Sec 3.3, Problem 20

Let A be the matrix with columns v , w , so $A=\left[\begin{array}{cc}1 & 0 \\ 2 & -1 \\ 0 & 1\end{array}\right]$. We are asked whether a certain vector b is in $\operatorname{Sp}(S)$, where S is the set $\{v, w\}$. In other words, is b in the range of A ? This is the same as asking whether the equation $\mathrm{Ax}=\mathrm{b}$ can be solved. This equation is the same as $\mathrm{x}_{1} \mathrm{~V}+\mathrm{x}_{2} \mathrm{~W}=\mathrm{b}$.

So we can either solve each problem separately, or we can get a formula by letting $b=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.

Then reducing the augmented matrix yields this:

$$
\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
2 & -1 & b_{2} \\
0 & 1 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & -1 & b_{2}-2 b_{1} \\
0 & 1 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & b_{1} \\
0 & 1 & 2 b_{1}-b_{2} \\
0 & 0 & b_{3}+b_{2}-2 b_{1}
\end{array}\right]
$$

Thus a vector b is in the span if $b_{3}+b_{2}-2 b_{1}=0$. If this equation is satisfied, then $\mathrm{x}_{1} \mathrm{v}+$ $\mathrm{x}_{2} \mathrm{~W}=\mathrm{b}$ where $\mathrm{x}_{1}=\mathrm{b}_{1}$ and $\mathrm{x}_{2}=\mathrm{b}_{1}-\mathrm{b}_{2}$.

So the answers are
(a) $1+1-2=0$, so $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=1 v+(2-1) w=v+w$
(b) $-1+1-2$ is not 0 , so not in span.
(c) $0+2-2=0$. We can use the formula, or we can just notice that this vector $=\mathrm{v}$ (thus $=1 v+0 w$).
(d) $1+3-4=0$, so $\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]=2 v+(4-3) w=2 v+w$

Section 3.4, Problem 6

The coefficient matrix of this homogeneous system is $\mathrm{A}=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -1\end{array}\right]$. To find a basis of W , solve the equation $\mathrm{Ax}=0$. The solutions are all multiples of $\left[\begin{array}{l}2 \\ 2 \\ 1 \\ 1\end{array}\right]$ so this vector is a basis for W . (Thus W is a line through 0 , a 1-dimentional subspace.)

Section 3.4, Problem 8

The coefficient matrix of this homogeneous system is $A=\left[\begin{array}{cccc}1 & -1 & -1 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$, which reduces to $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$. The solution set of $A x=0$ is the set of X of the form $\left[\begin{array}{c}-x_{4} \\ -x_{3} \\ x_{3} \\ x_{4}\end{array}\right]=x_{3}\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]$. Thus a basis of W is $\left\{\left[\begin{array}{c}0 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.
S does not span because a set of two vectors cannot span all of 3-space. A vector b is in the span of S if we can solve the equation $A x=b$, where the columns of A are the vectors in S . In other words, we are asking if b is in the range of A .

Section 3.4, Problem 12

(a) The matrix A reduces thus: $\left[\begin{array}{lll}1 & 1 & 2 \\ 1 & 1 & 2 \\ 2 & 3 & 5\end{array}\right] \rightarrow\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$
(b) Null space is the set of all $\mathrm{X}=x_{3}\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$ so $\left\{\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]\right\}$ is a basis of N(A).
(c) Since $A\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]=0$.

If the columns of A are A_{1}, A_{2}, A_{3}, this says $(-1) A_{1}+(-1) A_{2}+A_{3}=0$ or
$\mathrm{A}_{3}=\mathrm{A}_{1}+\mathrm{A}_{2}$. So we get the same set of all linear combinations (span) if we remove A_{3} from the set. But $\left\{\mathrm{A}_{1}, \mathrm{~A}_{2}\right\}$, so we stop here. This set is a basis of the column space.
(d) Basis for the row space is $\left\{\left[\begin{array}{lll}1 & 0 & 1\end{array}\right],\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]\right\}$.

For details, see examples in this section and notes from Wed 10/25.

Section 3.4, Problem 14

(a) This matrix reduces to the 3×3 identity matrix I.
(b) The null space $\mathrm{N}(\mathrm{A})=$ the zero subspace $=\{0\}$. One can either say the zero subspace has no basis (see p. 195 after Def 4) or adopt the slick convention that a basis is the empty set $\}$. Either one is OK in this course, for now at least.
(c) A basis for the column space (range) consists of the set of all 3 columns of A.
(d) A basis for the row space could either be the rows of A or else the rows of I. (the standard basis of R^{3}).

Supplementary Problems, page 266, Problem 3

This equation $A x=3 x$, if written out is a linear system in $x 1, x 2$, $x 3$ with variables on both sides of the equation. Move all the variables to the left side and get a new matrix. This matrix is actually A -3 I . Call this matrix B
(a) This is $N(B)$, thus a subspace.
(b) Find a basis of $N(B)$ as in problems above and in examples

The reduce $B=\left[\begin{array}{ccc}-1 & -1 & 1 \\ 1 & 1 & -1 \\ 2 & 2 & -2\end{array}\right] \rightarrow\left[\begin{array}{ccc}1 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
Vectors in null space of B are solutions of $B x=0$. This is set of these linear
combinations: $x_{2}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Thus a basis of $\mathrm{N}(\mathrm{B})=\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$.
Since the basis has two elements, the dimension $=2$.
Common sense note: Once we set up the matrix B, we see that the 3 equations are multiples of one equation in the 3 variables. Thus the solution is a plane, which has dimension 2.

