Math 300 Assignment 8 (due Wednesday, 3/2)

Quiz 3 on Friday, 3/4

Next Extra Credit will be announced in email and then will be online.

Notation: Z denotes the set of integers, R denotes the set of real numbers, Z_n denotes the integers mod n.

Problem 8-1

- a) Let $f = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : 3x + y = 4\}$. Is this a function from Z to Z? Explain.
- b) Let $g = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} : x + 3y = 4\}$. Is this a function from Z to Z? Explain.

Problem 8-2

- a) Let $u = \{(x^2, x) : x \in R\}$. Is this a function from R to R? Explain.
- b) Let $v = \{(x^3, x) : x \in R\}$. Is this a function from R to R? Explain.

Problems 8-3 and 8-4 concern permutations of a set S. Recall that a permutation of S is a 1-1 and onto function of S to S. Recall that for two permutations, the composition is written as a product. For example, $\mu\nu = \mu \circ \nu$. So in particular, $\mu^2 = \mu \circ \mu$.

Problem 8-3

Suppose μ is a permutation of S = {1, 2, 3, 4, 5}. This permutation can be defined as a set of 5 ordered pairs, but we introduced a shorter notation – an ordered list of elements of S: $[\mu(1) \mu(2) \mu(3) \mu(4) \mu(5)]$.

For example, μ = [2 3 1 5 4] means that μ (1) = 2, μ (2) = 3, μ (3) = 1, μ (4) = 5, μ (5) = 4.

- a) If $\mu = [2\ 3\ 1\ 5\ 4]$, what is the symbol (i) for μ^2 ? (ii) For μ^3 ? (iii) For $(\mu^3)^2$?
- b) Let μ be as above and $\nu = [5\ 2\ 3\ 4\ 1]$. (i) What is the symbol for $\mu\nu$? (ii) What is the symbol for $\nu\mu$?
- c) Define the identity $\iota: S \to S$ by $\iota(k) = k$ for all k in S. Is ι a permutation? If so, what is its symbol?
- d) If μ is as above, what is the symbol for μ^{-1} ?

Problem 8-4

The set Z_5 , the integers mod 5, can be represented by symbols $\{0, 1, 2, 3, 4\}$.

For each element k of Z_5 , define the multiplication map m_k : $Z_5 \rightarrow Z_5$, by the formula $m_k(x) = kx \pmod{5}$.

- a) For which of the $k \in \{0, 1, 2, 3, 4\}$ is m_k a permutation of \mathbb{Z}_5 ? Show this.
- b) For which of the $k \in \{0, 1, 2, 3, 4\}$ is $m_{k-1} = m_{k}$? Show this.

The set Z_6 , the integers mod 6, can be represented by symbols $\{0, 1, 2, 3, 4, 5\}$. For each element k of Z_6 , define the multiplication map $m_k : Z_6 \rightarrow Z_6$, by the formula $m_k(x) = kx \pmod{6}$.

c) For which of the $k \in \{0, 1, 2, 3, 4, 5\}$ is m_k a permutation of Z_6 ? Show this.

Problem 8-5: Gemignani, 7.4 #3, parts b, c, d, e

Problem 8-6: Gemignani, 7.5 #1

Problem 8-7: Gemignani, 7.5 #3

Problem 8-8: Let the function $f: R \to R$ be defined by $f(x) = (1+x)^2$. Let T be the interval [-1, 1]. (Recall that the interval [a, b] is the set $\{x: a \le x \le b\}$.)

For each question below, the answer is a set that should be specified as an interval or a union of intervals such as [a, b] for specific numbers a and b. (In other words, the answer should not have squares or square roots in it; it should be simplified to a collection of inequalities for x,)

- a) What set is the set $f^{-1}(T)$? Justify your answer.
- b) What set is the set f(T)? Justify your answer.
- c) What set is the set $f(f^{-1}(T))$? Justify your answer.
- d) What set is the set $f^{-1}(f(T))$? Justify your answer.

Hint: You can use algebra or you can use the graph of f for your justifications.