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Abstract

We define a property for restricted Lie algebras in terms of coho-
mological support and tensor-triangular geometry of their categories of
representations. By Tannakian reconstruction, the different symmetric
tensor category structures on the underlying linear category of represen-
tations of a restricted Lie algebra correspond to different cocommutative
Hopf algebra structures on the restricted enveloping algebra. In turn this
equates together the linear categories of representations for various group
scheme structures. The tensor triangular spectrum, for representations
of a restricted Lie algebra, is known to be isomorphic to the scheme of
1-parameter subgroups of the infinitesimal group scheme structure asso-
ciated to the Lie algebra. Points in the spectrum of a tensor triangulated
category correspond to minimal radical thick tensor-ideals, provided the
spectrum is noetherian, as is known in our case of finite group schemes.
When the group scheme structure changes from the Lie algebra structure,
a set of subgroups can still yield points of the spectrum, but there may
not be enough to cover the spectrum. Restricted Lie algebras satisfy our
property if, for each group scheme structure, the remaining set of sub-
groups correspond to minimal radical thick tensor-ideals having identical
Green-ring structure to that of the original Lie algebra. Some small ex-
amples of algebras of finite and tame representation type satisfying our
property are given. We show that no abelian restricted Lie algebra of wild
representation type may have our property. We conjecture that satisfying
our property is equivalent to having finite or tame representation type.

Contents

1 Introduction 2
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Why Lie algebras? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 Tensor product of representations and reconstruction . . . . . . . 7
2.2 π-points and a plausibility proposition . . . . . . . . . . . . . . . . 9
2.3 Cohomological support and tt-geometry . . . . . . . . . . . . . . . 13

1



3 A property of some Lie algebras 16
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Abelian Lie algebras of dimension 2 . . . . . . . . . . . . . . . . . . 20
3.3 A tame algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Conjectures for Lie algebras . . . . . . . . . . . . . . . . . . . . . . 31

4 Lie algebras of wild representation type 32
4.1 Induction from the nullcone . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Representation type of abelian restricted Lie algebras . . . . . . . 38
4.3 No wild abelian Lie algebra satisfies Property PC . . . . . . . . . 39
4.4 A family of nonabelian wild Lie algebras . . . . . . . . . . . . . . . 41

1 Introduction

1.1 Overview

In this paper we define Property PC for Jacobson’s restricted Lie algebras [19] in
terms of cohomological support for their category of restricted representations.
The purpose of finding Lie algebras with this property is to illustrate how tensor-
triangular geometry can be used to find constraints imposed on Green ring
calculations for families of symmetric tensor categories.

We adopt the convention throughout that all representations of a restricted
Lie algebra are restricted, and that k is always an algebraically closed field of
characteristic p > 0. We also adopt the convention that all finite group schemes
over k are affine. For a finite group scheme G over k, we denote by kG the
group algebra, also called the measure algebra, a cocommutative Hopf algebra
which is dual to the coordinate algebra k[G] = O(G) of the affine scheme G.
We denote A∗ the k-linear dual of a k-space A. We see any finite dimensional
cocommutative Hopf algebra A is kG for some finite group scheme G = SpecA∗.

We will review the notions of cohomological support for finite group schemes
in Section 2. The work of Benson, Carlson, and Rickard [7] on finite groups, and
later the works of Friedlander and Pevtsova [16], [17], and of Benson, Iyengar,
Krause, and Pevtsova [4] on finite group schemes, establishes an equivalence be-
tween the data of cohomological support and tensor-triangular support (Balmer
[1]) for the stable module category. Thus, for a finite group scheme G, a closed
point p ∈ ProjH∗(G,k) gives a subcategory C(p) of finite modules supported
only at the singleton {p}, and C(p) is a minimal thick ⊗-ideal. What is in-
teresting for our purposes is that when two finite group schemes both have a
group algebra isomorphic to a given associative algebra A, there is an equiva-
lence of k-linear categories of representations, but not of tensor categories. Yet
the subcategories C(p) (or any subcategory with support in a fixed subset of
ProjH∗(A,k)) remain ⊗-ideal independent of which ⊗ is chosen, so long as the
one dimensional module k comes from a fixed augmentation A → k. This may
be seen by noticing how the ring structure on H∗(A,k) = Ext∗A(k, k) is not de-
pendent on a choice of Hopf algebra structure, and similarly the module action
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on cohomology H∗(A,M) = Ext∗A(k,M) for any A-module M . We investigate
for which group schemes and which points p the Green ring structure on C(p)
may be known to not change between group schemes.

