Question 1

Let the vector field F = (1, z + x, y).

Let the triangle T in (x, y, z)-space consist of the points in the first octant satisfying equation $\frac{x}{2} + \frac{y}{3} + z = 1$ (i.e., the points satisfy the equation plus the inequalities $x \ge 0, y \ge 0, z \ge 0$).

(a) Set up as a double integral ready to evaluate (but do *not* evaluate) this surface integral, where T is oriented by the normal pointing in the direction opposite from the origin, i.e., upward orientation.

$$\int \int_T \operatorname{curl} F \cdot n \, dS$$

Note: The answer should be a "plain vanilla" double integral, with no vector stuff at all left in it.

Answer: First, compute $\operatorname{curl} F = \mathbf{k}$.

A normal to the plane is the gradient of $\frac{x}{2} + \frac{y}{3} + z$, which is $(\frac{1}{2}, \frac{1}{3}, 1)$. This is pointing in the direction of increasing values of $\frac{x}{2} + \frac{y}{3} + z$, which is opposite the origin. (The other choice would be $(-\frac{1}{2}, -\frac{1}{3}, -1)$, which is pointing to the half-space containing the origin.

Compute the vertices of the triangle by solving equations such as $\frac{x}{2} + \frac{y}{3} + z = 1$ and y = 0 and z = 0, etc., to get vertices (2, 0, 0), (0, 3, 0), (0, 0, 1).

Answer by using (x, y) as parameters: The plane can be viewed as the graph of the function $z = r(x, y) = 1 - \frac{x}{2} - \frac{y}{3}$.

The region in (x, y)-plane that maps to the triangle is the triangle with vertices (2, 0), (0, 3), (0, 0) obtained by projecting to the (x, y, 0)-plane in the z direction. So this is the triangle that will be the domain of integration in the parameter space.

The integrand will be curl $F \cdot K$, where $K = \frac{\partial r}{\partial x} \times \frac{\partial r}{\partial y} = (\frac{1}{2}, \frac{1}{3}, 1)$ or $K = -(\frac{1}{2}, \frac{1}{3}, 1)$, whichever agrees with the given orientation of the plane. Clearly in this case, $K = (\frac{1}{2}, \frac{1}{3}, 1)$.

So curl $F \cdot K = (0, 0, 1) \cdot (\frac{1}{2}, \frac{1}{3}, 1) = 1$, and the integral over the triangle with vertices (2, 0), (0, 3), (0, 0) is

$$\int_0^2 \int_0^{3-\frac{3}{2}x} 1 \, dy \, dx = 3$$

Answer by using (x, z) as parameters: The plane can be viewed as the graph of the function $y = r(x, z) = 3 - \frac{3}{2}x - 3z$.

The region in (x, z)-plane that maps to the triangle in the problem is the triangle with vertices (2, 0), (0, 0), (0, 1) obtained by projecting to the (x, 0, z)-plane in the y direction. So this is the triangle that will be the domain of integration in the parameter space.

The integrand will be curl $F \cdot K$, where $K = \frac{\partial r}{\partial x} \times \frac{\partial r}{\partial z} = (-\frac{3}{2}, -1, -3)$ or $K = -(-\frac{3}{2}, -1, -3) = (\frac{3}{2}, 1, 3)$, whichever agrees with the given orientation of the plane. Clearly in this case, $K = (\frac{3}{2}, 1, 3)$ is the choice, since it is a positive multiple of the orientation normal given in the problem: $(\frac{1}{2}, \frac{1}{3}, 1)$.

So curl $F \cdot K = (0,0,1) \cdot (\frac{3}{2},1,3) = 3$, and the integral over the triangle with vertices (2,0), (0,0), (0,1) is

$$\int_0^2 \int_0^{1-\frac{1}{2}x} 3\,dx\,dz = 3$$

Question 2: For the same F and T, use Stokes' Theorem to write a line integral that will be equal to the surface integral above. Again, in this case, write the integral as an integral (or sum of integrals) ready to evaluate (but do *not* evaluate).

Note: The answer should be a "plain vanilla" single integral, with no vector stuff at all left in it.

Answer: The line integral $\int_C F \cdot d\mathbf{r}$ will be over a boundary C consisting of 3 parts, the integral on segment C_1 from (2,0,0) to (0,3,0), on segment C_2 from (0,3,0) to (0,0,1), and on segment C_3 from (0,0,1) to (2,0,0). The process for each one is more or less the same, so we will give extra detail for the first and less for the others.

Line Integral on C_1 by a couple of methods:

Parametrizing by x: The segment from (2, 0, 0) to (0, 3, 0) is just a segment in the (x, y)-plane that can be parametrized by x running from 2 down to 0, thus:

$$(x, -\frac{3}{2}x+3, 0), \quad 2 \ge x \ge 0$$

Since $F(x, -\frac{3}{2}x+3, 0) = (1, x, -\frac{3}{2}x+3)$, the line integral then becomes

$$\int_{2}^{0} (1\,dx + x\,d(-\frac{3}{2}x + 3) + 0) = -\int_{0}^{2} (1 - \frac{3}{2}x)\,dx = -(x - \frac{3x^{2}}{4})|_{0}^{2} = 1$$

Parametrizing by y: The segment from (2,0,0) to (0,3,0) can be parametrized by y running from 0 to 3, thus:

$$(-\frac{2}{3}y+2,y,0), \quad 0 \le y \le 3$$

Since $F(-\frac{2}{3}y+2, y, 0) = (1, -\frac{2}{3}y+2, y)$, the line integral then becomes

$$\int_0^3 1 \, d(-\frac{2}{3}y+2) + (-\frac{2}{3}y+2) \, dy + 0 = \int_0^3 (\frac{4}{3} - \frac{2}{3}y) \, dy = (\frac{4}{3}y - \frac{1}{3}y^2)|_0^3 = 1$$

Parametrizing by t: The segment from (2,0,0) to (0,3,0) can be parametrized by t running from 0 to 1, thus:

$$(1-t)(2,0,0) = t(0,3,0) = (2-2t,3t,0), \quad 0 \le t \le 1$$

Since F(2-2t, 3t, 0) = (1, 2-2t, 3t), the line integral then becomes

$$\int_0^1 1\,d(2-2t) + (2-2t)\,d\,3t + 0 = \int_0^1 (-2+3(2-2t)\,dt = (4t-3t^2)|_0^1 = 1$$

Line Integral on C_2 by one method, parametrized by y:

The segment C_2 from (0,3,0) to (0,0,1) can be parametrized as $(0,y,1-\frac{y}{3})$ for y from 3 to 0. Since $F(0,y,1-\frac{y}{3}) = (1,1-\frac{y}{3},y)$, the line integral then becomes

$$\int_{3}^{0} 0 + (1 - \frac{y}{3}) \, dy + y \, d(1 - \frac{y}{3}) = -\int_{0}^{3} (1 - \frac{y}{3} - \frac{1}{3}y) \, dy = -(y - \frac{1}{3}y^{2})|_{0}^{3} = 0$$

Line Integral on C_3 by one method, parametrized by t:

The segment C_3 from (0,0,1) to (2,0,0) can be parametrized by t as (2t,0,(1-t)) for t from 0 to 1. Since (2t,0,(1-t)) = (1,t+1,0), the line integral then becomes

$$\int_0^1 1 \, d(2t) + 0 + 0 = \int_0^1 2 \, dt = 2$$

Conclusion: The line integral over the entire boundary is the sum 1 + 0 + 2 = 3. This agrees with the answer to Question 1.