1. A graphical organizer for the data of similar triangles

This is the kind of graphical representation that we use for two similar triangles
with scaling factor K. In this case, a’ = Ka, etc. We make no attempt to draw the
triangles at the correct scale, since this is merely a graphical organizer for the data.
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Problem: Fill in the missing values for sides in these diagrams and find the value
for K in each case.
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Application 1A: In this triangle, angle C
is a right angle and CD is perpendicular
to AB. The lengths AB=c,BC=2a,CA=bh. a
Find the lengths of all the other
segments in the figure: AD, BD, CD.
Hence a famous theorem. C
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For material from this presentation, go to www.math.washington.edu/~king (after

5/1)
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2. Dilations with positive and negative ratios

A dilation of the plane with center A and non-zero ratio K is a transformation that
takes a point P to the point P’ on line AP so that AP’/AP =K.

There are two important cases:

* [fK>0,then P’is a point on ray AP.
* [fK <0, the P’is the point on the ray opposite AP with |AP’| = K|AP|. (]AP|
denotes length.)

Among the properties that can be proved about such a dilation are that for any P
and Q, (1) if P’ and Q' are the images by the dilation, then |P’Q’| = |K||PQ|. (2) a
dilation maps segments to parallel (or collinear) segments.

Notebook paper examples

Notebook paper is a great tool for constructing dilations with little explicit
measurement.

* Draw a segment PQ on one of the lines of the notebook paper and draw a
point A also on a line. Then use a straightedge and the spacing of the
notebook paper to draw the segment MN that is the dilation of PQ by ratio
%. What is the ratio AM/MP?

Continue and draw the segment XY that is the dilation of PQ by ratio -1/2.

What is the ratio AM/MP?

What is the ratio AX/XP?

Repeat the exercise for K=1/3 and -1/3.

3. Some applications of dilations

Example 1. (A problem of Polya) Draw any acute triangle ABC. What is the largest
square EFGH that can be constructed inside the triangle so that the side EF is
contained in AB and the vertices G and H are both on sides of the triangle.

Dilation approach: Draw a triangle

RSTU so that RS is in AB and U is on CA. C
Then dilate with center A to solve the
problem.

u [T

What ratio will be needed? Where will
a vertex of the solution square be A R S B
located on BC?
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Example 2. Common tangents of two circles

Given two circles, how can one construct the common tangle lines? For example,
given these two circles, we would like to construct the tangent lines shown here.

The point P is the center of a dilation that takes one of the circles to the other with a
positive dilation ratio equal to a ratio of the radii. The point N is the center of a
dilation that has a negative dilation ratio. Once the points P and N are constructed,
it is only necessary to construct the tangents from the point to one of the circles
and the tangent lines will also be tangent to the other circle. (There is some
reasoning required to justify this statement.)

So to make this construction, we need to consider how, given two similar figures,
we can construct (if possible) one or more centers of dilation that map one figure to
the other.

4. Constructing Centers of Dilation

Another Notebook paper exercise
Draw two segments AB and CD on the notebook paper, each segment lying on a
different line of the notebook paper (thus the segments will be parallel).

Just using a straightedge, construct a point P so that P is the center of a dilation that
takes A to C and B to D?

Just using a straightedge, construct a point Q so that Q is the center of a dilation
that takes A to D and B to C?

Questions:
a) What can you say about the signs of the ratios of dilation of these two
dilations?
b) Can there be more than two centers of dilation that take segment AB to
segment CD?
c) Can there be less than two?
d) What happens if the segments are collinear?
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5. Trapezoids, dilations and ratios

In the previous section, you constructed two centers of dilation for any two parallel
segments of different length. The picture looks like this.

There is more than one way of thinking of this figure:

* It shows the centers E and F of two dilations taking AB to CD.

* [tisatrapezoid ABCD with two diagonals intersecting at F and two non-
parallel sides intersecting at E.

* [tis atriangle ABE, with segment from side AE to side BE parallel to AB. The
lines AC and BD intersect at F.

