PROBLEM 2 OF SECTION 1.4

The flows at each of the four nodes give a system of four equations in (x_1, x_2, x_3, x_4) ; this is the augmented matrix of this system. This system is the answer to part (a) of the problem.

1	0	0	1	1200
1	1	0	0	1000
0	1	1	0	800
0	0	1	1	0

The matrix reduces to this reduced row echelon matrix:

So here is the solution in vector form, with x_4 a free variable.

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1200 - x_4 \\ -200 + x_4 \\ 1000 - x_4 \\ x_4 \end{bmatrix}$$

To answer part (b), we set $x_4 = 100$ and substitute to get this solution:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1100 \\ -100 \\ 900 \\ 100 \end{bmatrix}$$

To answer part (c), we set each $x_i \ge 0$ and to get four inequalities in x_4 . all of which must be true for the four variables to be non-negative.

(1)
$$1200 - x_4 \ge 0$$

(2)
$$-200 + x_4 \ge 0$$

(3)
$$1000 - x_4 \ge 0$$

$$(4) x_4 \ge 0$$

Now inequalities (2) and (4) imply both $200 \le x_4$ and $0 \le x_4$, so both are true if $200 \le x_4$. But inequalities (1) and (3) imply that $x_4 \le 1200$ and $x_4 \le 1000$, both of which are true if $x_4 \le 1000$. So all four variables are non-negative precisely when $200 \le x_4 \le 1000$. Thus the minimum value of x_4 for which all the variables are non-negative is $x_4 = 200$ and the maximum value is $x_4 = 1000$.