Construction Portfolio \#4

Construction Portfolio \#4 1

27. Light Path 2
28. Triangular Billiards 3
29. Triple Line Reflection (parallels) 4
30. Triple Line Reflection (concurrent) 5
31. Constructions using transformations: equilateral triangle 6
32. Constructions using transformations: segments with given midpoint 7
33. Composition of two point symmetries 8
34. Center of a Rotation or Invariant Line of a GR 9
35. Center of a Product of Rotations 10
36. Glide Reflection as product of 3 Line Reflections 11
37. Product of a Rotation and a Line Reflection 12
38. Image of an Isometry 13

27. Light Path

Construct a point C on line k so that the path from A to C to B is the shortest possible.
Specifically, the sum of lengths AC + CB should be smaller than for any other point C on k . This is the path a beam of light would take from A to B if reflected off a mirror k .

28. Triangular Billiards

Imagine that XYZ is a triangular billiard table. Construct the path of a billiard ball that is banked first off side XZ and then off side YZ before it reaches B .

29. Triple Line Reflection (parallels)

Let reflection in parallel lines $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ be M1, M2, M3. Construct a line n so that reflection in n is the same transformation as the composition M3 M2 M1.

30. Triple Line Reflection (concurrent)

Let reflection in concurrent lines $\mathrm{m} 1, \mathrm{~m} 2, \mathrm{~m} 3$ be M1, M2, M3. Construct a line n so that reflection in n is the same transformation as the composition M3 M2 M1.

31. Constructions using transformations: equilateral triangle

Construct points B and C so that ABC is an equilateral triangle with one vertex on each of the 3 parallel lines.

A
32. Constructions using transformations: segments with given midpoint
Construct ALL segments PQ so that P is on the line, Q is on the circle, and A is the midpoint of PQ.

33. Composition of two point symmetries

Given the points A and B , let H_{A} and H_{B} denote the point reflections with centers A and B. Let S be the composition $H_{B} H_{A}$. Construct points $P^{\prime}=S(P)$ and $Q^{\prime}=S(Q)$. Note: You are not required to construct H_{A} and H_{B} of any points unless you find it necessary.

- A
-

B
-
Q

34. Center of a Rotation or Invariant Line of a GR

(1) Construct the center O of the rotation that takes A to C and B to D.
(2) Construct the invariant line g of the glide reflection that takes A to C and B to D Be sure to label O and g very clearly as well as showing construction steps.

35. Center of a Product of Rotations

Given the points A and B below; let S be rotation with center A by 60 degrees and let T be rotation with center B by 180 degrees.
a) Construct the center C of the rotation $\mathrm{U}=\mathrm{ST}$. Write down the angle of rotation.
b) Construct the center D of the rotation $\mathrm{V}=\mathrm{TS}$. Write down the angle of rotation.
\circ
A
-

36. Glide Reflection as product of 3 Line Reflections

Let M_{1}, M_{2}, M_{3} be line reflections in the lines m_{1}, m_{2}, m_{3} below. Let $N=M_{1} M_{2} M_{3}$ and let $\mathrm{P}=\mathrm{M}_{3} \mathrm{M}_{2} \mathrm{M}_{1}$.
a) Construct the invariant (special) line of the glide reflection N and also a glide vector XY.
b) Construct the invariant (special) line of the glide reflection P and also a glide vector UV. Question to Ponder: How are N and P related?

37. Product of a Rotation and a Line Reflection

Let E be rotation with center A and angle 90 degrees and let M be reflection in line m . Construct the geometric defining data of ME.

A
m

38. Image of an Isometry

In the figure are given congruent quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. There is a unique isometry T that takes $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$, i.e., $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ is $T(A B C D)$, the image of ABCD.

Construct the quadrilateral $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ that is $T\left(A^{\prime} B^{\prime} C^{\prime} D^{\prime}\right)$, the T image of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

