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The “Plan”
• In this session, we will explore exploring.	


•  We have a big math toolkit of transformations to consider.	


• We have some physical objects that can serve as a hands-
on manipulative toolkit.	


• We have geometry concepts and relationships to think 
about.	


• And we have the point of view of geometry in the 
Common Core State Standards to reflect on.	


• And we want to think about sense-making and reasoning 
throughout.



Introductory Activity

• Think quietly for a minute about how you 
define for your students what it means for 
two figures in the plane to be congruent.	


• Then privately write down this definition 
on a piece of paper.	


• When everyone is finished, we will discuss.



Points to Ponder

• Does your definition use mathematically undefined 
terms from ordinary language, such as “same size, same 
shape” or “pick up and move” or “superimpose”?	


• Does your definition apply to any figure in the plane, or 
just to polygons?	


• Does your concept of congruence include some 
additional hidden assumptions or rules not spelled out 
in the definition?



Congruent?

• Equal side lengths, equal angles

• Two garden plots, same shape (rectangular) 
and same size (12 square feet)



Congruent?
• Two circles?  What angles are supposed to 

be equal?	


• Two parabolas?  The length is infinite.	


• Two disconnected figures, each consisting 
of a line and a point not on the line.



Common Core Approach

• Grade 8:  Verify experimentally the properties of 
rotations, reflections, and translations	


• Grade 8:  Understand that a two-dimensional figure is 
congruent to another if the second can be obtained from 
the first by a sequence of rotations, reflections, and 
translations; given two congruent figures, describe a 
sequence that exhibits the congruence between them.	


• High School: Explain how the criteria for triangle 
congruence (ASA, SAS, and SSS) follow from the 
definition of congruence in terms of rigid motions.



Rigid Motions?

• The language of CCSS for middle school refers to 
sequences of rotations, reflections, and translations, 
while in high school it speaks of rigid motions.	


• In CCSS, a rigid motion is defined to be such a 
sequence.  It is assumed, essentially as an axiom, 
that a rigid motion preserves distance and angle 
measure.	


• We will talk more later how this fits in with other 
foundational approaches to geometry.



• The rigid motion definition is a clear, unambiguous concept.  This 
gives meaning to congruence of any shapes, from polygons to ellipses 
and parabolas, to fractals with an easy extension to digital photos.	


• This contrasts with the “definition” of congruence in many 
secondary texts:  lots of intuition about cutting out and moving and 
“same size same shape” but no well-defined general concept, just 
tests for triangles and then ad hoc definitions for other shapes.	


• Note that a rigid motion is not the same as superimposition of 
figures (cut out and move); rigid motions are defined for the whole 
plane, not just for points in the figure.  The whole plane moves and 
nothing is cut out.  This is sound mathematics that lays groundwork 
for more advanced math.

Solid Definition of Congruence



Our Transformational 
Case of Characters

• Line Reflection	


• Point Reflection (a rotation)	


• Translation	


• Rotation	


• Compositions of any of the above



Our Physical Toolkit
• Patty paper	


• Semi-reflective plastic mirrors	


• Graph paper	


• Ruled paper	


• Card Stock	


• Dot paper	


• Scissors, rulers, protractors



Line Reflection
• For any line m in the plane, there is 

defined a transformation of the 
plane called “line reflection across 
m”.  	


• If A is a point in the plane, the 
reflection of A across m is the point 
B such that (1) segment AB is 
perpendicular to m and (2) the 
intersection point M of AB and m is 
the midpoint of AB.
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Line-Reflecting a Figure
• As a first task, we will try out tools for line 

reflection of a point A to a point B.  Then 
reflecting a shape.	


• Suggest that you try the semi-reflective mirrors 
and the patty paper for folding and tracing.  Also, 
graph paper is an option.  Also, regular paper and 
cut-outs	


• Note that pencils and overhead pens work on 
patty paper but not ballpoints.  Also note that 
overhead dots are easier to see with the mirrors.	


