restriction of the universal family to Y .
Denote by p : U → Y and q : U → X the induced natural morphisms.
Notice that q : U → X is birational.

Let 0 ∈ Y and set U0 = p−1(0). Then q(U0) is contained in an
(H1, . . . , Hk)-equivalence class. This follows from taking limits of chains
of rational curves from the families H1, . . . , Hk (see Remark 2.1), observ-
ing the assumption that the Hi’s are unsplit, and the fact that the image of
a general fiber of p in X is an (H1, . . . , Hk)-equivalence class.

Let E be the exceptional locus of q. Since X is smooth, E has pure
codimension 1 in U. Set S = q(E) ⊂ X. This is a set of codimension at
least 2 in X. We shall show that S is closed with respect to (H1, . . . , Hk)-
equivalence. From that it will follow that the morphism p|U\E : U \ E →
Y \ p(E) is proper and induces a proper equidimensional morphism X\S →
Y \ p(E) extending π◦. Let L be an effective ample divisor on Y . Then there
exists an effective q-exceptional divisor F on U and an effective divisor D
on X such that p∗L + F = q∗ D. First we claim that supp F = E. Indeed,
let C ⊂ E be any curve contracted by q. Then C is not contracted by p since
U ⊂ Y × X. Hence F · C = q∗ D · C − p∗L · C < 0, and so C ⊂ supp F.
This proves the claim. Notice that the general fiber of p does not meet
E. Therefore, for any curve C ⊂ U contained in a general fiber of p, we
have q∗ D · C = 0. This shows in particular that D · � = 0 for any curve �
from any of the families H1, . . . , Hk. If �̃ ⊂ U is mapped onto � by q, then
F · �̃ = q∗ D · �̃ − p∗L · �̃ ≤ 0. Hence either �̃ is contained in E = supp F
or it is disjoint from it. Therefore, if � is a curve from any of the families
H1, . . . , Hk, then either � ⊂ S or �∩ S = ∅. In other words, S is closed with
respect to (H1, . . . , Hk)-equivalence.

Replace X◦ with X \ S and Y ◦ with Y \ p(E), obtaining a proper equidi-
mensional morphism π◦ : X◦ → Y ◦ with codim(X \ X◦) ≥ 2. Since Y is
normal, we may also replace Y ◦ with its smooth locus and we still have the
condition codim(X \ X◦) ≥ 2.

The locus B of Y ◦ over which π◦ has multiple fibers has codimension
at least 2 in Y ◦. To see this, compactify Y ◦ to a smooth projective variety Ȳ
and take a resolution π̄ : X̄ → Ȳ of the indeterminacies of X ��� Ȳ with X̄
smooth and projective. Let C̄ ⊂ Ȳ be a smooth projective curve obtained by
intersecting dim Ȳ − 1 general very ample divisors on Ȳ . Let π̄C̄ : X̄C̄ → C̄
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be the corresponding morphism. Then X̄C̄ is smooth projective and the gen-
eral fiber of π̄ is rationally connected. Hence π̄C̄ has a section by [GHS03],
and thus it cannot contain multiple fibers. Now, replace Y ◦ with Y ◦ \ B to
obtain an equidimensional proper morphism with no multiple fibers.

Let F be a general fiber of π◦. For each i, denote by H j
i , 1 ≤ j ≤ ni , the

unsplit covering families of rational curves on F whose general members
correspond to rational curves on X from the family Hi . Let [H j

i ] denote the
class of a member of H j

i in N1(F) and H := {[H j
i ] | i = 1, . . . , k, j =

1, . . . , ni}. Then by [Kol96, IV.3.13.3], N1(F) is generated by H .
Finally we shall show that the locus B′ of Y ◦ over which the fibers of π◦

are not integral has codimension at least 2 in Y ◦. Let C ⊂ Y ◦ be a smooth
curve obtained by intersecting dim Y ◦−1 general very ample divisors on Y ◦.
Let πC : XC → C be the corresponding morphism. Then XC is smooth. We
denote the image of the classes [H j

i ]’s in N1(XC) and their collection H
by the same symbols. By taking limits of chains of rational curves from the
families H1, . . . , Hk and applying [Kol96, IV.3.13.3] (see Remark 2.1), we
see that any curve contained in any fiber of πC is numerically proportional
in N1(XC) to a linear combination of the [H j

i ]’s. Hence N1(XC/C) is
generated by H . Therefore, all fibers of πC are irreducible. Indeed, if F ′

0
is an irreducible component of a reducible fiber F0, then F ′

0 is a Cartier
divisor on XC, and F ′

0 · [H j
i ] = 0 for every H j

i . On the other hand, there is
a curve � ⊂ F0 such that F ′

0 · � > 0, contradicting the fact that N1(XC/C)
is generated by H . Since there are no multiple fibers, the fibers are also
reduced. Finally, we replace Y ◦ with Y ◦ \ B′ and obtain a morphism with
the required properties. ��
Proposition 2.3. Let X be a smooth complex projective variety and H
an unsplit covering family of rational curves on X. Assume that Hx is
irreducible for general x ∈ X. Let π◦ : X◦ → Y ◦ be the H-rationally
connected quotient of X. Then the general fiber of π◦ is a Fano manifold
with Picard number 1.

Proof. Let Xt be a general fiber of π◦, and suppose ρ(Xt) �= 1. Denote by
[H] the class of the members of H in N1(X). By [Kol96, IV.3.13.3], every
proper curve on Xt is numerically proportional to [H] in N1(X). There
exists an irreducible component Ht of HXt = {[C] ∈ H | C ⊂ Xt} which is
an unsplit covering family of rational curves on Xt . Since Hx is irreducible
for general x ∈ X, such a component Ht is unique. Since ρ(Xt) �= 1, Xt is
not Ht-rationally connected by [Kol96, IV.3.13.3]. Let σt : X◦

t → Z◦
t be the

(nontrivial) Ht-rationally connected quotient of Xt . Notice that for every
z ∈ Z◦

t there is a curve Cz ⊂ Xt numerically proportional to [H] in N1(X),
meeting the fiber of σt over z, but not contained in it. Since Ht is unique,
there is a dense open subset X ′ of X and a fibration σ : X ′ → Z ′ whose
fibers are fibers of σt for some t ∈ Y ◦. Moreover, there is a curve C ⊂ X
numerically proportional to [H] in N1(X), meeting X ′, and not contracted
by σ . But this is impossible. Indeed, let L ′ be an effective divisor on Z ′
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meeting but not containing the image of C by σ . Let L be the closure of
σ−1(L ′) in X. Then L · C > 0 while L · � = 0 for any curve � parametrized
by H lying on a fiber of σ . ��
Remark 2.4. The statement of Proposition 2.3 does not hold in general if
we do not assume that Hx is irreducible for general x ∈ X. Indeed, one may
take π◦ : X◦ → Y ◦ to be a suitable family of quadric surfaces in P3 and H
to be the family of lines on the fibers of π◦.

