15.1 Volumes and Double Integrals

Consider a function f of 2 variables defined on a closed rectangle $R = [a, b] \times [c, d]$. Assume $f(x, y) \geq 0$ for now.

The graph of f is a surface with equation $z = f(x, y)$.

Let S be the solid that lies above R and under the graph of f, i.e., $S = \{ (x, y, z) \in \mathbb{R}^3 | 0 \leq z \leq f(x, y), (x, y) \in R \}$.

Goal: Find the volume of S.

$V = \iint_R f(x, y) \, dA.$

(This is the limit of Riemann sums as the areas of rectangles $\to 0$.)

Average Value.

Define the average value of a function f of 2 variables defined on a rectangle R as

$$\bar{f}_{av} = \frac{1}{\text{(area of } R)} \iint_R f(x, y) \, dA.$$
Computing Double Integrals with Iterated Integrals.

We express the Double Integral as an iterated integral which is then evaluated by calculating two single integrals.

1. Compute \(A(x) = \int_{c}^{d} f(x, y) \, dy \) (Treat \(x \) as a constant).

2. Then compute \(\int_{a}^{b} A(x) \, dx \).

\[\int_{a}^{b} \left[\int_{c}^{d} f(x, y) \, dy \right] \, dx \]

We usually omit the brackets to write:

\[\int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx \]

Nothing special about the order. We can instead compute:

\[\int_{a}^{b} \left[\int_{a}^{b} f(x, y) \, dx \right] \, dy \]

This follows from Fubini's Theorem:

If \(f \) is continuous on \(R = [a, b] \times [c, d] \) then

\[\int_{R} f(x, y) \, dA = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy \]

(We do not need to assume \(f \geq 0 \) on \(R \). The theorem works for any 'reasonable' function.)
Exercises:

15.2.3 \int \int \int (6x^2 y - 2x) \, dy \, dx.

15.2.14 \int \int \int \sqrt{s + t} \, ds \, dt.

Example 4: Find the volume of the solid \(S \) that is bounded by the elliptic paraboloid \(x^2 + 2y^2 + z = 16 \), the plane \(x=2 \), \(y=2 \) and the three coordinate planes.

Note that \(S \) is enclosed by \(z = 16 - x^2 - 2y^2 \) and \(z = 0 \), and lies above \([0,2]^2 \times [0,2] \).

\[15.2.29 \] Find the volume of solid enclosed by \(z = x \sec^2 y \), \(z = 0 \), \(x = 0 \), \(x = 2 \), \(y = 0 \) \& \(y = \pi/4 \).

\(S \) is bounded by \(z = x \sec^2 y \) and \(z = 0 \) and lies above \([0,2] \times [0,\pi/4] \).

\[15.2.30 \] Find the volume of solid in the first octant bounded by \(z = 16 - x^2 \) and plane \(y = 5 \).
In particular this is the case for the following 2 types of regions.

Type 1.

\[
y = g_1(x) \quad \text{and} \quad y = g_2(x)
\]

[Some examples of Type 1 region]

\[D = \{ (x, y) : a \leq x \leq b, \ g_1(x) \leq y \leq g_2(x) \} \]

i.e. \(D \) lies b/w the graphs of 2 continuous functions of \(x \).

To evaluate \(\iint_D f(x, y) \, dx \, dy \) where \(D \) is a type 1 region, we use:

\[
\iint_D f(x, y) \, dx \, dy = \int_a^b \left[\int_{g_1(x)}^{g_2(x)} f(x, y) \, dy \right] \, dx
\]

Type 2.

\[D = \{ (x, y) : c \leq y \leq d, \ h_1(y) \leq x \leq h_2(y) \} \]

i.e. \(D \) lies b/w graphs of 2 continuous functions of \(y \).
* We can similarly show that
\[\int \int_D f(x, y) \, dA = \int \int_{D_{1(y)}} f(x, y) \, dx \, dy \]
where \(D \) is a type II region.

Exercises:

Example 1: Evaluate \(\int \int_D (x+2y) \, dA \) where \(D \) is the region bounded by \(y = 2x^2 \) and \(y = 1+x^2 \).

Example 2: Find the volume of solid that lies under \(z = x^2 + y^2 \) above the region \(D \) in the \(xy \)-plane bounded by \(y = 2x \) and \(y = x^2 \).

Example 4: Find the volume of the tetrahedron bounded by the planes \(x+2y+z = 2 \), \(x = 2y \), \(x = 0 \) and \(z = 0 \).

What is the region of integration \(D \)?

Example 5: Evaluate \(\int \int_D \sin(y^2) \, dy \, dx \)

15-3-21: \(\int \int_D (2x-y) \, dA \) where \(D \) is bounded by the circle with origin as center and radius 2.
15.3.27) Find the volume of the solid bounded by
\[y^2 + z^2 = 4 \] and the planes \(x = 2y, x = 0, \)
in the first octant.

15.3.47) Change the order of integration:
\[\int \int \int f(x,y) \, dy \, dx. \]

15.3.49) Evaluate:
\[\int_{0}^{3} \int_{0}^{3} e^{x^2} \, dy \, dx. \]

\[\int \int \text{Double Integrals in Polar Coordinates} \]

If we wish to evaluate a double integral \(\int \int f(x,y) \, dA \)
where \(R \) is either
\[\text{or} \]
then \(\int \int f(x,y) \, dA \) is evaluated more easily
by switching to polar coordinates.
* Recall that \((r, \theta)\) is related to \((x, y)\) by
\[
\begin{align*}
(x, y) & \quad \text{(Cartesian coordinates)} \\
(r, \theta) & \quad \text{(Polar coordinates)}
\end{align*}
\]

by \(x = r \cos \theta\), \(y = r \sin \theta\).

The regions in the previous page are typical examples of polar rectangle

\[
R = \{ (r, \theta) : a \leq r \leq b, \quad a \leq \theta \leq \beta \}
\]

B If \(f\) is integrable on a polar rectangle \(R\), then

\[
\int_R f(x, y) \, dA = \int_a^b \int_a^b f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta
\]

Be careful not to forget the additional factor \(r\) in the above formula!

A good thumb rule is to sketch the region of integration to decide whether to convert the problem to a polar framework.
Exercises:

15.4.11 Evaluate
\[\iint_D e^{-(x^2+y^2)} \, dA \] where \(D \) is the region bounded by the semi-circles \(x = \sqrt{4-y^2} \) and \(y = 4-x^2 \).

15.4.15 Use double integral to evaluate the area of the region inside \((x-1)^2 + y^2 = 1\) and outside \(x^2 + y^2 = 1\).

15.4.25 Find the volume of the solid above \(z = \sqrt{x^2+y^2} \) and below \(x^2 + y^2 + z^2 = 1 \).

15.4.39 Use polar coordinates to combine the sum
\[\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{\sqrt{2}}^{2} r \sin \theta \, dr \, d\theta \]
and
\[\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_{\sqrt{2}}^{2} r^2 \sin \theta \cos \theta \, dr \, d\theta \]
into one double integral. Then evaluate the double integral.