NAME

Do all problems. No calculators. Points per problem listed on the back page.

Problem 1: Solving a linear equation

Given matrix $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 1 \\ 1 & 1 & -1 & 0 \\ 2 & 3 & 2 & 1\end{array}\right]$ and vector $y=\left[\begin{array}{c}{\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 0\end{array}\right] .}\end{array}\right.$
(a) Solve $\mathrm{Ax}=\mathrm{y}$ (if the equation is consistent) and write the general solution x in (vector) parametric form.
(b) Write a basis for the null space of A. Basis = \qquad
(c) What is the dimension of the range of A? Dimension = \qquad
(d) Is y in the span of the row vectors of A? Yes? No?

Problem 2: Conclusions from echelon form.

In each case, we start with a matrix A and vector and tell what one will get by reducing the augmented matrix of the system $\mathrm{Ax}=\mathrm{y}$ to echelon form. Answer the questions in each case using this information.

A	y	Echelon form of augmented matrix of $A x=y$.
$\left\lceil\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right\rceil$	$\lceil 0\rceil$	$\left\lceil\begin{array}{lllll}1 & 1 & 1 & 1 & 0\end{array}\right]$
$A=\left\|\begin{array}{llll}3 & 3 & 3 & 2\end{array}\right\|$	$\mathrm{y}=\|1\|$	$\left\|\begin{array}{lllll}0 & 0 & 0 & -1 & 1\end{array}\right\|$
$\left[\begin{array}{llll}4 & 4 & 4 & 1\end{array}\right\rfloor$	[3」	$\left[\begin{array}{lllll}0 & 0 & 0 & 0 & 0\end{array}\right]$

Write the general solution for $\mathrm{Ax}=\mathrm{y}$ in (vector) parametric form

Solution:

What is the dimension of the null space of A? Dimension = \qquad

Write down a basis for the null space of A. Basis $=$ \qquad

Is y in the range of A? Yes? No?

What is the dimension of the range of A ? Dimension $=$ \qquad

Write down a basis of the range of A . Basis = \qquad

Are the columns of A independent? Yes? No?

B	z	Echelon form of augmented matrix of $B x=z$.
$B=\left\|\begin{array}{ll} \mid 1 & 2 \\ 2 & 4 \\ 3 & 6 \end{array}\right\|$	$\left.z=\begin{array}{l} \lceil 1\rceil \\ \|1\| \\ 1 \\ 1 \\ \lfloor \\ 1 \end{array}\right\rfloor$	$\left[\left.\begin{array}{lll} 1 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right\rvert\,\right.$

Write the general solution for $\mathrm{Bx}=\mathrm{z}$ in (vector) parametric form

Solution:

What is the dimension of the null space of B? Dimension = \qquad

Write down a basis for the null space of B. Basis = \qquad

Is y in the range of B? Yes? No?

What is the dimension of the range of B ? Dimension $=$ \qquad

Write down a basis of the range of B . Basis = \qquad
Are the columns of B independent? Yes? No?
$\left.\left.\begin{array}{|l|l|}\hline \mathrm{C} & \text { Reduced row echelon form of C. } \\ \hline \left.\mathrm{C}=\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 2\end{array} \right\rvert\, & \left.\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 0\end{array}\right] \\ \left|\begin{array}{lll}0 & 1 & 1\end{array}\right| \\ 0 & 0\end{array}\right]\right\rfloor \mid$

Is C invertible? Yes? No?
Are the columns of C independent? Yes? No?
Write down a basis for the null space of C .

