Altitudes and the Orthic Triangle of Triangle ABC

Given a triangle ABC with acute angles, let $\mathrm{A}^{*}, \mathrm{~B}^{*}, \mathrm{C}^{*}$ be the feet of the altitudes of the triangle: $\mathrm{A}^{*}, \mathrm{~B}^{*}, \mathrm{C}^{*}$ are points on the sides of the triangle so that $\mathrm{AA}^{*} \mathrm{BB}^{*}, \mathrm{CC}^{*}$ are altitudes.

Then we have proved earlier that the altitudes are concurrent at a point H . (The proof used the relationship between the perpendicular bisectors of the sides of a triangle and the altitudes of its midpoint triangle).

The orthic triangle of $A B C$ is defined to be $A * B * C *$. This triangle has some remarkable properties that we shall prove:

1. The altitudes and sides of ABC are interior and exterior angle bisectors of orthic triangle $\mathbf{A}^{*} \mathbf{B} \mathbf{C}^{*}$, so H is the incenter of $A * B * C^{*}$ and A, B, C are the 3 ecenters (centers of escribed circles).
2. The sides of the orthic triangle form an "optical" or "billiard" path reflecting off the sides of ABC .
3. From this it can be proved that the orthic triangle $A * B * C *$ has the smallest perimeter of any triangle with vertices on the sides of $A B C$.

Part 1: Prove that the altitudes and sides of ABC are angle bisectors of $A^{*} B^{*} C^{*}$

Lemma 1. Continuing with the same figure, the circle c_{3} with diameter $A B$ intersects $A C$ at B^{*} and BC as A^{*}.

Proof. The center of the circle is the midpoint C^{\prime} of AB . By the inscribed angle theorem (Carpenter theorem), since $\mathrm{AC}^{\prime} \mathrm{B}$ is a diameter and a straight angle, for any point P on c_{3}, the angle APB is a right angle. Thus the circle intersects $A C$ at a point P so that BP is perpendicular to AC ; the only such point is $\mathrm{P}=\mathrm{B}^{*}$. Likewise, the circle intersects BC at A^{*}.

Lemma 2. Continuing with the same figure, angle $A B B^{*}=$ angle $A A^{*} B^{*}$.

Proof: Both angles are angles inscribed in circle c with diameter AB . They both equal half the arc angle of arc $\mathrm{B} * \mathrm{~A}$. Thus they are equal.

Corollary. Continuing with the same figure, angle $\mathrm{ACC}^{*}=$ angle $\mathrm{AA}^{*} \mathrm{C}^{*}$.

Proof: Just replace B with C in the Lemma 2.

Lemma 3. Continuing with the same figure, angle $\mathrm{AA}^{*} \mathrm{C}^{*}=$ angle $\mathrm{AA} \mathrm{A}^{*}$. In other words $\mathrm{A}^{*} \mathrm{~A}$ bisects angle A^{*} of triangle $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}^{*}$.

Proof. We have seen already from Lemma 2 that angle $A A^{*} B^{*}$. $=$ angle $A B B^{*}$ and angle $\mathrm{AA}^{*} \mathrm{C}^{*}$. $=$ angle ACC^{*}.

But angle $\mathrm{ABB}^{*}=$ angle $\mathrm{ACC} *$ by similar triangles. Both triangles ABB^{*} and ACC * are right triangles with right angles at B^{*} and C^{*} and a shared angle at A , so by AA , triangles ABB^{*} is similar to triangle ACC * and thus the angles are equal.

Corollary: In the figure above, angle $\mathrm{C}^{*} \mathrm{~A} * \mathrm{~B}=$ angle $\mathrm{B} * \mathrm{~A} * \mathrm{C}$ and line BC bisects the exterior angles at A * of triangle $\mathrm{A} * \mathrm{~B} * \mathrm{C}^{*}$.

Proof: The exterior angle bisector at A* is the line through A* perpendicular to the interior angle bisector, which was proved to be $\mathrm{A} * \mathrm{~A}$. Thus BC is this line.

If we set $\mathrm{x}=$ angle $\mathrm{AA}^{*} \mathrm{C}^{*}=$ angle $\mathrm{AA} \mathrm{B}^{*}$, then angle $\mathrm{C} * \mathrm{~A} * \mathrm{~B}=90-\mathrm{x}=$ angle B*A*C. Each angle is also half of an exterior angle obtained by extending a side of $A * B * C^{*}$.

Theorem: If $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}^{*}$ is the orthic triangle of ABC , then the altitudes of ABC bisect the interior angles of $\mathrm{A} * \mathrm{~B} * \mathrm{C}^{*}$ and the sides of ABC bisect the exterior angles.

Proof. This was proved for vertex A* in Lemma 3 and its Corollary. Since A* could be chosen to be any vertex of $\mathrm{A} * \mathrm{~B} * \mathrm{C} *$, this proves the theorem for the vertices at B^{*} and C^{*} by the same reasoning.

Corollary: The orthocenter H of ABC is the incenter of $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}^{*}$, and A, B and C are the ecenters of $A * B * C^{*}$. Thus four circles tangent to lines $A^{*} B^{*}, B^{*} C^{*}, C^{*} A^{*}$ can be constructed with centers A, B, C, H.

Relation between the Orthocenter and the Circumcircle

The triangle $A B C$ can be inscribed in a circle called the circumcircle of ABC. There are some remarkable relationships between the orthocenter H and the circumcircle.

The altitude line CC* intersects the circumcircle in two points. One is C. Denote the other one by $\mathrm{C}^{* *}$.

Proposition. The point CC^{*} is the reflection of H in line AB .
This implies that the figure $\mathrm{HBC}^{* *} \mathrm{~A}$ is a kite, and C^{*} is the midpoint of H and $\mathrm{C}^{* *}$.

Proof: We have seen in Lemma 3 above that the triangles ABB^{*} and ACC * are similar, so that angle $A B B^{*}$ is congruent to angle $A C C^{*}$.

But angle ACC^{*} is the same angle as angle $\mathrm{ACC} * *$ is the same angle as angle $\mathrm{C}^{*} \mathrm{BC} * *$. Angle ABB* is the same angle as angle ABH is the same as angle $\mathrm{C}^{*} \mathrm{BH}$.

Angle $\mathrm{ACC}^{* *}$ is an inscribed angle subtending the same arc as angle $\mathrm{ABC}{ }^{* *}$, so these two angles are equal. Thus all 3 angles are congruent: angle $\mathrm{C} * \mathrm{BH}=$ angle $\mathrm{ACC} *=$ angle C*BC**.

Applying this proposition to each altitude, we get this theorem.

Theorem. Given an acute triangle ABC inscribed in a circle c . Let $\mathrm{A}^{* *}, \mathrm{~B} * * *, \mathrm{C}^{* * *}$ be the intersections of the altitudes of ABC with the circle (besides $\mathrm{A}, \mathrm{B}, \mathrm{C}$, which are also intersections). Then these points are reflections of H in the sides of ABC and triangle $A^{* *} \mathrm{~B}^{* *} \mathrm{C}^{* *}$ is similar to the orthic triangle $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}^{*}$. In fact the dilation with center H and ratio $1 / 2$ takes $\mathrm{A}^{* *} \mathrm{~B}^{* *} \mathrm{C}^{* *}$ to $\mathrm{A}^{*} \mathrm{~B}^{*} \mathrm{C}^{*}$.

