1. What two properties must a function $T: \mathbb{R}^m \to \mathbb{R}^n$ satisfy to be a linear transformation?

2. If $T: \mathbb{R}^m \to \mathbb{R}^n$ is a linear transformation, what is the definition of onto? of one-to-one? Explain how these definitions relate to the matrix A such that $T(x) = Ax$.

3. Three functions are given below. Determine if they are linear transformations (by checking that they satisfy the two properties above) and, if a function is a linear transformation, determine if it is onto or one-to-one (or both).

 (a) $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by

 $$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_3 + 3 \end{bmatrix}$$

 (b) $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by

 $$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 \\ x_3 - 4x_2 \end{bmatrix}$$

 (c) Let y be a fixed vector in \mathbb{R}^3, then let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be given by

 $$T(x) = (y \cdot x)y$$
4. Give an example of the following, or explain why such an example does not exist.

 (a) A linear transformation \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) such that \(T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \)

 (b) A linear transformation \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) such that \(T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \) and \(T \begin{pmatrix} 4 \\ 3 \\ -1 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \)

 (c) A linear transformation \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) such that \(T \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} \) and \(T \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \)

 (d) Non-square matrices \(A \) and \(B \) such that \(AB = I \)

 (e) Non-square matrices \(A \) and \(B \) such that \(AB = I \) and \(BA = I \)

 (f) An \(n \times n \) matrix \(A \) with no zero entries such that \(A \) is nonsingular

 (g) An \(n \times n \) matrix \(A \) with no zero entries such that \(A \) is singular

 (h) A singular matrix \(A \) whose columns are linearly independent

 (i) A square matrix \(A \) such that \(A^{-1} = A^T \)
5. For each statement below, determine if it is True or False. *Justify your answer.* The justification is the most important part!

(a) If $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ is a linear transformation, then $T(0) = 0$.

(b) If $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ is a linear transformation, then the only vector x such that $T(x) = 0$ is $x = 0$.

(c) If $\{v_1, v_2, v_3\}$ is a linearly dependent set of vectors in \mathbb{R}^m and $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ is a linear transformation, then $\{T(v_1), T(v_2), T(v_3)\}$ is a linearly dependent set.

(d) If $\{v_1, v_2, v_3\}$ is a linearly independent set of vectors in \mathbb{R}^m and $T : \mathbb{R}^m \rightarrow \mathbb{R}^n$ is a linear transformation, then $\{T(v_1), T(v_2), T(v_3)\}$ is a linearly independent set.

(e) For any matrix A, there is a matrix B such that $AB = A$.

(f) For any matrix A, there is a matrix B such that $AB = I$.

(g) If $AB = AC$ and A is not the zero matrix, then $B = C$.

(h) If B is a matrix whose columns are linearly dependent, then the columns of AB are linearly dependent (where A is any matrix such that the product AB is defined).

(i) If B is a matrix whose columns are linearly independent, then the columns of AB are linearly independent (where A is any matrix such that the product AB is defined).

(j) If A is not the zero matrix, then A has an inverse.

(k) There is a nonsingular matrix A such that $A^2 = 0$ (the zero matrix).

(l) There is a nonsingular matrix A such that $A^2 = A$.

(m) If A and B are nonsingular $(n \times n)$ matrices, then $A + B$ is also nonsingular.

(n) If A and B are nonsingular $(n \times n)$ matrices, then AB is also nonsingular.