Math 308 Midterm 1
Problem 1

Range

(a) State an algebraic specification for a vector y to be in the range of A , where

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
1 & 2 & 1 \\
3 & 2 & 5 \\
2 & 0 & 4
\end{array}\right]
$$

(b) Find a basis for the range of A.

Math 308 Midterm 1
 Problem 2

Inverse

a) Find a matrix C that is the inverse of matrix $B=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 2 \\ 1 & 0 & 0\end{array}\right]$ (if the inverse exists).
b) Test that your matrix C is really the inverse of B by checking the definition.
c) Suppose M and P are invertible matrices and N is a matrix so that $\mathrm{MNP}=\mathrm{I}$. Write the inverse N^{-1}, if it exists, as a product involving some or all of $\mathrm{M}, \mathrm{P}, \mathrm{M}^{-1}$, and P^{-1} (but the product does not include N).

Math 308 Midterm 1
Problem 3

Matrix M

Let $M=\left[\begin{array}{llllll}0 & 1 & 2 & 0 & 0 & 3 \\ 0 & 0 & 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.
a) Solve the equation $\mathrm{Mx}=0$ and put the solution in vector form.
b) Find a basis for $N(M)$, the null space of M.

Math 308 Midterm 1
 Problem 4

Linearly Independent

a) Write a complete sentence defining "linearly independent."
b) Determine whether or not the rows of this matrix are linearly independent. Give a brief reason or show work; just an unsupported "yes" or "no" is not sufficient.

$$
G=\left[\begin{array}{rrrr}
1 & -1 & 0 & 3 \\
0 & 2 & 1 & 1 \\
1 & 2 & 1 & 2
\end{array}\right]
$$

c) Determine whether or not the columns of the same matrix are linearly independent. Give a brief reason or show work; just an unsupported "yes" or "no" is not sufficient.

Math 308 Midterm 1
 Problem 5

True or false?

Give a brief reason as well as T or F .
a) If $v_{1}, v_{2}, \ldots, v_{k}$ are vectors in R^{n} and $\mathrm{k}<\mathrm{n}$, then the set of these vectors must be linearly dependent.
b) If $v_{1}, v_{2}, \ldots, v_{k}$ are vectors in R^{n} and one of the vectors is the zero vector, then the set of these vectors must be linearly dependent.
c) If A is an nxn matrix such that the range of A is R^{n}, then the set of columns of A must be linearly independent.