Definition 2.5. Let X be a smooth complex projective variety, and H a min-
imal covering family of rational curves on X. Let x ∈ X be a general point.
Define the tangent map τx : Hx ��� P(Tx X∗) by sending a curve that is
smooth at x to its tangent direction at x. Define Cx to be the image of τx
in P(Tx X∗). This is called the variety of minimal rational tangents at x
associated to the minimal family H .

The map τx : Hx → Cx is in fact the normalization morphism by [Keb02]
and [HM04]. If τx is an immersion at every point of Hx , then all curves
parametrized by Hx are smooth at x by [Kol96, V.3.6] and [Ara06, Prop-
osition 2.7], and, as a consequence, there is a one-to-one corresponcence
between points of Hx and the associated curves on X. The variety Cx
comes with a natural projective embedding into P(Tx X∗). This embedding
encodes important geometric properties of X. The following result was
proved in [Ara06] and gives a structure theorem for varieties whose variety
of minimal rational tangents is linear.

Theorem 2.6 [Ara06]. Let X be a smooth complex projective variety, H
a minimal covering family of rational curves on X, and Cx ⊂ P(Tx X∗) the
corresponding variety of minimal rational tangents at x ∈ X. Suppose that
for a general x ∈ X, Cx is a d-dimensional linear subspace of P(Tx X∗).

Then there exists an open subset X◦ ⊂ X and a Pd+1-bundle ϕ◦ :
X◦ → T ◦ over a smooth base with the property that every rational curve
parametrized by H and meeting X◦ is a line on a fiber of ϕ◦. In particular,
ϕ◦ : X◦ → T ◦ is the H-rationally connected quotient of X. If H is unsplit,
then we may take X◦ such that codim(X \ X◦) ≥ 2.

Proposition 2.7. Let X be a smooth complex projective variety, H a min-
imal covering family of rational curves on X, and π◦ : X◦ → Y ◦ the
H-rationally connected quotient of X. Suppose that the tangent bundle TX
contains a subsheaf D such that f ∗D is an ample vector bundle for a gen-
eral member [ f ] ∈ H. Then, after shrinking X◦ and Y ◦ if necessary, π◦
becomes a projective space bundle and the inclusion D|X◦ ↪→ TX◦ factors
through the natural inclusion TX◦/Y◦ ↪→ TX◦ .

Proof. Let Cx ⊂ P(Tx X∗) be the variety of minimal rational tangents as-
sociated to H at a general point x ∈ X. By [Ara06, Proposition 4.1],
Cx is a union of linear subspaces of P(Tx X∗) containing P(D∗ ⊗ κ(x)).
In [Ara06, Proposition 4.1] D is assumed to be ample, but the proof only
uses the fact that f ∗D is a subsheaf of f ∗T +

X for general [ f ] ∈ H .



C. Araujo et al.

Lemma 2.8 below implies that Cx is irreducible, and thus a linear sub-
space of P(Tx X∗).

Now we apply Theorem 2.6 to conclude that after shrinking X◦ and Y ◦
if necessary, π◦ becomes a projective space bundle. Moreover, for a general
point x ∈ X◦, the stalk Dx is contained in (TX◦/Y◦)x . Since the cokernel
of TX◦/Y◦ ↪→ TX◦ is torsion free, we conclude that there is an inclusion
D|X◦ ↪→ TX◦/Y◦ factoring D|X◦ ↪→ TX◦ . ��

The following lemma is Proposition 2.2 of [Hwa07]. In [Hwa07, Prop-
osition 2.2] X is assumed to have Picard number 1, but this assumption is
not used in the proof.

Lemma 2.8. Let X be a smooth complex projective variety, H a minimal
covering family of rational curves on X, and Cx ⊂ P(Tx X∗) the corres-
ponding variety of minimal rational tangents at x ∈ X. Suppose that for
a general x ∈ X, Cx is a union of linear subspaces of P(Tx X∗).

Then for a general point x ∈ X the intersection of any two irreducible
components of Cx is empty.

3. The relative anticanonical bundle of a fibration

In this section we prove that the relative anticanonical bundle of a generically
smooth surjective morphism from a normal projectiveQ-Gorenstein variety
onto a smooth curve cannot be ample. In fact, we prove the following
more general result. Note that a similar theorem was proved in [Miy93,
Theorem 2].

Theorem 3.1. Let X be a normal projective variety, f : X → C a surjective
morphism onto a smooth curve, and ∆ ⊆ X a Weil divisor such that (X,∆)
is log canonical over the generic point of C. Then −(KX/C + ∆) is not
ample.

Proof. Let X
g→ C̃

σ→ C be the Stein factorization of f . Then KC̃ =
σ∗KC +Rσ where Rσ is the ramification divisor of σ and so −(KX/C̃ +∆) =
−(KX/C + ∆) + g∗ Rσ . Notice that Rσ is effective, hence nef, and therefore
if −(KX/C + ∆) is ample, then so is −(KX/C̃ + ∆).

