Math 300A: Winter 2011

Quiz 2 will be Friday, 2/25. The topic will be *Functions* (see reading assignment)

Reading Assignment in Gemignani

- Sections 7.3, 7.4 by Wednesday, 2/23 (needed for homework)
- Section 7.5 by Friday 2/25 (a bit may be on the quiz)

Assignment 7 (Due Wednesday 2/23)

Problem 7-1 (Fibonacci numbers)

The infinite sequence of integers $F_1, F_2, F_3, F_4, F_5, \dots F_n, \dots$ called the Fibonacci numbers is defined recursively in this way:

Define
$$F_0 = 0, F_1 = 1$$

For any n > 1, define $F_n = F_{n-1} + F_{n-2}$

Note: Some people skip F_0 and start by setting both F_1 and F_2 to be 1. This does not change any values for the numbers.

- (a) Compute and write down the first 10 Fibonacci numbers.
- (b) Prove that this equation is true for integers $n \ge 0$: $\sum_{k=0}^{n} F_k = F_{n+2} 1$.

Problem 7-2:

- Answer Gemignani, Section 7.3 #1 and
- Also find the images of the 8 functions f_k in the same Example 9.

Problem 7-3:

• Answer Gemignani, Section 7.3 #2 for only (b), (c) and (d).

Also, answer the same questions for these rules:

- $k(n) = n^2$, where $S = Z_3$ the integers modulo 3, a set with 3 elements.
- O(c) = center of c, where S is the set of circles in the plane.
- E(L) = (m, b), where S is the set of lines in the (x, y) plane and y = mx + b is the equation of the line.

Problem 7-4: Gemignani, Section 7.3 #3 (in your own words, please)

Problem 7-5: Gemignani, Section 7.3 #4

Problem 7-6: Find and list all of the one-one and onto functions from the set S = (a, b, c) into itself. (Look at Gemignani Section 7.4 #1 for a hint.)

Problem 7-7: Gemignani, Section 7.4 #2, plus one more: (h) f(n) = n if n is an even integer and f(n) = -n if n is an odd integer.

Problem 7-8: Gemignani, Section 7.4 #4

Extra Credit (each with different due dates - do not attach to your regular homework!)

Extra 7-A (10 points, due Wednesday 2/23)

Write out by hand completely and correctly (and legibly) all four definitions found in Sections 7.3 and 7.4 of Gemignani.

Extra 7-B (20 points, due Friday 2/25) (Related to the Fibonacci Numbers)

- (a) Let $\phi = \frac{1+\sqrt{5}}{2}$. Verify that ϕ and $1-\phi$ are the two solutions of the quadratic equation $x^2 = x+1$, which can be written in standard form as $x^2 x 1 = 0$.
- (b) Let $S_n = \frac{\phi^n (1 \phi)^n}{\sqrt{5}}$. Use a calculator or spreadsheet or other software to compute accurately the first 10 of the numbers S_n in this sequence. Write them down. How are these numbers related to the Fibonacci sequence?
- (c) Use the sequence S_n to prove a formula for the nth Fibonacci number.
- (d) Use this formula to calculate the 35th, 75th and 105th Fibonacci numbers. Also, compute $\frac{\phi^n}{\sqrt{5}}$ for n = 35, 75, and 105. What do you observe? How do you explain this?

Extra 7-C (20 points, due Monday 2/28) (Modular arithmetic)

Important standard notation: Z_n denotes the arithmetic of the integers modulo n. Specifically the set Z_n is the set of equivalence classes of the integers modulo n, which are the "numbers" in this arithmetic.

In problem 6-6 you constructed multiplication tables for the integers mod 4 and mod 5, in other words for Z_4 and Z_5 in this new notation. Let f be the function from Z_5 to itself defined by the rule f(a) = 2a. Let g be the function from Z_4 to itself defined by the rule g(a) = 2a. Let h be the function from Z_5 to itself defined by the rule g(a) = 3a. Let k be the function from g(a) = 3a. Tell which of these functions are one-one and onto and which are not. Explain the reasons clearly in each case.