Problem 3: Compute AB

Compute the stated matrix products (if defined) for these matrices.

$$
\mathrm{A}=\left[\begin{array}{rr}
1 & -1 \\
2 & 1
\end{array}\right], \mathrm{B}=\left[\begin{array}{rrrr}
1 & 0 & 2 & 1 \\
0 & 1 & -1 & 3
\end{array}\right], \mathrm{C}=\left[\begin{array}{l}
\lceil 2\rceil \\
|1| \\
|3| \\
\vdots \\
1
\end{array}\right], \left.\mathrm{D}=\begin{aligned}
& \lceil 2\rceil \\
& |0| \\
& \mid 1
\end{aligned} \right\rvert\,
$$

Compute each of the following matrix products or other matrices (if defined):

A^{-1}	C^{-1}
AB	BA
CD	BC
CD^{T}	

Problem 4: Transpose and product

Suppose M is a 4×3 matrix whose columns M1, M2, M3 are orthogonal and have lengths $|\mathrm{M} 1|=2,|\mathrm{M} 2|=3,|\mathrm{M} 3|=4$. Tell what are the entries in the product $\mathrm{M}^{\mathrm{T}} \mathrm{M}$, as much and as precisely as possible from this information.
$\mathbf{M}^{\mathrm{T}} \mathbf{M}=$

Problem 5: Find the eigenvalues and eigenvectors

Find the eigenvalues and eigenvectors of matrix $M=\left[\begin{array}{ll}0 & -2 \\ 2 & -4\end{array}\right]$.

If possible, diagonalize M , i.e., write $\mathrm{M}=\mathrm{PDQ}$, where D is diagonal.

$$
\mathbf{P}=
$$

$$
\mathbf{D}=
$$

$$
\mathbf{Q}=
$$

Problem 6: Given the eigenvalues find the eigenvectors

Given that $\mathbf{1}$ and 3 are the eigenvalues of the matrix $C=\left[\begin{array}{rrr}7 & 4 & 16 \\ 2 & 5 & 8 \\ -2 & -2 & -5\end{array}\right]$, find the
eigenvectors of this matrix.

If possible, diagonalize C, i.e., write $C=P D Q$, where D is diagonal. You DO NOT need to compute the inverse of a matrix. If a matrix is the inverse of a known matrix, just write it as the inverse.
$\mathbf{P}=$
$\mathrm{D}=$ $Q=$ \qquad

Problem 7: Compute orthogonal projections

(a) Compute $m=$ the projection of h on span(u). (The formula should be computed numerically, but you need not simplify fractions, etc., in your answer.)
(b) Compute $g=$ the projection of \mathbf{h} on $\operatorname{span}(\mathbf{u}, \mathbf{v})$. (The formula should be computed numerically, but you need not simplify fractions, etc., in your answer.)
(c) In general, if X and Y are orthogonal vectors with $|\mathrm{X}|=5$ and $|\mathrm{Y}|=12$, compute, if possible with this information, $|\mathrm{X}-\mathrm{Y}|$.
$|\mathbf{X}-\mathbf{Y}|=$ \qquad

Problem 8: Matrix of rotation by 120 degrees

(a) If T is the linear transformation of R^{2} that rotates the plane by 120 degrees. What is the matrix A of this transformation?
Hint: $\cos 120$ degrees $=-1 / 2 ; \sin 120$ degrees $=\frac{\sqrt{3}}{2}$.
(b) What is the matrix B of the inverse of T ?
(c) Is the matrix A an orthogonal matrix? Yes? No?

Show why.
(d) Is the matrix 2 A an orthogonal matrix? Yes? No?

Show why.

Problem 9: Least squares solution

(a) Let $\mathrm{A}=\left[\begin{array}{ll}{\left[\begin{array}{ll}1 & 1 \\ 1 & 2 \\ 1 & 1\end{array}\right\rfloor}\end{array}\right.$ and let $\mathrm{y}=\left[\left.\begin{array}{l}\lceil 1\rceil \\ 2 \\ 2\end{array} \right\rvert\,\right.$. Then find the least squares "solution" of $\mathrm{Ax}=\mathrm{y}$.

Least squares solution =

\qquad
(b) If u is the least squares solution of $A x=y$, how is the vector $A u$ related to y and A ? Tell what this relation is supposed to be and check that it is true in this case.

Please leave this space for the grader.

Problem	Points Possible	Score
1	25	
2	50	
3	20	
4	10	
5	20	
6	20	
7	15	
8	20	
9	Total	