• Can we (or your students) conclude from your 
tool that the mirror line is the perpendicular 
bisector of AB?



Which tools best let you draw 
this reflection?

• When reflecting shapes, 
consider how to reflect 
some polygon when it is 
not all on one side of 
the mirror line.	


• Otherwise students may 
be the wrong idea that 
reflection only works if 
the whole figure is on 
one side of the mirror 
line.



Line Symmetry
• For a figure S in the plane, a line m is a line of 

symmetry of S if the reflection of S in m is 
exactly S itself.	


• For a rectangle ABCD, what are the lines of 
symmetry?	


• Reflect ABCD across the diagonal line AC. Is 
this a line of symmetry?	


• What can you say about a triangle if it has a 
line of symmetry?  What is this line?	


• If a quadrilateral ABCD has AC as a line of 
symmetry, what kind of quadrilateral is it?
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Congruent Line Segments
• Here’s food for thought:  In CCSS, 

given the definition of congruence, we 
cannot assume without proof that 
two line segments of the same length 
are congruent.  We must show that 
for any two such segments we can 
move one to the other by a sequence 
of rigid motions! 	


• So, as an exercise, draw two line 
segments of the same length and 
perform a sequence of reflections 
that will take one to the other.  Do 
you think this can always be done?  
How many reflections does it take?



Proving SAS etc.
• To prove SAS, you can 

build on what we have 
done to move one side 
of the first triangle onto 
the second.  Then either 
you are done already, or 
you get a figure like one 
of these. 	


• Can you justify the final 
step? 



 SAS from Rigid Motions
• SAS:  Given two triangles ABC and DFE so that angle BAC 

and angle FDE have equal measure, length AB = length DF, 
and length AC = length DE, then triangle ABC is congruent 
to triangle DFE.	


• How do we prove this with rigid motions?  Find a 
sequence of rigid motions that will take one triangle to 
the other given these assumptions.	


• There is a choice of ways to do this.  Start with a 
translation that takes A to D ... or start with a line 
reflection that takes A to D, or one could move A to D by 
a rotation.  Since we are working with line reflections, we 
start with a line reflection.



Executive Summary of the Proof of SAS

• Assume angle CAB = angle EDF;  AB = DF;  AC = DE. 	


• Here are the steps in a proof, but they are not a proof, since we need 
reasons why the steps work.	


• The reasons will be explored on the next slide.
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Step 1:  Reflect A to D.  
ABC is reflected to 
A’B’C’, with A’ = D.

Step 2:  Reflect C’ to E in 
a line through D.  A’B’C’ 
is reflected to A’’B’’C’’, 
with A’’ = D and C’’ = E. 

If B’’ = F, stop.

Step 3:  Reflect B’’ to F 
in line DE.  A’’B’’C’’ is 
reflected to A’’’B’’’C’’’, 

with A’’’ = D, C’’’ = E, and 
B’’’ = E



Two Basic Theorems
• Proposition 1: If a point A is line reflected to point 

B, the line of reflection is the perpendicular 
bisector of segment AB.  	


• This proposition follows immediately from our 
definition of line reflection.  With other definitions 
(discussed later), this is a theorem to prove.	


• Proposition 2: If a segment FE is congruent to FG, 
then the angle bisector of angle EFG reflects 
point E to point G.  	


• Proof.  Since line reflection preserves angle 
measure, the reflection in the bisector of the ray FE 
is ray FG.  Let E’ be the reflection of point E. Since 
the segments FE’ and FG are congruent and lie on 
the same ray, the point E’ and point G are the same.	


• Corollary. In this figure, since E is reflected to G, 
the triangle EFG is isosceles and the angle bisector 
of angle EFG is the perpendicular bisector of EG.
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Proof of Step 1

• Let m be the 
perpendicular bisector 
of segment AD, then 
reflection in m maps A 
to D.
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Step 1:  Reflect A to D.  
ABC is reflected to 
A’B’C’, with A’ = D.



Proof of Step 2
• There are two cases.  One 

possibility is that point C’ is the 
same as point E.  In this case, 
we skip this step and go 
directly to Step 3.  	