When g is a restricted Lie algebra of dimension r, recall that restricted
representations of g coincide with modules over the restricted enveloping algebra
A = u(g), which has dimension pr. The algebra A is canonically a cocommutative
Hopf algebra by taking elements of g to be primitive. Thus there is a canonical
group scheme G̃ with group algebra A, which we call the infinitesimal group
scheme corresponding to g. Given any cocommutative Hopf algebra structure
∆ ∶ A→ A⊗A, we have a corresponding group scheme G with group algebra A,
and a corresponding tensor product ⊗ for modules over A, which are now also
representations of G. We will always denote by ∆̃, ⊗̃ the canonical Hopf algebra
comultiplication and tensor product for the Lie algebra g, or equivalently the
infinitesimal group scheme G̃. We will only consider Hopf algebra structures
sharing a counit A → k, so that k is a fixed A-module acting as the monoidal
unit with respect to any ⊗.

Definition 1.1.1. Let g be a restricted Lie algebra over k, and A = u(g). For
finite group schemes G coming from a Hopf algebra structure on A, let ⊗ denote
the tensor product of G-representations.

The algebra g is said to satisfy Property PC if, for any such finite group
scheme G, and any p ∈ ProjH∗(A,k), the tensor products ⊗, ⊗̃ induce identical
Green ring structures on the ideal C(p) iff the prime p is noble (3.1.1) for G.

We include, as Proposition 2.2.1, a consequence of the work of Bendel, Fried-
lander, Parshall, and Suslin [14], [15], [27], which tells us that all homogeneous
primes of ProjH∗(g, k) arise from 1-dimensional Lie subalgebras of g. The idea
of homogeneous primes arising from subgroups of a group scheme is general-
ized to our notion of a noble prime (3.1.1). In this way, Proposition 2.2.1 may
be restated to say that every prime is noble for the infinitesimal group scheme
corresponding to the restricted Lie algebra.

In context of Property PC, we see that deforming the comultiplication struc-
ture on the restricted enveloping algebra may change the group scheme in such
a way that a given homogeneous prime of cohomology is no longer noble. It is
at these ignoble primes where we expect the Green ring structure on the sub-
category C(p) to always change from its original structure from the Lie algebra.
This we call Property PB, which in conjunction with its converse Property PA,
becomes Property PC (see 3.1.4).

Theorem 1.1.2 below is proven in Section 3.3 and shows there exists an
algebra of tame representation type satisfying Property PC.

Theorem 1.1.2. Let g be the 2-dimensional abelian Lie algebra with trivial
restriction, i.e g[p] = 0, over k with characteristic p = 2. Then g satisfies Property
PC.

Theorem 1.1.3 below is proven in Section 3.2 and provides an algebra of wild
representation type in each odd characteristic, all failing to satisfy Property PC.
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Theorem 1.1.3. Let g be the 2-dimensional abelian Lie algebra over k with
trivial restriction, i.e. g[p] = 0. If p > 2 then g does not satisfy Property PA. In
other words, there exists a group scheme G as in Definition 1.1.1 and a point p
which is noble for G, and modules V,W ∈ C(p) such that V ⊗W is not isomorphic
to V ⊗̃W. So g does not satisfy Property PC.

The restricted Lie algebra g of 1.1.2 and 1.1.3 corresponds to the infinitesimal
group scheme G2

a(1). The enveloping algebra u(g) is isomorphic as an associative

algebra also to the group algebra k(Z/p)2 and to the group algebra for two other
distinct group schemes over k up to isomorphism. The classification of Hopf
algebra structures on u(g) = k[x, y]/(xp, yp) was first given as a corollary of the
classification of all connected Hopf algebras of dimension p2, by X. Wang [30].

We state Conjecture 3.4.3, that having wild representation type is equivalent
to failing to satisfy Property PC, and provide more examples of restriced Lie
algebras having wild representation type, while not satisfying Property PC, in
Section 4. We have found no restricted Lie algebra failing to satisfy Property
PB, leading us to Conjecture 3.4.4.

It is fundamental to our use of noble points that the following algebra, of
finite representation type, also satisfies Property PC. This is discussed further
in 3.1.10.

Example 1.1.4. Let g be the one dimensional Lie algebra over k with restriction
g[p] = 0. Then g satisfies Property PC. In fact, there is only one homogeneous
prime in ProjH∗(g, k) = {p} and we find that all group schemes G with kG ≅
u(g) have that p is noble for G, and that they all define identical Green rings.

