#### NAME \_\_\_\_\_

Do all problems. No calculators. Points per problem listed on the back page.

### **Problem 1: Solving a linear equation**

(a) Solve Ax = y (if the equation is consistent) and write the general solution x in (vector) parametric form.

(b) Write a basis for the null space of A. **Basis** = \_\_\_\_\_

(c) What is the dimension of the range of A? **Dimension** = \_\_\_\_\_

(d) Is y in the span of the row vectors of A? Yes? No?

# Problem 2: Conclusions from echelon form.

In each case, we start with a matrix A and vector and tell what one will get by reducing the augmented matrix of the system Ax = y to echelon form. Answer the questions in each case using this information.

| Α                   | у     | Echelon form of augmented matrix |
|---------------------|-------|----------------------------------|
|                     |       | of $Ax = y$ .                    |
| 1 1 1 1             | 0     | 1 1 1 1 0                        |
| $A = 3 \ 3 \ 3 \ 2$ | y = 1 | 0 0 0 -1 1                       |
| 4 4 4 1             | 3     | 0 0 0 0 0                        |

| Page 3 |  |
|--------|--|
|--------|--|

| Write the general solution for Ax = y in (vector) parametric form <b>Solution:</b> |
|------------------------------------------------------------------------------------|
| What is the dimension of the null space of A? <b>Dimension =</b>                   |
| Write down a basis for the null space of A. <b>Basis</b> =                         |
| Is y in the range of A? Yes? No?                                                   |
| What is the dimension of the range of A? <b>Dimension</b> =                        |
|                                                                                    |
| Write down a basis of the range of A. <b>Basis</b> =                               |
| Are the columns of A independent? Yes? No?                                         |

| В                                                                   | Z                                      | Echelon form of augmented matrix |  |  |  |
|---------------------------------------------------------------------|----------------------------------------|----------------------------------|--|--|--|
|                                                                     |                                        | of $Bx = z$ .                    |  |  |  |
| 1 2                                                                 | 1                                      | 1 2 0                            |  |  |  |
| 2 4                                                                 | 1                                      | 0 0 1                            |  |  |  |
| $B = \frac{1}{3} \frac{1}{6}$                                       | z = 1                                  | 0 0 1<br>0 0 0                   |  |  |  |
| 4 8                                                                 | 1                                      |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
| Write the general solution for $Bx = z$ in (vector) parametric form |                                        |                                  |  |  |  |
| Solution:                                                           |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
| What is the dimension of the null sp                                | ace of B? Dim                          | ension =                         |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
| Write down a basis for the null spac                                | e of B <b>Basis =</b>                  |                                  |  |  |  |
| while down a busis for the num space                                | <b>c</b> of <b>D</b> . <b>D</b> usis – |                                  |  |  |  |
| Is y in the range of B? Yes? No?                                    |                                        |                                  |  |  |  |
| is y in the range of B? <b>Tes:</b> No:                             |                                        |                                  |  |  |  |
| What is the dimension of the new set                                | f D 9 <b>D:</b>                        |                                  |  |  |  |
| What is the dimension of the range of                               | DI B? Dimensio                         | )n =                             |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
| Write down a basis of the range of E                                | 3. <b>Basis</b> =                      |                                  |  |  |  |
| Are the columns of B independent?                                   | Yes? No?                               |                                  |  |  |  |
|                                                                     | 1                                      |                                  |  |  |  |
| С                                                                   | Reduced row                            | echelon form of C.               |  |  |  |
| 1 0 0                                                               | 1 0 0                                  |                                  |  |  |  |
| C = 1  2  2                                                         | 0 1 1                                  |                                  |  |  |  |
| 1 0 0                                                               | 0 0 0                                  |                                  |  |  |  |
| Is C invertible? Yes? No?                                           | I                                      |                                  |  |  |  |
|                                                                     | Ves? No?                               |                                  |  |  |  |
| Are the columns of C independent? Yes? No?                          |                                        |                                  |  |  |  |
| Write down a basis for the null space of C.                         |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |
|                                                                     |                                        |                                  |  |  |  |

# **Problem 3: Compute AB**

Compute the stated matrix products (if defined) for these matrices.

$$A = \begin{bmatrix} 1 & -1 \\ 2 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 3 \end{bmatrix}, C = \begin{bmatrix} 2 & 2 \\ 1 \\ 3 \end{bmatrix}, D = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$$

Compute each of the following matrix products or other matrices (if defined):



### **Problem 4: Transpose and product**

Suppose M is a 4 x 3 matrix whose columns M1, M2, M3 are orthogonal and have lengths |M1| = 2, |M2| = 3, |M3| = 4. Tell what are the entries in the product M<sup>T</sup>M, as much and as precisely as possible from this information.

 $\mathbf{M}^{\mathrm{T}}\mathbf{M} =$ 

# Problem 5: Find the eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of matrix  $M = \begin{pmatrix} 0 & -2 \\ 2 & -4 \end{pmatrix}$ .

If possible, diagonalize M, i.e., write M = PDQ, where D is diagonal.

P =\_\_\_\_\_ D = \_\_\_\_\_ Q = \_\_\_\_\_

### Problem 6: Given the eigenvalues find the eigenvectors

|                                                                 | 7  | 4  | 16          |
|-----------------------------------------------------------------|----|----|-------------|
| Given that <b>1 and 3 are the eigenvalues</b> of the matrix C = | 2  | 5  | 8, find the |
|                                                                 | -2 | -2 | -5          |
| eigenvectors of this matrix.                                    |    |    |             |

If possible, diagonalize C, i.e., write C = PDQ, where D is diagonal. You DO NOT need to compute the inverse of a matrix. If a matrix is the inverse of a known matrix, just write it as the inverse.

P =\_\_\_\_\_ D = \_\_\_\_\_ Q = \_\_\_\_\_

# **Problem 7: Compute orthogonal projections**

(a) Compute m = the projection of h on span(u). (The formula should be computed numerically, but you need not simplify fractions, etc., in your answer.)

(b) Compute g = **the projection of h on span(u, v).** (The formula should be computed numerically, but you need not simplify fractions, etc., in your answer.)

(c) In general, if X and Y are orthogonal vectors with |X| = 5 and |Y| = 12, compute, if possible with this information, |X-Y|.

|X-Y|=\_\_\_\_\_

#### Problem 8: Matrix of rotation by 120 degrees

(a) If T is the linear transformation of  $R^2$  that rotates the plane by 120 degrees. What is the matrix A of this transformation?

Hint:  $\cos 120 \text{ degrees} = -1/2$ ;  $\sin 120 \text{ degrees} = \frac{f_3}{2}$ .

(b) What is the matrix B of the inverse of T?

(c) Is the matrix A an orthogonal matrix? **Yes? No?** Show why.

(d) Is the matrix 2A an orthogonal matrix? **Yes? No?** Show why.

### **Problem 9: Least squares solution**

(a) Let A =  $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & and let y = 2 \\ 1 & 1 & 3 \end{bmatrix}$ . Then find the least squares "solution" of Ax = y.

Least squares solution = \_\_\_\_\_

(b) If u is the least squares solution of Ax = y, how is the vector Au related to y and A? Tell what this relation is supposed to be and check that it is true in this case.

| Problem | Points Possible | Score |
|---------|-----------------|-------|
| 1       | 25              |       |
| 2       | 50              |       |
| 3       | 20              |       |
| 4       | 10              |       |
| 5       | 20              |       |
| 6       | 20              |       |
| 7       | 20              |       |
| 8       | 15              |       |
| 9       | 20              |       |
| Total   | 200             |       |

Please leave this space for the grader.