Solutions to Problems 5.1 and 5.2 from Assignment 5

Problem 5.1

Let W be the set of vectors x in R^{4} that are solutions to the equation $\mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3+\mathrm{x} 4=0$. Let $\mathrm{z}=[1,2,3,4]^{\mathrm{T}}$. Find vectors u and v so that z $=u+v$, where u is in W and v is orthogonal to all vectors in W .

Answer: Let $\mathrm{N}=[1,1,1,1]^{\mathrm{T}}$. If X is any vector $=[\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4]^{\mathrm{T}}$, then the equation above equates the dot product of N and X to zero. Thus W is the set of vectors orthogonal to N .

Also, W is the null space of the matrix $\mathrm{N}^{\mathrm{T}}=\left[\begin{array}{lll}1 & 1 & 1\end{array} 1\right]$ (see the definition of null space). Thus it is a 3 - dimensional subspace of R^{4} since the rank of this matrix is 1 , and so nullity $=3=4-1$.

The question asks for u and v so that u is in W and v is orthogonal to the vectors of W.

If we compute orthogonal components of z , with v in the N direction, then $\mathrm{u}=\mathrm{z}-\mathrm{v}$ will be orthogonal to N , and thus in W .
(I will write the dot product of two vectors N and v as $\mathrm{N} . \mathrm{V}$, or as $\mathrm{N}^{\mathrm{T}} \mathrm{v}$ since I don't have a dot product symbol handy.)

By the formula in 3.6,
$v=\left\{\left(N^{T} v\right) /\left(N^{T} N\right)\right\} N=\{10 / 4) N=(5 / 2) N=[5 / 2,5 / 2,5 / 2,5 / 2]^{\mathrm{T}}$.
So $u=z-v=[-3 / 2,-1 / 2,1 / 2,3 / 2]^{T}$
You can check that $\mathrm{N}^{\mathrm{T}} \mathrm{u}=0$.

Problem 5.2

Let S be the span of the vectors $s 1=[1,0,1,1]^{\mathrm{T}}$ and $\mathrm{s} 2=[0,1,1,1]^{\mathrm{T}}$. Let $\mathrm{w}=[1,0,0,0]^{\mathrm{T}}$. Find a vector t so that t is in S and $\mathrm{w}-\mathrm{t}$ is orthogonal to both s1 and s2.

It is easy to check that $\{\mathrm{s} 1, \mathrm{~s} 2\}$ is an independent set, so it is a basis of S . Thus S is a 2-dimensional subspace.

To apply the projection formula of 3.6, we need an orthogonal basis, so we use the Gram-Schmidt process to convert s1, s2 to an orthogonal basis. This means that we write
$\mathrm{s} 2=\mathrm{u} 1+\mathrm{u} 2$, where u 1 is in the direction of s 1 and u 2 is orthogonal to s 1 . Then $\{\mathrm{s} 1, \mathrm{u} 2\}$ is a new basis for S , and it is orthogonal.

So by the formula, $\mathrm{u} 1=\left\{\left(\mathrm{s} 1^{\mathrm{T}} \mathrm{s} 2\right) /\left(\mathrm{s} 1^{\mathrm{T}} \mathrm{s} 1\right)\right\} \mathrm{s} 1=(2 / 3)[1,0,1,1]^{\mathrm{T}}$. So $\mathrm{u} 2=\mathrm{s} 2-\mathrm{u} 1=[-2 / 3,1,1 / 3,1 / 3]^{\mathrm{T}}=(1 / 3)[-2,3,1,1]^{\mathrm{T}}$.

Check that s1 and u2 are orthogonal and thus an orthogonal basis for S. Simplifcation: We can multiply u2 by 3 and still get an orthogonal basis. So let s2* $=[-2,3,1,1]^{\mathrm{T}}$.
Then $\left\{s 1, s 2^{*}\right\}$ is also an orthogonal basis and is the one we will use. Note: $\{\mathrm{s} 1, \mathrm{u} 2\}$ works also, but the computation is marginally more complicated.

Now t is obtained from w by the projection (or coordinate) formula:

$$
\begin{aligned}
& \mathrm{t}=\left(\mathrm{s} 1^{\mathrm{T}} \mathrm{w}\right) /\left(\mathrm{s} 1^{\mathrm{T}} \mathrm{~s} 1\right) \mathrm{s} 1+\left(\mathrm{s} 2 *^{\mathrm{T}} \mathrm{w}\right) /\left(\mathrm{s} 2 *^{\mathrm{T}} \mathrm{~s} 2 *\right) \mathrm{s} 2 *= \\
& =(1 / 3)[1,0,1,1]^{\mathrm{T}}+(-2 / 15)[-2,3,1,1]^{\mathrm{T}}=(1 / 5)[3,-2,1,1]^{\mathrm{T}}
\end{aligned}
$$

One can check that this t is in fact $(3 / 5) \mathrm{s} 1+(-2 / 5) \mathrm{s} 2$, so it is in fact in S .
Comment 1. Any orthogonal basis of S would work. If one realizes that since the lengths of s 1 and s 2 are equal, then the quadrilateral $0, \mathrm{~s} 1$, $(\mathrm{s} 1+\mathrm{s} 2), \mathrm{s} 2$ is a rhombus and the vector $\mathrm{v} 1=\mathrm{s} 1+\mathrm{s} 2$ is orthogonal to $\mathrm{v} 2=$ s 1 - s 2 (take the dot product and check), this gives a simpler computation.

Comment 2. We will learn a different method for solving this problem on Monday 11/13 when we explore section 3.8.