Thus, in order to prove the statement, we may assume that f has con-
nected fibers. Let us now assume to the contrary that −(KX/C +∆) is ample.
Let π : X̃ → X be a log resolution of singularities of (X,∆), A an ample
divisor on C, and m � 0 such that D = −m(KX/C + ∆) − f ∗ A is very
ample. Then

KX̃ + π−1
∗ ∆ ∼Q π∗(KX + ∆) + E+ − E−,

where E+ and E− are effective π-exceptional divisors with no common
components and such that the support of π−1∗ ∆+ E+ + E− is an snc divisor.
By the log canonical assumption, E− can be decomposed as E− = E + F
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where �E� is reduced and E− agrees with E over the generic point of C.
Set f̃ = f ◦ π and let D̃ ∈ |π∗ D| be a general member. Setting ∆̃ =
π−1∗ ∆ + 1

m D̃ + E, we obtain that (X̃, ∆̃) is log canonical and that

KX̃ + ∆̃ + F ∼Q f̃ ∗KC + E+ − 1

m
f̃ ∗ A.(3.1.1)

Furthermore, since E+ is π-exceptional, π∗OX̃(lE+) is an ideal sheaf in
OX for any l ∈ Z (see for instance [Deb01, Lemma 7.11]). Then for any
l ∈ N sufficiently divisible,

f̃∗OX̃(lm(KX̃/C + ∆̃))
ι

↪→ f̃∗OX̃(lm(KX̃/C + ∆̃ + F))

� f̃∗OX̃(l(mE+ − f̃ ∗ A)) � f̃∗OX̃(lmE+) ⊗ OC(−lA) ⊆ OC(−lA).

Finally, observe that

• f̃∗OX̃(lm(KX̃/C + ∆̃ + F)) is nonzero by (3.1.1) and because E+ is
effective,

• f̃∗OX̃(lm(KX̃/C + ∆̃)) is semi-positive by [Cam04, Thm. 4.13], and
• ι is an isomorphism over a nonempty open subset of C.

Therefore, f̃∗OX̃(lm(KX̃/C+∆̃)) is a non-zero semi-positive sheaf contained
in OC(−lA), but that contradicts the fact that A is ample. ��

4. Lifting p-derivations to the normalization

In this section we show that p-derivations (see Definition 4.4 below) can
be lifted to the normalization. This is a generalization of Seidenberg’s
theorem in [Sei66]. The proofs in this section follow closely the proof of
Theorem 2.1.1 in [Käl06] and we also use the following result from [Käl06].

Lemma 4.1 [Käl06, Lemma 2.1.2]. Let (A,m, k) be a local Noetherian
domain and ∂ a derivation of A. Let ν be a discrete valuation on the
fraction field K(A) with center in A. Then there exists a c ∈ Z such that
ν
(

∂(x)
x

) ≥ c for any x ∈ K(A) \ {0}.
Definition 4.2. Let R be a ring, A an R-algebra and M an A-module. Denote
by ΩA/R the module of relative differentials of A over R. Given a positive
integer p, we denote by Ω

p
A/R the p-th wedge power of ΩA/R. A p-derivation

of A over R with values in M is an A-linear map ∂ : Ω
p
A/R → M. Such

a map ∂ induces a skew symmetric map K(A)⊕p → M ⊗A K(A), where
K(A) denotes the fraction field of A. We use the same symbol ∂ to denote
this induced map. When M = A and R is clear from the context, we call ∂
simply a p-derivation of A.

Lemma 4.3. Let (A,m, k) be a local Noetherian domain, p a positive
integer, and ∂ a p-derivation of A. Let ν be a discrete valuation on the
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fraction field K(A) with center in A. Then there exists c ∈ Z such that
ν
( ∂(x1,...,x p)

x1···x p

) ≥ c for any x1, . . . , xp ∈ K(A) \ {0}.
Proof. We use induction on p. If p = 1, this is Lemma 4.1. Suppose now
that p ≥ 2 and let (A,m, k) be a local Noetherian domain, ∂ a p-derivation
of A, and ν a discrete valuation on the fraction field K(A) with center in A.
Let m1, . . . , mr be generators of the maximal ideal m.

Using the formula

∂(x1,1x1,2, . . . , xp,1xp,2)

x1,1x1,2 · · · xp,1xp,2
=

∑ ∂(x1,i1, . . . , xp,i p)

x1,i1 · · · xp,i p

,

we get

ν

(
∂(x1,1x1,2, . . . , xp,1xp,2)

x1,1x1,2 · · · xp,1xp,2

)
≥ min

{
ν

(
∂(x1,i1, . . . , xp,i p)

x1,i1 · · · xp,i p

)}

for x1,1, x1,2, . . . , xp,1, xp,2 ∈ A \ {0}. Further observe that

∂
(
x−1

1 , x2, . . . , xp
)

x−1
1 x2 · · · xp

= −∂(x1, . . . , xp)

x1 · · · xp
.

Also, if a ∈ A, then a may be written as a sum of products mi1 · · · mik u with
u ∈ A \ m. Therefore we only have to check that the required inequality
holds for x1, . . . , xp ∈ {m1, . . . , mr} ∪ (A \m).

If x1, . . . , xp ∈ A \m then

ν

(
∂(x1, . . . , xp)

x1 · · · xp

)
= ν(∂(x1, . . . , xp)) ≥ 0.

Suppose now that at least one of the xi ’s is inm. For simplicity we assume
that x1, . . . , xl ∈ A \ m and xl+1, . . . , xp ∈ {m1, . . . , mr}, 0 ≤ l < p. We
may view ∂(·, . . . , ·, xl+1, . . . , xp) as an l-derivation of A. The result then
follows by induction. ��
Definition 4.4. Let S be a scheme, X a scheme over S, and L a line bundle
on X. Denote by ΩX/S the sheaf of relative differentials of X over S, and
by Ω

p
X/S its p-th wedge power for p ∈ N. A p-derivation of X over S with

values in L is a morphism of sheaves ∂ : Ω
p
X/S → L . When S is the

spectrum of a field and L is clear from the context, we drop S and L from
the notation and call ∂ simply a p-derivation on X.