• In the more likely case, point C’ 
and E are different points. Since 
the segments DC’ and DE are 
equal, then by Proposition 2, 
the angle bisector of angle 
C’DE maps C’ to E.  And since 
the line passes through D, the 
point D is fixed.
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Step 2:  Reflect C’ to E in 
a line through D.  A’B’C’ 
is reflected to A’’B’’C’’, 
with A’’ = D and C’’ = E. 

If B’’ = F, stop.



Proof of Step 3
• At this point, we have two triangles, 

B’’DE and FDE with a common side.  
We also know that DB’’ is congruent 
to DF and that angles B’’DE and FDE 
are congruent.	


• There are two cases, either F and B’’ 
are the same point, or not.  In the first 
case we have finished the proof after 
two steps.  In the second, we notice 
that ray DE is the angle bisector of 
angle B’’DF, so that by Theorem 2, the 
point B’’ is reflected across DE to F.  
And the points D and E are fixed.  
Thus this third reflection maps the 
triangle B’’DE to triangle FDE, so the 
SAS theorem is proved after 3 steps.
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Step 3:  Reflect B’’ to F 
in line DE.  A’’B’’C’’ is 
reflected to A’’’B’’’C’’’, 

with A’’’ = D, C’’’ = E, and 
B’’’ = E



What have we proved?
• First of all, we just proved our old friend the SAS congruence criterion 

for triangles.  In some approaches to geometry, this is an axiom, in others 
it is a theorem.   With a little more work, we can also prove ASA and SSS.	


• One important point is that now that we have this tool, we can use it.  
We do not have to explicitly use rigid motions in every proof just 
because we are following CCSS.  Having said this, we should also be 
aware of situations where having rigid motions as a tool can be very 
powerful and sense-making.  It is a good time to re-think our ideas.  But 
we do not have to discard everything we are used to doing in geometry.	


• One other thing:  We have proved that any two distinct congruent 
triangles can be related by a sequence of 1, 2, or 3 line reflections.  With a 
bit more work, we can see that this is true for any two congruent figures, 
no matter how complicated.



Exploration:  Reflections in 
Perpendicular Lines

• We will now see what happens if we reflect a figure 
twice, first in any line and then in a line 
perpendicular to the first. 	


• A good tool for this would be patty paper folding, 
though mirrors also work.  Fold a paper twice so 
that the folds are perpendicular.  Draw any figure, 
and use tracing to reflect the figure first in one line 
and then reflect the image figure in the second.	


• How is the original figure related to the second 
reflection?  What happens if you connect 
corresponding points with lines?  What point(s) n 
the plane do not move under this sequence of 
reflections?
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Point Reflection (half-turn)
• A point reflection, or a half-turn is an 

important special case of rotation:  
rotation by 180 degrees. 	


• It is not difficult to apply a half-turn 
to a point A with a straightedge and 
a piece of card (or a ruler) –or 
with patty paper or other tools.	


• Point-reflect two points A and B 
with center O.  Can you justify 
the claim that line A’B’ is parallel 
to line AB?  Does this mean also 
that line AB’ is parallel to line A’B?	


• Houston, we have a parallelogram!



Parallelogram from 3 points

• Given a triangle ABC, find the center 
of a half-turn that will construct a 
point D so that ABCD is a 
parallelogram.	


• Or else that ABDC is a parallelogram, 
or ...	


• How does this figure compare with 
what you would get from a line 
reflection?	


• A figure has a point symmetry if 
there is a half-turn that maps the 
figure onto itself.  Does every 
parallelogram have a point symmetry?  
What is the center of the symmetry?
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Hmm!

• If you create 3 
parallelograms from 
ABC all in the same 
figure, this is what you 
get! A rich figure.	


• Can you find any 
examples here of 
triangle pairs that are 
related by a composition 
of two half-turns?



Proving Parallelogram 
Properties with Half-turns

• There are several standard theorems about 
parallelograms that can be proved with half-turns.  
These proofs seems clearer and more visual than the 
usual ones.	


