Problem 1: Solving a linear equation

Given matrix $A = \begin{bmatrix} 1 & 2 & 0 & 2 \\ -3 & -7 & 0 & 0 \\ -1 & -4 & 0 & 10 \end{bmatrix}$ and vector $y = \begin{bmatrix} 5 \\ -8 \\ 9 \end{bmatrix}$.

(a) Solve Ax = y (if the equation is consistent) and write the general solution x in (vector) parametric form.

$$x = \begin{bmatrix} 19\\ -7\\ 0\\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -14\\ 6\\ 0\\ 1 \end{bmatrix}$$

Write a basis for the null space of A. **Basis =**
$$\begin{cases} \begin{bmatrix} 0\\ 0\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} -14\\ 6\\ 0\\ 1 \end{bmatrix} \end{cases}$$

- (b) What is the dimension of the range of A? **Dimension = 2**
- (c) Is y in the span of the row vectors of A? No. Not even in R⁴.

Problem 2: Conclusions from echelon form.

In each case, we start with a matrix A and vector and tell what one will get by reducing the augmented matrix of the system Ax = y to echelon form. Answer the questions in each case using this information. It is possible some equations will have no solution.

A	y	Echelon form of augmented		
		matrix of $Ax = y$.		
	[0]	$\begin{bmatrix} 1 & 0 & 1 & 0 & -5 \end{bmatrix}$		
$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 3 & 4 & 3 & 2 \\ 4 & 5 & 4 & 4 \end{bmatrix}$	$y = \begin{vmatrix} 1 \end{vmatrix}$	$\begin{bmatrix} 1 & 0 & 1 & 0 & -5 \\ 0 & 1 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$		
L 3	LJ			
(a) Write the general solution for Ax	x = y in (vector)) parametric form		
	[-5] [-1]			
~	3 0			
Solution: x	$r = \begin{bmatrix} -5 \\ 3 \\ 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$			
	2 0			
(b) What is the dimension of the nul	l space of A? D	Dimension =1		
		[-1]		
		0		
(c) Write down a basis for the null space of A. Basis = $\begin{bmatrix} 0\\1 \end{bmatrix}$				
		0		
(d) Is y in the range of A? Yes		[]		
(a) What is the dimension of the ran	ge of A? Dime	nsion = 3. Note Range(A) = R^3 !		
(e) What is the dimension of the range of A? Dimension = 3. Note Range (A) = \mathbb{R}^3 !				
(f) Write down a basis of the range of A Basis = $\begin{bmatrix} 3 & 4 & 2 \\ 3 & 4 & 2 \end{bmatrix}$, or $\{e_1, e_2, e_3\}$ by (e)				
(f) Write down a basis of the range of A. Basis = $\begin{cases} \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 4 \end{bmatrix}, \text{ or } \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\} \text{ by } (\mathbf{e}).$				
(g) Are the rows of A independent? Yes				
(h) What is the dimension of the row space of A? Dimension = 3				

В	Z	Echelon form of augmented matrix of Bx = z.
[1 3]	[1]	
D 2 4	1	0 1 0
$B = \begin{vmatrix} 3 & 5 \end{vmatrix}$	$z = \begin{vmatrix} 1 \end{vmatrix}$	0 0 1
4 8	3	0 0 0

- (a) Write the general solution for Bx = z in (vector) parametric form Solution: NO SOLUTION. Inconsistent system.
- (b) What is the dimension of the null space of \vec{B} ? **Dimension = 0**
- (c) Write down a basis for the null space of B. **Basis = {} empty basis**
- (d) Is z in the range of B? No
- (e) What is the dimension of the range of B? **Dimension =** 2
- (f) Write down a basis of the range of B. Basis = the two column vectors of B
- (g) Are the columns of B independent? Yes

С	Reduced row echelon form of C.		
[1 0 0]	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$		
$C = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$	0 1 2		
1 0 0	0 0 0		
(a) Is C invertible? No(b) Are the columns of C independent? No			
(c) Write down a basis for the null space of C. $\begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$			

Problem 3: Compute matrix products and inverses

Compute the stated matrix products (if defined) for these matrices.

$$A = \begin{bmatrix} 5 & 1 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 3 \end{bmatrix}, C = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 2 & 0 & -1 \end{bmatrix}$$

Compute each of the following matrix products or other matrices (if defined):

$A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -1 \\ -2 & 5 \end{bmatrix}$	C ⁻¹ No inverse (not square)
$AB = \begin{bmatrix} 5 & 1 & 9 & 8 \\ 2 & 1 & 3 & 5 \end{bmatrix}$	BA Not defined.
$CD = \begin{bmatrix} 2 & 4 & 0 & -2 \\ 1 & 2 & 0 & -1 \\ 3 & 6 & 0 & -3 \\ 1 & 2 & 0 & 1 \end{bmatrix}$	$BC = \begin{bmatrix} 9\\1 \end{bmatrix}$
CD ^T not Defined	C ^T D not defined

Problem 4: Find the eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of matrix $F = \begin{bmatrix} 0 & 5 \\ -5 & 10 \end{bmatrix}$. **Eigenvalues = 5, 5. There is only one eigenvalue. Eigenspace basis = .** $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ If possible, diagonalize F. **NOT POSSIBLE.**

Problem 5: Given the eigenvalues find the eigenvectors

Given that **1 and -3 are the eigenvalues** of the matrix $C = \begin{bmatrix} -3 & 8 & 2 \\ -1 & 9 & 2 \\ 4 & -8 & -1 \end{bmatrix}$, find the

eigenvectors of this matrix. **Hint**: First find whether there is a third eigenvalue. If you compute the determinant of C, knowing 2 eigenvalues, you can find the third root of the characteristic polynomial without computing $det(C - \lambda I)$.