Proposition 4.5. Let X be a Noetherian integral scheme over a field k of
characteristic zero and η : X̃ → X its normalization. Let L be a line
bundle on X, p a positive integer, and ∂ a p-derivation with values in L .
Then ∂ extends to a unique p-derivation ∂̄ on X̃ with values in η∗L .
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Proof. The uniqueness of ∂̄ is clear since L is torsion free and η is birational.
The existence of the lifting can be established locally. So we may assume
that X is the spectrum of an integral k-algebra A, L is trivial, and ∂ is
a p-derivation of A. Let A′ denote the integral closure of A in its fraction
field K(A). There exists a unique extension of ∂ to a p-derivation of K(A),
which we also denote by ∂. We must prove that ∂(A′, . . . , A′) ⊂ A′.

First we reduce the problem to the case when A is a 1-dimensional
local ring and A′ is a DVR. Since A′ is integrally closed in K(A), A′ is
the intersection of its localizations at primes of height one [Mat80, 2. The-
orem 38]. Let p′ be a prime of height one of A′, and set p = p′ ∩ A.
Notice that ∂(Ap, . . . , Ap) ⊂ Ap, and the result follows if we prove that
∂(A′

p′, . . . , A′
p′) ⊂ A′

p′ . Hence we may assume that A is a 1-dimensional
local ring and A′ is a DVR. Denote by m and m′ the maximal ideals of A
and A′ respectively.

Next we further reduce the problem to the case when A and A′ are
complete local rings. Let R̄ be the completion of A′ with respect to the
m′-adic topology. Let Ā be the completion of A with respect to the m-adic
topology. Since Ā is 1-dimensional, there is an inclusion of local rings
Ā ⊂ R̄. Let ν be a discrete valuation of K(A′) whose valuation ring is A′.
By Lemma 4.3, ∂ is a continuous p-derivation of R with values in K(A′).
Hence it has a unique extension to a continuous p-derivation ∂̄ of K(R̄).
Notice that the condition ∂(A, . . . , A) ⊂ A implies that ∂( Ā, . . . , Ā) ⊂ Ā
by the Artin–Rees lemma. Since K(A) ∩ R̄ = A′, the result then follows if
we prove that ∂(R̄, . . . , R̄) ⊂ R̄. Therefore we may assume that A and A′
are complete 1-dimensional local rings.

Now we use induction on p. If p = 1, this is Seidenberg’s theorem
[Sei66], so we may assume that p ≥ 2. Let kA be a coefficient field in A,
and kA′ a coefficient field in A′ containing kA [Eis95, Theorem 7.8]. The
extension kA′ |kA is finite. Let t ∈ m′ be a uniformizing parameter. It suffices
to show that ∂(x1, . . . , xp) ∈ A′ for x1, . . . , xp ∈ kA′ ∪ {t}. Since ∂ is skew
symmetric and p ≥ 2, we have ∂(t, . . . , t) = 0. So we may assume that
x1 ∈ kA′ . Since kA′ |kA is finite and separable, there exists P(X) = ∑

ai Xi ∈
kA[X] such that P(x1) = 0 and P′(x1) �= 0. Thus

0 = ∂(P(x1), x2, . . . , xp) = P′(x1)∂(x1, . . . , xp) +
∑

∂(ai, x2, . . . , xp)x
i
1.

Finally, ∂(ai, _, . . . , _) may be viewed as a p − 1 derivation of A and so
∂(x1, . . . , xp) ∈ A′ by the induction hypothesis. ��

5. Sections of ∧pTX ⊗ M

The following lemma will be used several times in this section.

Lemma 5.1. Let Y be a smooth variety, π : X → Y a smooth morphism,
M a line bundle on X, and p ≥ 2 an integer. Suppose that for a general
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fiber, F, of π, H0(F,∧i TF ⊗ M |F ) = 0 for 0 ≤ i ≤ p − 2. Then there
exists an exact sequence:

0 → H0
(
X,∧pTX/Y ⊗ M

) → H0
(
X,∧pTX ⊗ M

)

→ H0
(
X,∧p−1TX/Y ⊗ π∗TY ⊗ M

)
.

Proof. The short exact sequence

0 → TX/Y → TX → π∗TY → 0

yields a filtration ∧pTX ⊗M = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fp ⊇ Fp+1 = 0
such that

Fi/Fi+1 � ∧iTX/Y ⊗ π∗ ∧p−i TY ⊗ M

for each i. In particular, one has the short exact sequence,

0 → ∧pTX/Y ⊗ M → Fp−1 → ∧p−1TX/Y ⊗ π∗TY ⊗ M → 0.(5.1.1)

The assumption that H0(F,∧i TF ⊗ M |F ) = 0 for 0 ≤ i ≤ p − 2 for
a general fiber of π implies that H0(X,Fi/Fi+1) = 0 for 0 ≤ i ≤ p − 2,
thus H0(X,∧pTX ⊗ M ) = H0(X,F0) = · · · = H0(X,Fp−1) and the
result follows from (5.1.1). ��

The condition that H0(F,∧i TF ⊗ M |F ) = 0 for 0 ≤ i ≤ p − 2 and F
a general fiber of π is easily verified when π is a projective space bundle
and M |F is sufficiently negative. In this case we get the following.

Lemma 5.2. Let Y be a smooth projective variety of dimension ≥ 1, E an
ample vector bundle of rank r + 1 ≥ 2 and N a nef line bundle on Y.
Consider the projective bundle π : X = P(E ) → Y with tautological line
bundle OP(E )(1). Let p, q ∈ N and assume that p ≥ 2. Then

H0(X,∧pTX/Y ⊗ OP(E )(−p − q) ⊗ π∗N −1) = 0.(5.2.1)

Proof. First observe, that if p > r then the statement is trivially true,
so we will assume that p ≤ r. Let i ∈ N, i < p. After twisting by
OP(E )(−p − q) ⊗ π∗N −1, the short exact sequence

0 → ∧p−i−1TX/Y → ∧p−i(π∗E ∗(1)) → ∧p−iTX/Y → 0

yields the exact sequence

· · · → Hi(X,∧p−i(π∗E ∗)(−i − q) ⊗ π∗N −1)(5.2.2)

→ Hi
(
X,∧p−iTX/Y (−p − q) ⊗ π∗N −1

)

→ Hi+1
(
X,∧p−i−1TX/Y (−p − q) ⊗ π∗N −1

) → · · · .
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Since i < p ≤ r and R jπ∗OP(E )(l) = 0 for 0 < j < r and for any l ∈ Z,
the Leray spectral sequence implies that

Hi(X,∧p−i(π∗E ∗)(−i − q) ⊗ π∗N −1)

= Hi
(
Y,∧p−iE ∗ ⊗ N −1 ⊗ π∗OP(E )(−i − q)

)
.