In order to affirm that a given restricted Lie algebra g of tame or finite repre-
sentation type satisfies Property PC, we resort to using an explicit classification
of all cocommutative Hopf algebra structures on the universal enveloping alge-
bra u(g). The work of Nguyen, Ng, L. Wang, and X. Wang, [22], [23], [24], [29],
[30], [31] has classified connected and pointed Hopf algebras of small dimension.
As a corollary there are many small dimensional Lie algebras g for which u(g)
is a local ring (such g are called unipotent), with all Hopf algebra structures
on u(g) known to be dual to one of the connected Hopf algebras of the above
mentioned authors. All local Hopf algebras of order p2 in characteristic p are
given explicitly as a corollary in [30] and we use this directly in Section 3.3 to
affirm Property PC for a tame algebra over a field of characteristic p = 2.

Our Property PC pertains to cocommutative Hopf algebra structures on a
given finite augmented algebra, which we may think of as points of an affine
algebraic set H , whereas the classifications of the above mentioned authors
yield only a complete set of representatives of the orbit space H / ∼ under the
action of twisting by augmented algebra automorphisms (3.1.5). Our technique
for proving Theorem 1.1.2 consists of first showing the expected behavior for
modules supported at noble and ignoble points for a complete set of representa-
tives of H / ∼, as first classified by X. Wang in [30]. In doing so it is shown that
both the tame algebra of Theorem 1.1.2 and the wild algebra of Theorem 1.1.3
satisfy a weaker version of Property PB, quantified only over a complete set of
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representatives of H / ∼ . This is extended in the tame case p = 2 by using that if
M is any finite representation supported at a point p, we findMφ ≅M whenever
φ ∈ Aut(u(g)) is an algebra automorphism fixing the point p ∈ ProjH∗(g, k).

Our paper concludes with Section 4, an exposé on augmented algebra au-
tomorphisms, and on induced modules, for the restricted enveloping algebra of
some Lie algebras having wild representation type. The group of (augmented)
automorphisms Aut(u(g)) acts on H , on the isomorphism classes π0(rep g),
and on the projective scheme ProjH∗(g, k). Our technique, for proving that a
Lie algebra g fails to satisfy Property PC, is to provide nontrivial elements of
the quotient

Aut(u(g))p/Aut(u(g))π0(C(p))

of isotropy subgroups Aut(u(g))p,Aut(u(g))π0(C(p)) of Aut(u(g)), for a choice
of point p ∈ ProjH∗(g, k). Given that an automorphism fixes each isomorphism
class in π0(C(p)), it must also fix the point p. It is conjectured that the converse
only fails for algebras g of wild representation type; this is in turn informed by
the conjecture that the continuous parameter for indecomposables of any tame
Lie algebra is always realizable as support.

For the right choice of isotropy φ ∈ Aut(u(g))p, we find that twisting the
Lie Hopf algebra structure gives a tensor product ⊗̃φ such that V ⊗̃φW /≅ V ⊗̃W,
where V,W are a choice of modules having support {p}, induced from a subalge-
bra of g. We show how to produce such an isotropy for any restricted Lie algebra
with a wild abelian Lie algebra as a direct summand. We also produce such an
isotropy in odd characteristic for the Heisenberg Lie algebra, which contains a
wild elementary abelian Lie subalgebra, but not as a direct summand.

1.2 Why Lie algebras?

For our study of certain families of tensor-categories, we will review some tools
from the tensor-triangular geometry of the stable module category of a group
scheme in section 3.1. For one, we establish that subcategories supported at a
subset of homogeneous primes of cohomology are closed under tensor product no
matter which tensor product is chosen! Further, two modules will have tensor
product a projective module if and only if they have disjoint support, and again
their support and hence this property is independent of which tensor product
is chosen. So by our account, comparing Green rings structures on the same
underlying abelian category leads directly to tensor-triangular geometry. Many
computations of the product in a tame category follow from abstract impositions
from the theory of support before a product is even chosen.

Now we direct the reader to Proposition 2.2.1. This proposition states how
every prime is noble for G̃, whenever G̃ is the infinitesimal group scheme cor-
responding to a restricted Lie algebra g. This is a necessary condition for the
given restricted Lie algebra g to have our Property PC. So why do we want to
study deformations of finite group schemes G such that every prime is noble for
G? The answer is a kind of local-to-global problem for tensor product structures
on modules supported at only one point.
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In place of localization we consider the pullback of a module along a π-point
for G, as defined by Friedlander and Pevtsova [16], [17], which is a flat map

α ∶ k[t]/tp → kG

that factors through a unipotent subgroup scheme of G.When the pullback of a
module M to k[t]/tp modules along α is not projective, we say M is supported
by α. It is then shown that the cohomological support for a module M over
a finite cocommutative Hopf algebra A is equivalent (see Sections 2.2, 2.3) to
the locus of π-points α ∶ k[t]/tp → A such that the pullback is not projective.
Our methods for proving Property PC are partly an investigation into whether
isomorphisms

