Midterm - Math 308 - Winter 2002

Throughout the exam, recall that e_{i} denotes the vector with coefficients all zero except in the $i^{\text {th }}$ coordinate, which is a 1 .

Problem 1: Consider the system of equations

$$
\begin{array}{rllll}
& -2 x_{2} & +6 x_{3} & +2 x_{4} & =-1 \\
x_{1} & +3 x_{2} & +3 x_{3} & -2 x_{4} & =3 \\
x_{1} & +4 x_{2} & & & =-1
\end{array}
$$

- Write down the augmented matrix of this system of equations.

ANSWER: $\quad\left|\begin{array}{rrrrr}1 & 3 & 3 & -2 & 3 \\ 1 & 4 & 0 & 0 & -1\end{array}\right|$

- Use elementary row operations to find a matrix in reduced echelon form (REF) which is row equivalent to the matrix you found in (a). DO NOT SOLVE THE EQUATION!

ANSWER: Note that there is only one REF form. Just an echelon form is not a complete answer to the question.

$$
\mathbf{R E F}=\left(\begin{array}{rrrrr}
1 & 0 & 12 & 0 & 3 \\
0 & 1 & -3 & 0 & -1 \\
0 & 0 & 0 & 1 & -3 / 2
\end{array}\right)
$$

Problem 2:

Suppose the augmented matrix of a different matrix equation $B x=u$ reduces to

$$
\left(\begin{array}{llllll}
1 & 0 & 0 & 1 & 0 & 3 \\
0 & 0 & 1 & 2 & 0 & 2 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)
$$

- Find the general solution of $\mathrm{Bx}=\mathrm{u}$ and write the answer in vector parametric form.

$$
\begin{aligned}
& \begin{array}{lll}
\lceil 3\rceil & \lceil 0\rceil & \lceil-1\rceil \\
|0| & |1| & |-2|
\end{array} \\
& \text { ANSWER: } \left.x=\begin{array}{l}
|2|+x_{2}|0|+x_{4} \mid \\
\left.\left\lvert\, \begin{array}{l}
\mid \\
0 \\
4
\end{array}\right.\right] \\
0 \\
0
\end{array} \right\rvert\,
\end{aligned}
$$

- Is the matrix function Bx one-to-one? Yes \qquad No X .
An infinite number of vectors x have same product $B x=u$, as shown in (a), since there are 2 free variables.
- Is the matrix function Bx onto? Yes _X_ No \qquad .
The equation $B x=u$ is consistent for all u, since there is a pivot in each row of B.

Problem 3: Let T be the linear transformation from R^{2} to R^{3} such that

$$
\begin{aligned}
& T\left(e_{1}\right)=2 e_{1}-e_{2}+2 e_{3} \\
& T\left(e_{2}\right)=e_{1}+e_{2}+e_{3}
\end{aligned}
$$

(a) Find the value of $T\left(3 e_{1}+2 e_{2}\right)$

$$
\text { ANSWER: } \left.T\left(3 e_{1}+2 e_{2}\right)=3 \left\lvert\, \begin{array}{c}
\lceil 2\rceil\lceil 1\rceil\lceil 7\rceil \\
-1|+2| 1\left|=\left|\begin{array}{c}
~ \\
2 \\
2
\end{array}\right|\right. \\
\hline 1\rfloor\lfloor \\
7
\end{array}\right.\right\rfloor
$$

(b) What is the standard matrix for T ?

Problem 4: Consider the quadratic polynomial $y=p(t)$ such that the graph of $p(t)$ goes through the points $(-1,2),(1,5),(2,6)$ in the (t, y) plane. Set up the matrix equation which would allow you to determine the polynomial $p(t)$, but don't solve it. Make sure you label things clearly so that we can tell why your equation would help you determine $p(t)$.

ANSWER: If $p(t)=a t^{2}+b t+c$, then the coefficients of the polynomial satisfy

$$
\begin{array}{r}
1 a+(-1) b+c=2 \\
a+b+c=5 \\
4 a+2 b+c=6
\end{array}
$$

In matrix form $A x=b$:

(If you set $p(t)=a+b t+c t^{2}$ then the columns of A appear in a different order.) Compare this with Section 1.2 \#35 from Assignment 1.

Problem 5: Write True or False.
F_If a system of linear equations has 4 equations in 5 unknowns, then it must have at least one solution.
The system can still be inconsistent. If it is consistent such a system has an infinite number of solutions.

F_A is a 3×2 matrix with 2 pivot positions. $\mathrm{Ax}=0$ has a nontrivial solution. The solution to this equation has no free variables, since there is a pivot in every column.

F_A is a 3×2 matrix with 2 pivot positions. $A x=b$ has at least one solution for every possible b. There is not a pivot in every row, so the REF of A has a zero row. Thus for some b the equation is inconsistent.

Problem 6: Complete the definition of linearly independent:
A set of vectors $\left\{\mathbf{a}_{1}, \mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{n}}\right\}$ is linearly independent if none of the vectors is a linear combination of the others.

Alternate Definition: A set of vectors $\left\{a_{1}, a_{1}, \ldots, a_{n}\right\}$ is linearly independent if the equation $A x=0$ has only the trivial solution, where A is the matrix with columns $\left[a_{1}\right.$ $\left.a_{2} \ldots a_{n}\right]$.

Note: If your definition talks about solutions and there is no equation stated in the definition, it is not self-contained. If your reader had not attended 308, it would be impossible to decipher. Look up the official definition in the Glossary or in the text.

Problem 7:

$\binom{1}{2} \quad\binom{2}{-1}$
A is a matrix with columns a_{1}, a_{2}, etc. If $A x=y$ has general solution $\left\lvert\, \begin{aligned} & \left.3\left|+x_{4}\right| \begin{array}{l}2 \\ 0 \\ 5\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), ~\end{aligned}\right.$
then:
a) Write y as a linear combination of the columns of A, using numbers for coefficients (no variables).

$$
\left(\left.\begin{array}{l}
1 \\
2
\end{array} \right\rvert\,\right.
$$

ANSWER: The vector $x=\left|\begin{array}{l}3 \\ 3 \\ 0\end{array}\right|$ is one solution to $A x=y$ (set $x_{4}=0$ to get this).

$$
\binom{0}{5}
$$

Thus $a_{1}+2 a_{2}+3 a_{3}+5 a_{5}=y$.
There are an infinite number of other solutions obtained by setting x_{4} equal to other values such as 1, 2, or any other number. NOTE: Compare this with Section 1.4, Practice Problem 1 on page 45.
b) Write one example of a nontrivial solution of $A x=0$ if there is one. Example should only have numbers, no letters.

$$
\left(\left.\begin{array}{r}
2 \\
-1
\end{array} \right\rvert\,\right.
$$

ANSWER: Choose $x=|2|$ or any other scalar multiple of this vector. NOTE: Read
$\binom{1}{0}$
pp. 51-52.
c) Are the columns of A linearly dependent? Check one:

Yes. __X__ The columns are definitely dependent.
Because we saw in (b) that there is a nontrivial solution to $A x=0$.

No. \qquad The columns are definitely linearly independent.
Maybe. \qquad There is not enough information given about A to be sure.