It is possible to use the dilations to answer questions about ratios in the figure, and
hence about ratios in trapezoids and triangles.

Question 1. Draw the line EF, intersection AB in P and CD in Q. Explain why P is
the midpoint of AB and Q is the midpoint of CD. (Hint: Why do dilations map
midpoints to midpoints?)

Question 2. Suppose that |CD| = (1/2)|AB|. (You may want to draw this case
accurately on notebook paper.

Find the following ratios:

« ED/EA

* FA/AC

* FP/EP (This is a famous theorem.)

Question 3. Suppose for the triangle ABE in this figure that ED/EA = EC/EB =1/3.
What is the ratio PF/PE?

Question 4. Suppose for the triangle ABE in this figure that ED/EA = EC/EB = 2/3.
What is the ratio PF/PE?

Question 5. In each of these two previous cases, what is the ratio of the areas of
triangle ABF and ABE?
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6. Affine Geometry Theorems

Think about the results of the last section about (signed) ratios of lengths and ratios
of areas. Notice that these were true for any triangles, not just special triangles.

These theorems are example of affine plane geometry. This geometry uses the
usual plane but does not use distance measure or angle measure. An affine
transformation is a transformation that may not preserve angles or distances but
does map parallel lines to lines that remain parallel to each other (though not
necessarily to the original lines, as is true of dilations). Two figures are affine-
congruent if one can be mapped to the other by an affine transformation. These
transformations also preserve ratios on lines but not necessarily ratios on lines
that are not parallel.

In affine geometry (1) all triangles are affine congruent; (2) all rectangles and
parallelograms are congruent. (But not all quadrilaterals are affine congruent.); (3)
circles and ellipses are congruent; (4) not all trapezoids are congruent, since the
ratio of the parallel sides is defined in affine geometry.

IF THIS ALL SEEMS TOO ABSTRACT, an example of an affine transformation is
given by dragging the vertex of a triangle using dynamic geometry software.

Example 1: Midpoints and medians make sense in affine geometry. The
concurrence of the medians in a triangle is an affine geometry theorem.

Example 2: Perpendicular bisectors are not defined in affine geometry, since angle
measure is not defined.

Example 3. The theorem that for a trapezoid, the line through the intersection of
the diagonals and the intersection of two non-parallel sides passes through the
midpoints of the parallel sides is an affine theorem.

Example 4: In this figure, suppose each of the points A’. B’, C’ divides a side of
triangle ABC, all in the same ratio. Then ABC is divided into 4 sub-triangles, as in
the figure. The areas of the unshaded sub-triangles are all equal. For each sub-
triangle, the ratio of the area of this triangle to the area of ABC only depends on the
ratior = AC’/AB = BA’/BC = CB’/CA, not on the shape of the triangle. (What are
the ratios?)

A

B'
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7. Marion Walters’ Theorem

This is a beautiful example of an affine theorem. It is not clear who actually first
proved this theorem, but it was studied in papers by Marion Walter’s and her name
is as a consequence attached to the theorem.

The theorem is true for any triangle, if are divided into thirds and segments are
drawn as in the figure. The theorem states the ratio of the area of the central shaded
hexagon to the area of ABC. (We are not stating this ratio yet to make the problem
more fun to solve.)

C

A general approach to the solution would be to find (as a ratio times the area S of
ABC) the areas of various pieces in the figure. Given the limited time for this
workshop, we are going to suggest some pieces on the next page. Some of these you
have already computed earlier.

Since this is an affine theorem, we can prove it for any triangle. The figures on the
net page are actually the case of an equilateral triangle, but the reasoning works for
any triangle.

In each case, assuming the area of ABC is S, what number times S is equal to the area
for each of the 5 cases on the next page (some are really the same).

Once you have the areas, add up the last three areas. This covers the complement of
the hexagon, but does it more than once for some of the polygons. So subtract the
areas of the first two figures and think why the result is exactly the area of the
complement of hexagon. Hence the area of the hexagon can be computed.

Final Example: Ceva’s Theorem. Probably no time for this, so you can look it up if
we do not discuss this theorem.
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