Math 300A Winter 2011

DEFINITION: Given two integers m and n, an integer k is a **common divisor of m** and n if k divides m and also k divides n. (In other words, there are integers a and b so that m = ka and n = kb.)

DEFINITION: The **greatest common divisor of m and n** is a positive integer d such that d is a common divisor of m and n and any other divisor k of m and n also divides m. **The greatest common divisor of m and n is denoted by gcd(m,n).**

DEFINITION: Two integers m and n are said to be **relatively prime** if their greatest common divisor is 1.

Examples: The gcd(150, 45) is 15, since 150 = 2*3*5*5 and 45 = 3*3*5. The gcd(49, 39) = 1 since 49 = 7*7 and 39 = 3*13.

Assignment 9 (due Wednesday, 3/9)

Problem 9-1: Post at least one of these to the Piazzza site.

- Submit the answer to a homework problem from a previous homework (no duplicates unless your answer is significantly different).
- Comment on another student's proof.
- Post a question whose answer you care about.
- Answer another students question.

Problem 9-2: Prove this theorem that we have been using.

For any integers m and n, there is an integer q and an integer r, with $0 \le r < |m|$ so that n = qm + r.

Hint: Induction on n.

Problem 9-3: Prove: If m, n, q, and r and integers, then the set of common divisors of m and n is the same as the set of common divisors of m and r.

What does this mean if r = 0. Is the theorem still true?

Conclude as a corollary: gcd(m,n) = gcd(m,r).

Problem 9-4: Use the result of 9-3 for an algorithm to find the gcd of any two integers that does not require factoring them into prime factors.

Then use your algorithm on some non-obvious numbers, including some of at least 4 digits and preferably more.

Hint 1: The first step is n = qm + r, with gcd(m,n) = gcd(m,r). The next step is m = q'r + r'. With gcd(m,r) = gcd(r,r'). Notice that the remainder is smaller at each step, so at some point it must be zero. What does this tell you when you get to that point?

Hint 2: Try out these steps (and continue them) with some simple examples, such as n = 150 and m = 45.

Problem 9-5:

Any function X from N to R defines a sequence of real numbers, X_1 , X_2 , ...

The number A is defined to be the limit of X_n as $n \to \infty$ if this is true:

For every $\epsilon > 0$, there is a positive integer N so that for all n > N, $|X_n - A| < \epsilon$.

Notation: $\lim_{n\to\infty} X_n = A$

PROVE: If
$$X_n = \frac{2n-1}{n}$$
, then $\lim_{n\to\infty} X_n = 2$.

Problem 9-6:

Suppose that Z_n is a sequence for which this is true: There is a positive integer N such that for every $\epsilon > 0$, for all n > N, $|Z_n - A| < \epsilon$.

What would an example of such a Z_n be? What can you prove about Z_n that must be true.

Problem 9-7:

- (a) Write what it means for a number A *not* to be the limit of X_n as $n \to \infty$. In other words, what is the negation of the definition in 9-5.
- (b) If the sequence $Y_n = (-1)^n$ for all positive integers n, prove that there is no number A that is the limit of Y_n as $n \to \infty$.