• Let ABCD be a parallelogram.  Let M be the midpoint of 
AC.  Then apply a half-turn centered at M to this figure.  
Why are these statements true? 

• C’ is the image of A.  The line CD is the image of line 
AB.  The line CB is the image of line AD.  M is the 
midpoint of CD.  Angle A is congruent to angle C.  Angle 
B is congruent to angle D.  Side AB is congruent to side 
CD.  Side BC is congruent to side DA.	


• Also, one can start with a quadrilateral ABCD and 
assume opposite sides are parallel and equal and prove 
that ABCD is a parallelogram.
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Transversals and Point 
Reflection

• Given two parallel lines and a 
transversal line, there are a number of 
familiar theorems about which angles 
are equal. 	


• One can use point reflection to prove 
these theorems.  What is the center 
of a point symmetry of this figure?	


• Equally important, this point of view 
makes it very comprehensible why 
certain angle pairs (e.g., the alternate 
interior angles) are congruent.
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Exploration: Double 
Reflection in Parallel lines

• Draw two parallel lines m and n on a piece of patty 
paper, not too far apart.	


• Pick any point A.  Reflect A in m to get A’.  Then reflect 
A’ in n to get A’’.  	


• This double reflection is a rigid motion.   Draw a simple 
figure (triangle or quadrilateral ABCD , perhaps) and 
double reflect the figure.   See what you can observe 
and conjecture.	


• Make a list of the (conjectured) properties of this 
transformation that you observe.



A Double Reflection in 
Parallel Lines is aTranslation
• Translation is often viewed as the 

simplest of our rigid motions.  To 
translate a figure, just slide it without 
rotating.  	


• But it is not so easy to figure out a 
simple way to say this mathematically, 
without using geometry theorems 
that will come later.	


• I am not sure what would be the best 
definition to use.  What do you think?  
(Some ideas on the next slide.)
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Possible Definitions of a 
Translation

• A translation is a double reflection in parallel lines.	


• A translation is a double point reflection.	


• A translation is a rigid motion of the plane so that for every 
point A and its image A’ the distance from A to A’ is the same.	


• A translation is a rigid motion of the plane with no fixed 
point, so that every line is mapped to itself or a parellel line.	


• Given points A and B in the plane, the translation with 
defined by vector AB is the rigid motion that takes a point C 
to a point D such that ABDC is a parallelogram (or a 
collapsed parallelogram if C is on line AB).
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Translation: Hands-On is Harder 
than it looks

• Translations are commonly viewed as 
the easy transformations to model 
hands-on:  just slide!	


• But how can you be sure that your 
freehand slide does not have some 
rotation in it?  We need a careful slide.	


• Suggestion.  We know how to use half-
turns to construct parallelograms.  
Can you use this a a practical way to 
translate one polygon to another?	


• Other ideas?  Tracing with patty 
paper? Graph paper?



Translating by Tracing
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Rotation
• Rotate ABCD with center P 

an angle GPF.  What to do?	


• One idea:  Use a wedge of 
cardstock like the red shape 
and use it to rotate the rays 
PA, PB, PC, PD and then mark 
off the lengths PA, PB, PC, PD 
to get the rotated shape.	


• Second idea:  reflect ABCD in 
the line PA and then reflect 
again in the angle bisector of 
GPF.  Does this work?



The Coordinate Plane 
• Graph paper!	


• Examples: In the left figure, rotate the shape by 90 
degrees with the center point shown.  	


• In the right figure, find the center and angle of 
rotation that takes one shape to the other.



Dilation by notebook paper

• Euclid did not have 
notebook paper.  You 
have lots.	


• So you can dilate a shape 
like this.  Just count the 
spaces between the line 
and take the ratio to see 
the ratio of dilation.



Dilation by dot paper

• Lots of similar triangles 
in this paper.  Look for a 
dilation? Find the center.	


• Or start with a corner 
triangle and dilate it to a 
bigger one. 


