Construction Portfolio #4

27. Light Path 2
28. Triangular Billiards 3
29. Triple Line Reflection (parallels) 4
30. Triple Line Reflection (concurrent) 5
31. Constructions using transformations: equilateral triangle 6
32. Constructions using transformations: segments with given midpoint 7
33. Composition of two point symmetries 8
34. Center of a Rotation or Invariant Line of a GR 9
35. Center of a Product of Rotations 10
36. Glide Reflection as product of 3 Line Reflections 11
37. Product of a Rotation and a Line Reflection 12
38. Image of an Isometry 13
27. **Light Path**

Construct a point C on line k so that the path from A to C to B is the shortest possible. Specifically, the sum of lengths AC + CB should be smaller than for any other point C on k. This is the path a beam of light would take from A to B if reflected off a mirror k.
28. Triangular Billiards

Imagine that XYZ is a triangular billiard table. Construct the path of a billiard ball that is banked first off side XZ and then off side YZ before it reaches B.
29. **Triple Line Reflection (parallels)**

Let reflection in parallel lines m_1, m_2, m_3 be M_1, M_2, M_3. Construct a line n so that reflection in n is the same transformation as the composition $M_3 M_2 M_1$.

\[\begin{array}{ccc} & m_1 & m_2 \hline m_3 & & \end{array} \]
30. Triple Line Reflection (concurrent)

Let reflection in concurrent lines m1, m2, m3 be M1, M2, M3. Construct a line n so that reflection in n is the same transformation as the composition M3 M2 M1.
31. Constructions using transformations: equilateral triangle

Construct points B and C so that ABC is an equilateral triangle with one vertex on each of the 3 parallel lines.
32. Constructions using transformations: segments with given midpoint

Construct ALL segments PQ so that P is on the line, Q is on the circle, and A is the midpoint of PQ.
33. Composition of two point symmetries

Given the points A and B, let H_A and H_B denote the point reflections with centers A and B. Let S be the composition $H_B \ H_A$. Construct points $P' = S(P)$ and $Q' = S(Q)$. Note: You are not required to construct H_A and H_B of any points unless you find it necessary.
34. **Center of a Rotation or Invariant Line of a GR**

(1) Construct the center O of the rotation that takes A to C and B to D.
(2) Construct the invariant line g of the glide reflection that takes A to C and B to D

Be sure to label O and g very clearly as well as showing construction steps.
35. Center of a Product of Rotations

Given the points A and B below; let S be rotation with center A by 60 degrees and let T be rotation with center B by 180 degrees.

a) Construct the center C of the rotation $U = ST$. Write down the angle of rotation.

b) Construct the center D of the rotation $V = TS$. Write down the angle of rotation.
36. Glide Reflection as product of 3 Line Reflections

Let M_1, M_2, M_3 be line reflections in the lines m_1, m_2, m_3 below. Let $N = M_1 M_2 M_3$ and let $P = M_3 M_2 M_1$.

a) Construct the invariant (special) line of the glide reflection N and also a glide vector XY.

b) Construct the invariant (special) line of the glide reflection P and also a glide vector UV. Question to Ponder: How are N and P related?
37. *Product of a Rotation and a Line Reflection*

Let E be rotation with center A and angle 90 degrees and let M be reflection in line m. Construct the geometric defining data of ME.
38. Image of an Isometry

In the figure are given congruent quadrilaterals ABCD and A'B'C'D'. There is a unique isometry T that takes ABCD to A'B'C'D', i.e., A'B'C'D' is T(ABCD), the image of ABCD.

Construct the quadrilateral A"B"C"D" that is T(A'B'C'D'), the T image of A'B'C'D'.