The sheaf π∗OP(E )(−i − q) is zero unless i = q = 0, in which case it is
isomorphic to OY . Furthermore, H0(Y,∧pE ∗ ⊗N −1) = 0 since E is ample
and N is nef, and hence

Hi(X,∧p−i(π∗E ∗)(−i − q) ⊗ π∗N −1) = 0

for 0 ≤ i ≤ p − 1. Therefore, by (5.2.2), one has a series of injections,

H0
(
X,∧pTX/Y (−p − q) ⊗ π∗N −1

)

↪→ H1
(
X,∧p−1TX/Y (−p − q) ⊗ π∗N −1

)
↪→ · · ·

↪→ Hi
(
X,∧p−i TX/Y (−p − q) ⊗ π∗N −1

)
↪→ · · ·

↪→ H p
(
X,OP(E )(−p − q) ⊗ π∗N −1).

By the Kodaira vanishing theorem H p(X,OP(E )(−p−q)⊗π∗N −1)=0,
and the statement follows. ��
Corollary 5.3. Let Y be a smooth projective variety of dimension ≥ 1 and
E an ample vector bundle of rank r + 1 ≥ 2 on Y. Consider the projective
bundle π : X = P(E ) → Y with tautological line bundle OP(E )(1). Suppose
that H0(X,∧pTX ⊗ OP(E )(−p − q) ⊗ π∗N −1) �= 0 for some integers
p ≥ 2, q ≥ 0, and some nef line bundle N on Y. Then Y � P1, E �
OP1(1) ⊕ OP1(1), p = 2, q = 0, and N � OP1 .

Proof. Let F �Pr denote a general fiber of π and set M =OP(E )(−p−q)⊗
π∗N −1. Then by Bott’s formula H0(F,∧iTF ⊗ M |F ) = 0 for every
0 ≤ i ≤ p − 2. Then Lemmas 5.1 and 5.2 imply that H0(X,∧p−1TX/Y ⊗
π∗(TY ⊗ N −1) ⊗ OP(E )(−p − q)) �= 0. By Bott’s formula again
H0(F,∧p−1TF(−p − q)) �= 0 implies that q = 0 and r = p − 1. Therefore
we have

0 �= H0(X,∧rTX/Y ⊗ π∗(TY ⊗ N −1) ⊗ OP(E )(−r − 1)
)

= H0(X, π∗(TY ⊗det E ∗ ⊗N −1)) � H0(Y, π∗π∗(TY ⊗det E ∗ ⊗N −1))

� H0(Y, TY ⊗ (det E ⊗ N︸ ︷︷ ︸
ample

)−1).

Now Wahl’s theorem [Wah83] yields that Y � Pm for some m > 0. Then
we immediately obtain that deg(det E ⊗ N ) ≤ 2. Since E is ample on
a projective space,

2 ≤ r + 1 = rk E ≤ deg E ≤ deg(det E ⊗N ) − deg N ≤ 2 − deg N ≤ 2.



C. Araujo et al.

Therefore all of these inequalities must be equalities and we have that
r + 1 = p = 2, q = 0 and N � OY . Furthermore, this implies that then
OPm (2) � det E ↪→ TPm and hence m = 1. ��
Proposition 5.4. Let X be a smooth projective variety, H ⊂ RatCurvesn(X)
a minimal covering family of rational curves on X, L an ample line bundle
on X, and M a nef line bundle on X such that c1(M ) · C > 0 for every
[C] ∈ H. Suppose that H0(X,∧pTX ⊗L −p ⊗M−1) �= 0 for some integer
p ≥ 1. Then (X,L ,M ) � (Pp,OPp(1),OPp(1)).

Proof. Let [ f ] ∈ H be a general member and write f ∗TX � OP1(2) ⊕
OP1(1)⊕d ⊕O⊕n−d−1

P1 . The condition that both f ∗L and f ∗M are ample and
that H0(X,∧pTX⊗L −p⊗M−1) �= 0 implies that f ∗L � OP1(1) � f ∗M ,
and thus H is unsplit. A non-zero section s ∈ H0(X,∧pTX ⊗L −p ⊗M−1)
and the contraction

Cθ : ∧pTX ⊗ L −p ⊗ M−1 → ∧p−1TX ⊗ L −p ⊗ M−1

induced by a differential form θ ∈ ΩX give rise to a non-zero map

ΩX → ∧p−1TX ⊗ L −p ⊗ M−1

θ �→ Cθ(s),

the dual of which is the non-zero map

ϕ : Ω
p−1
X ⊗ L p ⊗ M → TX .(5.4.1)

The sheaf f ∗(Ωp−1
X ⊗ L p ⊗ M ) is ample. Thus, by Proposition 2.7 and

Theorem 2.6, there is an open subset X◦ ⊂ X, with codimX(X \ X◦) ≥ 2,
a smooth variety Y ◦, and aPd+1-bundle π◦ : X◦ → Y ◦ such that any rational
curve from H meeting X◦ is a line on a fiber of π◦. Moreover, the restriction
of s to X◦ lies in H0(X◦,∧pTX◦/Y◦ ⊗ L |−p

X◦ ⊗ M |−1
X◦ ), and its restriction to

a general fiber F yields a non-zero section in H0(F,∧pTF ⊗L |−p
F ⊗M |−1

F ).
On the other hand, by Bott’s formula, H0(Pd+1,∧pTPd+1(−p − 1)) = 0
unless p = d + 1.

