How Mathematicians Can Help Teachers with the Common Core

James King
Department of Mathematics
University of Washington

www.math.washington.edu/~king king@uw.edu

How Mathematicians Can Help Teachers with the Common Core

An Example: Transformations

Common Core and Transformations

- In Grade 8 students learn some properties of rotations, translations, and line reflections and explain congruence by means of sequences of these transformations.
- Similarity of figures is defined via composition of rigid motions and dilations
- In High School students develop considerably more properties, including triangle congruence criteria.

Help with Context and Overview

- Teacher concerns and alarms:
 - Is this "Transformational Geometry" that replaces the geometry we are teaching now?
 - What is the reason for doing this? What is gained?
 - How are dilations related to the way we currently teach similarity?

Motivation Example: Similarity of these circles

Reasoning with Rigid Motions and Dilations

- A Mathematical Concern:
 - What kind of reasoning will be used to show that a particular rigid motion maps one figure to another?

Activities on the Basics

 Example 1: On graph paper, rotate a shape by 90 degrees with a given center (at some distance from the shape)

Activities on the Basics

• Example 2: Find the center and angle of the rotation relating these two congruent figures.

Activities on the Less Basic

• Find a rigid motion or a sequence of rigid motions that move one dark quadrilateral to the other.

Advanced Dilation Reasoning

 The vertices of the red triangle are the incenters of the corner midpoint triangles.
 Show the red triangle is congruent to the midpoint triangle of the large triangle.

The Role of Technology

- Teaching tools:
 - Transformations do not make your life easier if you have to construct them with classical drawing tools. Software opens up a whole world of exploration.
- Motivation and Real-World Examples:
 - Dilations occur whenever one zooms in on a photo or a map on a smart phone. The figures that one can transform can be digital images, not just polygons with a few sides.

Listen and Observe

- From a mathematician's perspective, the difficulties and sticking points for the transformational items in CCSS may be different from what you expect. Listen for what is really going on.
- Also, read carefully what is in CCSS. Resist adding stuff. There is a lot in Felix Klein or Bourbaki that is not in CCSS – for good reason!