Chapter 4: Theory Review
Math 308 F
Spring 2015

1. What is the definition of a subspace of \mathbb{R}^n?

2. Describe two ways to prove a subset W of \mathbb{R}^n is a subspace.

3. Determine which of the following subsets of \mathbb{R}^3 are subspaces. Either prove that the subset if a subspace or provide a counterexample to one of the three conditions.

 (a) W is the set of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying $x_1 x_2 = x_3$

 (b) W is the set of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying $3x_1 + 4x_2 = x_3$

 (c) W is the set of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ orthogonal to $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

 (d) W is the set of all vectors $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ satisfying $|x_1| = |x_2|$

 (e) W is the line through the origin with direction vector $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
4. What is the definition of a basis for a subspace?

5. What is the definition of the dimension of a subspace?

6. For each of the subsets in problem 3, if it is a subspace, find a basis for it and the dimension of it.

7. Find two different bases for \(\text{col}(A) \), one consisting of vectors that are columns of \(A \), and one consisting of vectors that are NOT columns of \(A \), where \(A = \begin{bmatrix} 1 & 3 & 0 \\ -1 & -2 & 2 \end{bmatrix} \).

8. If \(\{a_1, \ldots, a_m\} \) is a basis for a subspace \(W \) of \(\mathbb{R}^n \), and \(A = [a_1 \ldots a_m] \), explain why the equation \(Ax = w \) always has a unique solution for any \(w \) in \(W \).

9. Give an example of the following, or explain why such an example does not exist.
 (a) A subspace of \(\mathbb{R}^n \) with no basis

 (b) A subspace of \(\mathbb{R}^3 \) with dimension 2

 (c) A subspace of \(\mathbb{R}^3 \) with dimension 3

 (d) A subspace of \(\mathbb{R}^3 \) with dimension 4
(e) An \(n \times m \) matrix \(A \), with \(m < n \), such that \(\text{rank}(A) = n \).

(f) An \(n \times m \) matrix \(A \), with \(m > n \), such that \(\text{rank}(A) = n \).

10. For each statement below, determine if it is True or False. *Justify your answer.* The justification is the most important part!

(a) If \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is a linear transformation, and \(\ker(T) = \{0\} \), then \(m \leq n \).

(b) If \(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \) is a linearly independent set of vectors in \(\mathbb{R}^m \) and \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \) is a linear transformation such that \(\ker(T) = \{0\} \), then \(\{T(\mathbf{v}_1), T(\mathbf{v}_2), T(\mathbf{v}_3)\} \) is a linearly independent set.

(c) If \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a linear transformation and \(\ker(T) = \{0\} \), then \(\text{range}(T) = \mathbb{R}^n \).

(d) If \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is a linear transformation and \(\ker(T) \neq \{0\} \), then \(T \) is not onto.

(e) Every subspace has a basis.

(f) There are infinitely many bases for any nonzero subspace.

(g) If \(\mathcal{B} \) is a basis for \(\mathbb{R}^n \), and \(W \) is a subspace of \(\mathbb{R}^n \), then some subset of the vectors in \(\mathcal{B} \) form a basis for \(W \).

(h) If \(W \) is a subspace of \(\mathbb{R}^n \) and \(\mathcal{B} \) is a basis for \(W \), then \(\mathcal{B} \) can be extended to a basis for \(\mathbb{R}^n \).

(i) If \(A \) is a \(3 \times 5 \) matrix, then the maximum value of \(\text{rank}(A) \) is 5.

(j) If \(A \) is an \(n \times m \) matrix and \(n < m \), then \(\text{nullity}(A) \) must be greater than 0.

(k) If \(A \) is a nonsingular \(n \times n \) matrix, then the columns of \(A \) form a basis for \(\mathbb{R}^n \).

(l) If \(A \) is a singular \(n \times n \) matrix, then \(\text{nullity}(A) \neq 0 \).