Suppose dim(Y ◦) > 0. Since codimX(X \ X◦) ≥ 2, Y ◦ contains a com-
plete curve through a general point. Let g : B → Y ◦ be the normalization of
a complete curve passing through a general point of Y ◦. Set XB := X◦×Y◦ B,
and denote by LXB and MXB the pullbacks of L and M to XB respectively.
Then XB → B is a Pp-bundle, and the section s induces a non-zero section
in H0(XB,∧pTXB/B⊗L

−p
XB

⊗M−1
XB

). But this is impossible by Corollary 5.3.
Thus dim(Y ◦) = 0 and X � Pp. ��
Corollary 5.5. Let X be a smooth projective variety and L an ample line
bundle on X. If H0(X,∧pTX ⊗ L −p−1−k) �= 0 for integers p ≥ 1 and
k ≥ 0, then k = 0 and (X,L ) � (Pp,OPp(1)).

Proof. Note that X is uniruled by [Miy87]. The result follows easily from
Proposition 5.4. ��
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Here is how we are going to apply these results under the assumptions of
Theorem 1.1. Suppose that H0(X,∧pTX ⊗ L −p) �= 0 for some ample line
bundle L on X and integer p ≥ 2. Then X is uniruled by [Miy87] and we fix
a minimal covering family H of rational curves on X. Let π : X◦ → Y ◦ be
the H-rationally connected quotient of X. By shrinking Y ◦ if necessary, we
may assume that Y ◦ and π are smooth. Corollary 5.5 provides the vanishing
required to apply Lemma 5.1 to π : X◦ → Y ◦, yielding the following.

Lemma 5.6. Let Y be a smooth variety, π : X → Y a smooth morphism
with connected fibers, and L a line bundle on X. Let F be a general
fiber of π. Suppose that F is projective and that the restriction L |F is
ample. If H0(X,∧pTX ⊗ L −p) �= 0 for some integer p ≥ 2, then either
(F,L |F) � (Pp−1,OPp−1(1)) and H0(X,∧p−1TX/Y ⊗ π∗TY ⊗ L −p) �= 0,
or dim(F) ≥ p and H0(X,∧pTX/Y ⊗ L −p) �= 0.

Proof. Corollary 5.5 implies that H0(F,∧i TF ⊗ L |−p
F ) = 0 for 0 ≤ i ≤

p−2. So we may apply Lemma 5.1 with M = L −p to conclude that either
H0(X,∧p−1TX/Y ⊗π∗TY ⊗L −p) �= 0, or dim F ≥ p and H0(X,∧pTX/Y ⊗
L −p) �= 0. In the first case we have H0(F,∧p−1TF ⊗ L |−p

F ) �= 0, and
Corollary 5.5 implies that (F,L |F ) � (Pp−1,OPp−1(1)) and so the desired
statement follows. ��

Let X, H , and π : X◦ → Y ◦ be as in the above discussion. If we are
under the first case of Lemma 5.6, then Theorem 2.6 implies that the Pp−1-
bundle π : X◦ → Y ◦ can be extended in codimension 1. Next we show that
in this case we must have X � Q2.

Lemma 5.7. Let X be a smooth projective variety and L an ample line
bundle on X. Let X◦ ⊂ X be an open subset whose complement has
codimension at least 2 in X. Let π : X◦ → Y ◦ be a smooth projective
morphism with connected fibers onto a smooth quasi-projective variety. If
H0(X◦,∧p−1TX◦/Y◦ ⊗ π∗TY◦ ⊗ L |−p

X◦ ) �= 0 for some integer p ≥ 2, then
p = 2, X◦ = X � Q2, and Y ◦ � P1.

Proof. Suppose that for some p ≥ 2 there is a non-zero section

s ∈ H0
(
X◦,∧p−1TX◦/Y◦ ⊗ π∗TY◦ ⊗ L |−p

X◦
) �= 0.

By Corollary 5.5, the fibers of π are isomorphic to Pp−1, and the restriction
of L to each fiber is isomorphic to OPp−1(1). Since π has relative dimension
p − 1, there exists an inclusion ∧p−1TX◦/Y◦ ⊗ π∗TY◦ ⊆ ∧pTX◦ , and thus s,
as in (5.4.1), yields a map ϕ : Ω

p−1
X◦ ⊗ L |p

X◦ → TX◦ of rank p at the
generic point. Since codimX(X \ X◦) ≥ 2, s extends to a section s̃ ∈
H0(X,∧pTX ⊗ L −p). Denote by

ϕ̃ : Ω
p−1
X ⊗ L p → TX

the associated map, which has rank p at the generic point.
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Let E = π∗ (L |X◦). By [Fuj75, Corollary 5.4], X◦ � P(E ) over Y ◦ and
then ∧p−1TX◦/Y◦ ⊗ L |−p

X◦ � π∗(det E ∗), and s is the pullback of a global
section sY◦ ∈ H0(Y ◦, TY◦ ⊗ det E ∗). This implies that the distribution D
defined by s is integrable. Moreover, its leaves are the pullbacks of the leaves
of the foliation F◦ defined by the map det E ↪→ TY◦ associated to sY◦ .

Since codimX(X \ X◦) ≥ 2, we can find complete curves sweeping out
a dense open subset of Y ◦. Let C be a general complete curve on Y ◦. Com-
pactify Y ◦ to a smooth variety Y , and let F be an invertible subsheaf of TY
extending F◦. Then F |C = det E |C is ample. By [BM01, Theorem 0.1] (see
also [KSCT07, Theorem 1]), the leaf of the foliation F through any point
of C is rational. We conclude that the leaves of F◦ are (possibly noncom-
plete) rational curves. Thus the closures of the leaves of the distribution D̃
defined by ϕ̃ are algebraic.

Let F ⊂ X be the closure of a leaf ofD̃ that meets X◦ and let η : F̃ → F
be its normalization. Then there exists a morphism F̃ → B onto a smooth
rational curve. The general fiber of this morphism is isomorphic to Pp−1

and the restriction of η∗L to the general fiber is isomorphic to OPp−1(1).
In particular it is ample. The fibers are thus irreducible and generically re-
duced and hence reduced since fibers satisfy Serre’s condition S1. It follows
by [Fuj75, Corollary 5.4] that F̃ → B is a Pp−1-bundle and, in particular,
F̃ is smooth.

