
Svetlana Divina

Math 308

James King

Project

Theoretical Evolutionary Ecology

Abstract:

In this application of Linear Algebra, the idea of growth of population based on

Theoretical Evolutionary Ecology is presented. The topic is based on the

mathematical principle in Biology, how growth of population of species can be

determined and calculated. This procedure can be done by several means – using

exponential function or matrix representations. In the assignment, growth of

population will be shown in the matrix form.

Main (Explanatory part with Examples)

Theoretical Evolutionary Ecology covers the topics of major interest in

contemporary research-life-history evolution, optimal foraging, kin selection and

inclusive fitness, the evolution of sex, the sex ratio, sexual selection, and the

application of game theory to evolutionary problems. It provides a clear and



systematic account of theoretical models underpinning our understanding of

evolutionary adaptation.

Let’s take a small group of living beings. There are two sexes, but only the females

are of interest, as in them rests the procreative potential of the species (many mothers

= many children; the same is not true for fathers). Let nx(t) be the number of females

of age x in year t, so x and t are integers, and things are arranged  so that they're both

positive (x of course is positive anyway). The females are assumed to start breeding

from age x = 1, and to continue breeding each year of subsequent life up to and

including age x = w (so from age x = w+1 onward they drop out of this mathematical

model and we'll just assume they retire).

Let Px = probability that a female of age x survives to age x+1. Px is the fraction of x

year olds likely to survive, so that means nx+1(t+1) = Px nx(t).

Let observe nx(t) x year olds in some year t, then in the next year (t+1) only a

certain fraction will still be around, not x+1 year old. Each of the nx(t) females of age

x is assumed in the beginning give birth to a certain number of females, but they're of

little interest unless they survive to be 1 year old, at which point they start breeding.

Let fx be average number of females born of x year olds that survive to age 1 (this

may be a fraction). Therefore, if we start with nx(t) females of age x in year t, then in

the next year (t+1) we assume there will be about fx nx(t) of their daughters of age 1

still around. So the total number of 1 years olds in year t+1 would be n1(t+1) = f1 n1(t)

+ f2 n2(t) + ... + fw nw(t).

This is our final recursion relation (meaning it relates a new value of a variable to

some old values). Note that nx+1(t+1) = Px nx(t) starts with x = 1, not x = 0, so we have

w recursion relations in all. The w recursion relations can be expressed as a single

matrix relation:



 n1  (t+1) |         | f1   f2    f3   …. fw-1   fw      |  |  n1(t)  |

 n2  (t+1) |         | P1  0     0   ….   0       0  |  |  n2(t)  |

 n3  (t+1) |         |  0   P2  0   ….  0       0  |  |  n3(t)   |

 n4  (t+1) |  =     |  0   0   P2  ….  0      0  |  |  n4(t)   |

      ….    |  |   .    .     .          .      .  |  |      ..    |

 nw (t+1) |          |  0   0    0 …  Pw-1    0  |  |  nw(t)   |

This can be even more written: n(t+1) = L n(t) where n(t+1) and n(t) are the

columns of population values, and L is the square matrix defining the recursion.

Finally, n(t) = L n(t-1) = L2 n(t-2) = ... = Lt n(0),  which gives a nice way of

determining the populations at any time t in terms of a set of starting populations at

time t = 0.

For example, if we take f1 = 1/3, f2 = 2/3, f3 = 2/3, P1 = 0.5 and P2 = 1.0. These values

are seen in their appropriate slots in the 3x3 matrix (which is the matrix L). The initial

populations of the 1, 2 and 3 year olds at t = 0 (they do not influence the powers of

L). So in this case w = 3, and all females over 3 years old have given up on breeding.

But on average each season the 1, 2 and 3 year old females give birth to 1/3, 2/3 and

2/3 female spawn, respectively, that survive at least one year. Also, half of 1 year olds

survive to 2, and all of 2 year olds survive to 3 (unrealistic, survival rates should be

expected to increase with age and experience at least to some extent).