Eigenvalue	Eigenvector	
1		
	-1	
-3	[-4]	
	-1	
7	[-2]	
	-3	

If possible, diagonalize C, i.e., write C = MDN, where D is diagonal. You **DO NOT** need to compute the inverse of any matrix in this problem. If a matrix is the inverse of a known matrix, just write it as the inverse

$$\mathbf{M} = \begin{bmatrix} 0 & -4 & -2 \\ -1 & -1 & -3 \\ 4 & 4 & 2 \end{bmatrix}$$
$$\mathbf{D} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 7 \end{bmatrix}$$
$$\mathbf{N} = \mathbf{M}^{-1}$$

Page 5

Problem 6: Compute orthogonal projections

Let
$$h = \begin{bmatrix} 6 \\ 12 \\ 3 \end{bmatrix}$$
, $u = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

(a) Compute m = the projection of h on Span({u}). (The formula should be computed numerically, but you need not simplify fractions, etc., in your answer.)

$$m = \frac{21}{3} \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 7\\7\\7 \end{bmatrix}$$

(b) Compute g = the projection of h on Span({u, v}). (The formula should be computed numerically, but you need not simplify fractions, etc., in your answer.)

$$g = \frac{21}{3} \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix} + \frac{12}{6} \begin{vmatrix} 1 \\ -2 \end{vmatrix} = \begin{vmatrix} 9 \\ 9 \\ 3 \end{vmatrix}$$
 by applying the projection formula with dot product to an

orthogonal basis for span {u, v} obtained by Gram-Schmidt.

Another method would use the normal equation $A^{T}Ax = A^{T}h$:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 6 \\ 12 \\ 3 \end{bmatrix}, \text{ that is this, after multiplying } \begin{bmatrix} 3 & 2 \\ 2 & 2 \end{bmatrix} x = \begin{bmatrix} 21 \\ 18 \end{bmatrix}$$

The solution to this is $x^* = \begin{bmatrix} 3 \\ 6 \end{bmatrix}, \text{ so } g = Ax^* = \begin{bmatrix} 9 \\ 9 \\ 3 \end{bmatrix}$

Problem 7: Matrix of Linear Transformation

(a) If T is the linear transformation of R² that rotates the plane by an angle so that the point (1, 0) is rotated to (3/5, 4/5). What is the matrix A of this transformation? $\begin{bmatrix} 3/5 & -4/5 \\ 4/5 & 3/5 \end{bmatrix} = A$ (b) Is the matrix A an orthogonal matrix? **Yes**(c) Is the matrix 2A an orthogonal matrix? **No Show why in both cases. Check definition** A^TA = I (d) Given the vector $u = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}$, if x is a vector in R³, then let $T(x) = (u^T x)u$. Is T a linear transformation? **YES** If so, what is its matrix (with respect to the standard basis)? $\begin{bmatrix} 1 & -1 & 3 \end{bmatrix}$

$$\begin{bmatrix} 1 & -1 & 3 \\ -1 & 1 & -3 \\ 3 & -3 & 9 \end{bmatrix}$$
. This is $= uu^{T}$.

Problem 8: Least squares solution

You have the following data for variables x, y, z

X	у	Ζ
0	0	3
1	0	4
0	1	4
1	1	1

(a) Now suppose that you want to fit this data to a function z = a + bx + cy, where, a, b, c are some constants that you need to solve for. Write a system of equations for variables a, b, c that can be solved if there is an exact fit of the function to the data.

```
a + 0b + 0c = 3

a + b + 0c = 4

a + 0b + c = 4

a + b + c = 1

Or

a = 3

a + b = 4

a + c = 4

a + b + c = 1
```

Note: by inspection, it is easy to see that a solution of the first three equations is a = 3, and b = c = 1 but then a + b + c = 5. So this system is inconsistent.

(b) Find the lease-squares "solution" a, b, c to this system and check the values of z = a + bx + cy at the data points to see how close a fit it is. **Solve** $A^{T}Ax = A^{T}t$: $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} x = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 4 \\ 1 \end{bmatrix}$, which multiplies out to

$$\begin{bmatrix} 4 & 2 & 2 \\ 2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} x = \begin{bmatrix} 12 \\ 5 \\ 5 \end{bmatrix}$$
. The solution to this equation is $x = \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ -1 \end{bmatrix}$.

Least squares solution to original problem: z = 4 - x - y.