The section s̃ ∈ H0(X,∧pTX ⊗ L −p) defines a non-zero map Ω
p
X →

L −p. Since F is the closure of a leaf of D̃ and L |F is torsion free, the
restriction of this map to F factors through a map Ω

p
F → L |−p

F . By Prop-
osition 4.5, this map extends to a map Ω

p
F̃

→ η∗L |−p
F . Corollary 5.3 then

implies that p = 2 and F̃ � Q2. Moreover η∗L |F � OQ2(1). In particular,
π : X◦ → Y ◦ is a P1-bundle. Denote by H the unsplit covering family of
rational curves on X whose general member corresponds to a fiber of π.

We claim that the general leaf of F◦ is a complete rational curve. From
this it follows that the general leaf of D̃ is compact, and contained in X◦.
Let F̃ denote the normalization of the closure of a general leaf of D̃. Since
F̃ � Q2 and η∗L |F � OQ2(1), X admits an unsplit covering family H ′ of
rational curves whose general member corresponds to a ruling of F̃ � Q2
that is not contracted by π. Since codim(X \ X◦) ≥ 2, the general member
of H ′ corresponds to a complete rational curve contained in X◦. Its image
in Y ◦ is a complete leaf of F◦. As we noted above, this implies that
F = F̃ � Q2. Notice that the section s̃ does not vanish anywhere on
a general leaf F � Q2 of F◦.

Let ϕ : X ′ → Z ′ be the (H, H ′)-rationally connected quotient of X.
Then the general fiber of ϕ is a leaf F � Q2 of F◦. By Lemma 2.2, we
may assume that codimX(X \ X ′) ≥ 2, Z ′ is smooth, and ϕ is a proper
surjective equidimensional morphism with irreducible and reduced fibers.
Therefore ϕ : X ′ → Z ′ is a quadric bundle by [Fuj75, Corollary 5.5].
Since the families H and H ′ are distinct, ϕ is in fact a smooth quadric
bundle.
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We claim that in fact X = F and Z ′ is a point. Suppose otherwise, and
let g : C → Z ′ be the normalization of a complete curve passing through
a general point of Z ′. Set XC = X ′ ×Z ′ C, denote by ϕC : XC → C the cor-
responding (smooth) quadric bundle, and write LXC for the pullback of L
to XC. The section s̃ induces a non-zero section in H0(XC, ω−1

XC/C ⊗ L −2
XC

)

that does not vanish anywhere on a general fiber of πC. Thus ω−1
XC/C is ample,

contradicting Proposition 3.1. ��

6. Proof of Theorem 1.1

In order to prove the main theorem, we shall reduce it to the case when X
has Picard number ρ(X) = 1. To treat that case, we will recall some facts
about slopes of torsion-free sheaves that will be used later.

Definition 6.1. Let X be an n-dimensional projective variety and H an
ample line bundle on X. Let E be a torsion-free sheaf on X. We define the
slope of E with respect to H to be µ

H
(E ) = c1(E )·c1(H )n−1

rk(E )
. We say that

a torsion-free sheaf F on X is µ
H

-semistable if for any subsheaf E of F
we have µ

H
(E ) ≤ µ

H
(F ). Given a torsion-free sheaf F on X, there exists

a filtration of F by (torsion-free) subsheaves

0 = E0 � E1 � · · · � Ek = F,

with µ
H

-semistable quotients Qi = Ei/Ei−1, and such that µ
H

(Q1) >
µ
H

(Q2) > · · · > µ
H

(Qk). This is called the Harder–Narasimhan filtration
of F [HN75], [HL97, 1.3.4].

Lemma 6.2. Let X be a smooth n-dimensional projective variety and H an
ample line bundle on X. Let F be a vector bundle on X, p a positive integer,
and N an invertible subsheaf of F⊗p. Then F contains a (torsion-free)

subsheaf E such that µ
H

(E ) ≥ µ
H

(N )

p .

Proof. Consider the Harder–Narasimhan filtration of F :

0 = E0 � E1 � · · · � Er = F,

with Qi = Ei/Ei−1 µ
H

-semistable for 1 ≤ i ≤ r, and µ
H

(Q1) >
µ
H

(Q2) > · · · > µ
H

(Qk). We claim that E = E1 = Q1 satisfies the
desired condition. In order to prove this, first let m ∈ N be such that H ⊗m

is very ample and let C ⊂ X be a curve that is the intersection of the zero
sets of n − 1 general sections of H ⊗m . Observe that for this curve C, and
for any torsion-free sheaf E on X,

µ
H

(E |C) = mn−1 · µ
H

(E ).(6.2.1)

Notice that by abuse of notation we denote the restriction of H to C by the
same symbol. Let Gi = Ei|C and Pi = Qi|C . By the Mehta–Ramanathan
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theorem ([MR82, 6.1], [HL97, 7.2.1]) the Harder–Narasimhan filtration of
F |C is exactly the restriction to C of the Harder–Narasimhan filtration of F
(we may assume that m was already chosen large enough for this theorem
to apply as well):

0 = G0 � G1 � · · · � Gr = F |C.

As X is smooth, so is C and hence all torsion-free sheaves on C, in particular
the Gi and the Pi , are locally free. Then for each 1 ≤ i ≤ r there exists
a filtration

G⊗p
i = Gi,0 ⊇ Gi,1 ⊇ · · · ⊇ Gi,p ⊇ Gi,p+1 = 0,

with quotients Gi, j/Gi, j+1 � G
⊗ j
i−1 ⊗ P

⊗(p− j )
i . From these filtrations, we

see that the inclusion N ↪→ F⊗p induces an inclusion N |C ↪→ P ⊗i1
1 ⊗

· · · ⊗ P ⊗ik
k , for suitable non-negative integers i j’s such that

∑
i j = p.

Since each Pi is µ
H

-semistable (on C), so is the tensor product P ⊗i1
1 ⊗

· · · ⊗ P ⊗ik
k [HL97, Theorem 3.1.4]. Hence

µ
H

(N ) = µ
H

(N |C)

mn−1
≤ µ

H

(
P ⊗i1

1 ⊗ · · · ⊗ P ⊗ik
k

)

mn−1
=

∑
i jµH (P j)

mn−1

≤ pµ
H

(Q1|C)

mn−1
= pµ

H
(Q1),

and so E = E1 = Q1 does indeed satisfy the required property. ��
Now we can prove our main theorems.