The outputs are the matrices Lt+1 and Lt+2, and the columns of populations n(t) and

n(t+1) (these will depend on the 3 inputs).

As we see whatever 3 values of nx(0) started with, if we go far enough into the future

(t large) we'll end up approximately with

n1(t) -> 2a,
n2(t) -> a,
n3(t) -> a,



for some limiting constant a. If in the beginning n1(0) = 2n2(0) = 2n3(0) (for example,

the values, 200, 100 and 100), then the populations nx(t) will remain constant for all

t> 0. As t gets large, the matrices Lt seem to converge to the matrix

1/2 2/3 1/3
1/4 1/3 1/6
1/4 1/3 1/6

In fact, let's denote this limiting matrix by L% (which is supposed to look like L to the

power infinity, because that's what it actually is). Since infinity + 1 = infinity, then

expect L% = LL% = L%L.

And in fact, multiplying L% from the left or right by L yields L% back again.

Continuing on in this vein, recall that n(t) = Lt n(0),  where n(t) is the column matrix

of 3 populations nx(t). Therefore, let n(%) = L% n(0),  which is the column of

populations after an infinite number of generations (which won't happen until the year

2089). Performing the matrix multiplication we get

n1(%) = 2n2(%) = 2n3(%) = (n1(0)/2 + 2n2(0)/3 + n3(0)/3).

(So n1(%) + 2n2(%) + n3(%) = (n1(0) + 4n2(0)/3 + 2n3(0)/3). But

L n(%) = LL% n(0) = L%+1 n(0) = L% n(0) = n(%),.................(eigenvector equation),

and that explains why if n1(t) = 2n2(t) = 2n3(t), then n(t+1) = L n(t) = n(t).

The general form of a matrix eigenvalue equation is

A v = µ v

where A is an n x n matrix, v an n x1 matrix (vector), and µ a number. v is called the

eigenvector, and µ its eigenvalue. If v is an eigenvector of some matrix A, then so is

cv for any constant c; so eigenvectors determine eigen-"directions".

In the L-eigenvector equation written above, n(%) is the eigenvector, and µ = 1 is the

corresponding eigenvalue. (There are two other eigenvalues for L, but they are

complex numbers with nonzero imaginary components, and they won't be of interest

to us.)



The eigenvalue µ = 1 is quite special, and it is responsible for the fact that the nine

components of L% are finite real numbers, and for the fact that whatever populations

nx(0) we may start with, after a large number of generations we will settle near the

stable values of nx(%), which are finite.

For example, if f1 = 8/7, f2 = 16/7, f3 = 16/7, P1 = 0.5 and P2 = 1.0.

These values divided by 2 (see below) in their appropriate slots in the 3x3 matrix

(which is the matrix L/2).

In this case the fecundity factors fx have each been increased by a factor of 24/7. The

vectors with components,

8c
2c
c

with c any number, are eigenvectors of this new matrix L with eigenvalue 2.

Therefore the matrix Lt has the same eigenvectors, but eigenvalue 2t, an exponentially

increasing function of t. That means that the components of Lt will also be exploding

exponentially. On the other hand, the matrix L/2 has the same eigenvectors but the

eigenvalue 1, so it is powers of this matrix (just multiply by 2t to get L itself), as its

components will remain finite as t goes to infinity. However, the values of nx(t) are

given without factors, and they rapidly increase with t. The ratios of the three nx(t) are

going to 8:2:1, the eigen-"direction" ratios given above. That is, even though the nx(t)

do not converge to a stable fixed point in this case, their ratios converge to the

eigenvector ratios 8:2:1.

Although the components of L will increase like 2t, the components of L/2 converge

to

7/11 12/11 8/11
7/44 3/11 2/11
7/88 3/22 1/11

Conclusion: had the fx to be decreased even slightly from their original values, we

would have had an eigenvalue less than 1, and this would have resulted in exponential

population decline and eventual extinction. An eigenvalue greater than 1 is most



likely, and the model need to get complicated by limiting resources to prevent the

unrealistic unlimited growth that was observed here.
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