1. Fill in the blank:
 A linear system can have ________________________________ solutions.

2. For each system given below, circle the possibilities for the solution set, and give an example of a linear system with that solution set.

 (a) A linear system with \(n \) variables and \(m \) equations, with \(n > m \):
 i. 0 solutions
 ii. exactly 1 solution
 iii. infinitely many solutions
 (b) A linear system with \(n \) variables and \(m \) equations, with \(n \leq m \):
 i. 0 solutions
 ii. exactly 1 solution
 iii. infinitely many solutions
 (c) A homogeneous linear system with \(n \) variables and \(m \) equations, with \(n > m \):
 i. 0 solutions
 ii. exactly 1 solution
 iii. infinitely many solutions
 (d) A homogeneous linear system with \(n \) variables and \(m \) equations, with \(n \leq m \):
 i. 0 solutions
 ii. exactly 1 solution
 iii. infinitely many solutions

3. For each statement below, determine if it is True or False. Justify your answer.

 (a) Any linear system is equivalent to a unique system in echelon form.
 (b) Any linear system is equivalent to a unique system in reduced echelon form.
 (c) If a linear system has infinitely many solutions, there must be more equations than variables.
 (d) If there are two (distinct) known solutions to a linear system, the system must have infinitely many more solutions.
 (e) If \(\mathbf{s} = (s_1, \ldots, s_n) \) is a solution to a homogeneous system of equations, then any multiple of \(\mathbf{s} \) is also a solution.