Theorem 6.3. Let X be a smooth n-dimensional projective variety with
ρ(X) = 1, L an ample line bundle on X, and p a positive integer. Suppose
that H0(X, T ⊗p

X ⊗ L −p) �= 0. Then either (X,L ) � (Pn,OPn(1)), or
p = n ≥ 3 and (X,L ) � (Qp,OQp(1)).

Proof. First notice that X is uniruled by [Miy87], and hence a Fano manifold
with ρ(X) = 1. The result is clear if dim X = 1, so we assume that n ≥ 2.
Fix a minimal covering family H of rational curves on X. By Lemma 6.2, TX

contains a torsion-free subsheaf E such that µ
L

(E ) ≥ µ
L

(L p)

p = µ
L

(L ).
This implies that deg f ∗E

rk E ≥ deg f ∗L for a general member [ f ] ∈ H .
If r = rk(E ) = 1, then E is ample and we are done by Wahl’s theorem.
Otherwise, as f ∗E is a subsheaf of f ∗TX � OP1(2)⊕OP1(1)⊕d ⊕O⊕(n−d−1)

P1 ,
we must have deg f ∗L = 1 and either f ∗E is ample, or f ∗E � OP1(2) ⊕
OP1(1)⊕r−2 ⊕ OP1 for a general [ f ] ∈ H . If f ∗E is ample, then X � Pn

by Proposition 2.7, using the fact that ρ(X) = 1. If f ∗E is not ample, then
OP1(2) ⊂ f ∗E for general [ f ] ∈ H , and so Cx ⊂ P(E ∗⊗κ(x)) for a general
x ∈ X. Thus by [Hwa01, 2.3] ( f ∗T +

X )o ⊂ ( f ∗E )o for a general o ∈ P1 and
a general [ f ] ∈ H . Since f ∗T +

X is a subbundle of f ∗TX , we have an inclusion
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of sheaves f ∗T +
X ↪→ f ∗E , and thus det( f ∗E ) = f ∗ω−1

X . Since ρ(X) = 1,
this implies that det E ∗∗ = ω−1

X , and thus 0 �= h0(X,∧rTX ⊗ ωX) =
hn−r(X,OX). The latter is zero unless n = r since X is a Fano manifold. If
n = r, then we must have ω−1

X � L ⊗n . Hence X � Qn by [KO73]. ��
Proof of Theorem 1.1. Let X be a smooth projective variety and L an ample
line bundle on X such that H0(X,∧pTX ⊗L −p) �= 0. By Theorem 6.3, we
may assume that ρ(X) ≥ 2. We may also assume that p ≥ 2 as the case
p = 1 is just Wahl’s theorem. We shall proceed by induction on n.

Notice that X is uniruled by [Miy87]. Let H ⊂ RatCurvesn(X) be
a minimal covering family of rational curves on X, and [ f ] ∈ H a general
member. By analyzing the degree of the vector bundle f ∗(∧pTX ⊗L −p), we
conclude that f ∗L � OP1(1), and thus H is unsplit. Let π◦ : X◦ → Y ◦ be
the H-rationally connected quotient of X. By shrinking Y ◦ if necessary, we
may assume that π◦ is smooth. Since ρ(X) ≥ 2, we must have dim Y ◦ ≥ 1
by [Kol96, IV.3.13.3].

Let F be a general fiber of π◦ and set k = dim F. By Lemma 5.6, either

• k = p − 1, (F,L |F ) � (Pp−1,OPp−1(1)), and H0(X◦,∧p−1TX◦/Y◦ ⊗
π∗TY◦ ⊗ L −p) �= 0, or

• k ≥ p and H0(X◦,∧pTX◦/Y◦ ⊗ L −p) �= 0.

In the first case π : X◦ → Y ◦ is a Pp−1-bundle and we may assume
that codimX(X \ X◦) ≥ 2 by Theorem 2.6. Then we apply Lemma 5.7 and
conclude that X � Q2.

In the second case, the induction hypothesis implies that either (F,L |F )
� (Pk,OPk(1)), or k = p and (F,L |F) � (Qp,OQp(1)). If F � Pk, again
by Theorem 2.6, π : X◦ → Y ◦ is a Pk-bundle, and we may assume that
codimX(X \ X◦) ≥ 2. As in the end of the proof of Proposition 5.4, we
reach a contradiction by applying Corollary 5.3 to X◦ ×Y◦ B → B, where
B → Y ◦ is the normalization of a complete curve passing through a general
point of Y ◦.

Suppose now that F � Qp. Then, by Lemma 2.2 and [Fuj75, Corol-
lary 5.5], π◦ can be extended to a quadric bundle π : X ′ → Y ′ with
irreducible and reduced fibers, where X ′ is an open subset of X with
codimX(X \ X ′) ≥ 2, and Y ′ is smooth. Denote by X ′′ the open subset
of X ′ where π is smooth. Notice that codimX ′(X ′ \ X ′′) ≥ 2. A non-zero
global section of ∧pTX ⊗ L −p restricts to a non-zero global section of
∧pTX ′′/Y ′ ⊗ L |−p

X ′′ , which, in turn, extends to a non-zero global section
s ∈ H0(X ′, ω−1

X ′/Y ′ ⊗ L |−p
X ′ ) since X ′ is smooth. The section s does not

vanish anywhere on a general fiber of π.
Let g : C → Y ′ be the normalization of a complete curve passing

through a general point of Y ′. Set XC = X ′ ×Y ′ C, denote by πC : XC → C
the corresponding quadric bundle, and write LXC for the pullback of L
to XC. The general fiber of πC is smooth. Now notice that XC is a local
complete intersection variety, and nonsingular in codimension one, since
the fibers of π are reduced. In particular, XC is a normal Gorenstein variety,
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and the morphism πC is generically smooth. The section s induces a non-
zero section in H0(XC, ω−1

XC/C ⊗ L −p
XC

) that does not vanish anywhere on

the general fiber of πC. Thus ω−1
XC/C is ample, contradicting Proposition 3.1.

��
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