Math 300A Quiz 3

NAME _____

Problem 1: Let $S = \{1, 2, 3, 4, 5\}$. Two functions f and g from S to S are defined by these elements of S x S:

$$f = \{(1, 2), (2, 3), (3, 2), (4, 4), (5, 3)\}$$

 $g = \{(1, 1), (2, 5), (3, 2), (4, 3), (5, 4)\}$

Fill in the blanks below.

(a)

$$f \circ g(1) = ____, f \circ g(2) = ____, f \circ g(3) = ____, f \circ g(4) = ____, f \circ g(5) = ____$$

(b) $(f \circ g)^{-1} \{3, 5\} = \underline{\hspace{1cm}}$

(c) Image of f o g = { ______} }

(d) f({1, 2, 3}) = { _____}}

Problem 2: A	A permutation of a set U is defined to be a function from U to U that is a
1-1 and onto.	Suppose that u is some permutation of U.

Use μ to define a relation on U: for $x \in U$ and $y \in U$, we say $x \mid R_{\mu} \mid y$ if $y = \mu^n \mid x$ for some *positive integer n*. Which of the following statements are true? If not true, explain why. If true, prove the statement.

(a) For any permutation μ of U, the relation R_{μ} is reflexive.

(b) For any permutation μ of U, the relation R_{μ} is symmetric.

(c) For any permutation μ of U, the relation R_{μ} is transitive.

(d) For any permutation μ of U, the relation R_{μ} is an equivalence relation.