Midterm – Math 308 – Winter 2002

Throughout the exam, recall that e_i denotes the vector with coefficients all zero except in the *i*th coordinate, which is a 1.

Problem 1: Consider the system of equations

• Write down the *augmented matrix* of this system of equations.

	0	-2	6	2	-1
ANSWER :	1	3	3	-2	3
	1	4	0	0	-1

• Use elementary row operations to find a matrix in *reduced echelon form* (REF) which is row equivalent to the matrix you found in (a). DO NOT SOLVE THE EQUATION!

ANSWER: Note that there is only one REF form. Just an echelon form is not a complete answer to the question.

	1	0	12	0	3
REF =	0	1	-3	0	-1
	0	0	0	1	-3 / 2

Problem 2:

Suppose the augmented matrix of a different matrix equation *Bx* = *u* reduces to

1	0	0	1	0	3
0	0	1	2	0	2
0	0	0	0	1	4

• Find the *general solution* of Bx = u and write the answer in *vector parametric form*.

	3	0		-1
	0	1		-2
ANSWER:	x = 2	$+x_{2} 0$	+ <i>x</i> ₄	0
	0	0		1
	4	0		0

• Is the matrix function Bx one-to-one? Yes ____ No \underline{X} . An infinite number of vectors x have same product Bx = u, as shown in (a), since there are 2 free variables.

• Is the matrix function Bx onto? Yes \underline{X} No $\underline{}$. The equation Bx = u is consistent for all u, since there is a pivot in each row of B.

Problem 3: Let *T* be the linear transformation from \mathbb{R}^2 to \mathbb{R}^3 such that

$$T(e_1) = 2e_1 - e_2 + 2e_3$$

$$T(e_2) = e_1 + e_2 + e_3$$

(a) Find the value of $T(3e_1 + 2e_2)$

ANSWER:
$$T(3e_1 + 2e_2) = 3 - 1 + 2 1 = -1$$

2 1 7

(b) What is the *standard matrix* for *T*?

Math 308A

Problem 4: Consider the quadratic polynomial y = p(t) such that the graph of p(t) goes through the points (-1,2), (1,5), (2,6) in the (t,y) plane. Set up the matrix equation which would allow you to determine the polynomial p(t), **but don't solve it**. Make sure you label things clearly so that we can tell *why* your equation would help you determine p(t).

ANSWER: If $p(t) = at^2 + bt + c$, then the coefficients of the polynomial satisfy

```
1a + (-1)b + c = 2
a + b + c = 5
4a + 2b + c = 6
```

In matrix form Ax=b:

(If you set $p(t) = a + bt + ct^2$ then the columns of A appear in a different order.) Compare this with **Section 1.2 #35** from Assignment 1.

Problem 5: Write True or False.

<u>F</u> If a system of linear equations has 4 equations in 5 unknowns, then it must have at least one solution.

The system can still be inconsistent. If it is consistent such a system has an infinite number of solutions.

<u>F</u> A is a $3x^2$ matrix with 2 pivot positions. Ax = 0 has a nontrivial solution. The solution to this equation has no free variables, since there is a pivot in every column.

<u>F</u> A is a 3x2 matrix with 2 pivot positions. Ax = b has at least one solution for every possible b. There is not a pivot in every row, so the REF of A has a zero row. Thus for some b the equation is inconsistent.

Problem 6: Complete the definition of *linearly independent*:

A set of vectors $\{a_1, a_1, ..., a_n\}$ is linearly independent if none of the vectors is a linear combination of the others.

Alternate Definition: A set of vectors $\{a_1, a_1, \dots, a_n\}$ is linearly independent if the equation Ax = 0 has only the trivial solution, where A is the matrix with columns $[a_1, a_2, \dots, a_n]$.

Note: If your definition talks about solutions and there is no equation stated in the definition, it is not self-contained. If your reader had not attended 308, it would be impossible to decipher. Look up the official definition in the Glossary or in the text.

Problem 7:

A is a matrix with columns
$$a_1$$
, a_2 , etc. If $Ax = y$ has general solution $\begin{vmatrix} 1 & 2 \\ 2 & -1 \\ 3 & +x_4 & 2 \\ 0 & 1 \\ 5 & 0 \end{vmatrix}$

then:

a) Write *y* as a linear combination of the columns of A, using numbers for coefficients (no variables).

ANSWER: The vector $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is one solution to Ax = y (set $x_4 = 0$ to get this). 0 5 Thus $a_1 + 2a_2 + 3a_3 + 5a_5 = y$.

There are an infinite number of other solutions obtained by setting x_4 equal to other values such as 1, 2, or any other number. NOTE: Compare this with **Section 1.4, Practice Problem 1 on page 45.**

b) Write one example of a nontrivial solution of Ax = 0 if there is one. Example should only have numbers, no letters. 2

ANSWER: Choose $x = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ or any other scalar multiple of this vector. NOTE: Read $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

pp. 51-52.

c) Are the columns of A linearly dependent? Check one:

Yes. ____X ___ The columns are definitely dependent. Because we saw in (b) that there is a nontrivial solution to Ax = 0.

No. _____ The columns are definitely linearly independent.

Maybe. _____ There is not enough information given about A to be sure.