(M ⊗N) ↓α≅ (M ⊗′ N) ↓α,
known to hold ‘locally’ for each π-point α, are enough to conclude the ‘global’
isomorphismM ⊗N ≅M ⊗′N for two different tensor products ⊗,⊗′ of modules
over the algebra A. Further, the definition of noble (3.1.1) gives us a representing
π-point α ∶ k[t]/tp → A such that the restriction property holds

(M ⊗N) ↓α≅M ↓α ⊗N ↓α,

since ⊗ may be defined on k[t]/tp-modules according to a Hopf-subalgebra of
A. Suppose M,N are A-modules supported only at the π-point α, which is
noble for both finite group schemes G,G′ having an isomorphism kG ≅ kG′ as
associative algebras. Then assuming further that kG is a local ring we have an
automatic local-isomorphism of products because for the point α in the support
of both M,N , we get

(M ⊗N) ↓α = (M ↓α) ⊗ (N ↓α)
≅ (M ↓α) ⊗ (N ↓α)
≅ (M ↓α) ⊗′ (N ↓α) (1.2.1)

= (M ⊗′M) ↓α,

and for the points not supported by M,N the tensor product is projective on
both sides, and hence free of the same rank. The third identity 1.2.1 is a
direct application of our fundamental example 1.1.4. Without automatic local-
isomorphisms as a starting point, it is significantly more difficult to address
how the tensor categories compare between two arbitrary group schemes G,G′

sharing a group algebra. A finite group scheme for which every prime, or π-
point, is noble, is as such a good starting point for this kind of investigation, so
Proposition 2.2.1 offers an especially convenient start towards investigating Lie
algebras.

6



2 Background

2.1 Tensor product of representations and reconstruction

If V,W are two representations of a Lie algebra g over a field k, the tensor
product V ⊗k W is given the structure of a g-representation, we’ll call V ⊗̃W ,
according to the Leibniz rule on simple tensors

x(v ⊗w) = xv ⊗w + v ⊗ xw,

for x ∈ g, v ∈ V,w ∈ W. If k is of characteristic p > 0 and g is a restricted Lie
algebra of dimension r in the sense of Jacobson [19], then the restricted universal
enveloping algebra A = u(g) is defined, and is an associative algebra over k of
dimension pr, such that the restricted representations of g are equivalent to
modules over A. In general, the products of representations, which endow the
category of finite representations rep g with the structure of a tensor category,
fibred via the usual forgetful functor

F ∶ rep g→ Vec k,

are all induced from a Hopf algebra structure A → A⊗A, a map of k-algebras.
The product ⊗̃ comes from the canonical Hopf algebra ∆̃ ∶ A → A ⊗ A, which
makes g into the primitive subspace of P (A) ⊂ A, i.e. each element x of the
generating set g ⊂ A is mapped to x⊗ 1 + 1⊗ x ∈ A⊗A. The monoidal unit k is
given module structure by a counit map of k-algebras A→ k.

We recall from Etingof, Gelaki, Nikshych, and Ostrik [12] some definitions
and the reconstruction theorem 2.1.4 to justify how tensor category structures
on rep g are induced from Hopf algebra structures on A.

Definition 2.1.1. [12]

1. A k-linear abelian category is locally finite if

(i) C has finite dimensional spaces of morphisms;

(ii) every object of C has finite length,

and C is finite if in addition

(iii) C has enough projectives; and

(iv) there are finitely many isomorphism classes of simple objects.

2. An object in a monoidal category is called rigid if it has left and right
duals. A monoidal category C is called rigid if every object of C is rigid.

3. Let C be a locally finite k-linear abelian rigid monoidal category. The
category C is a tensor category if the bifunctor ⊗ ∶ C × C → C is bilinear on
morphisms, and EndC(1) ≅ k.
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Definition 2.1.2. [12] Let C,D be two locally finite abelian categories over k.
Deligne’s tensor product C◻×D is an abelian k-linear category which is universal
for the functor assigning, to every k-linear abelian category A, the category of
right exact in both variables bilinear bifunctors C ×D → A.

The tensor product exists, is locally finite, and is unique up to unique equiv-
alence, see [12, Proposition 1.11.2], or Deligne [11].

2.1.3. A finite k-linear abelian category C is equivalent to the category of mod-
ules over a finite algebra, or rather a Morita equivalence class of algebras [12,
Section 1.8]. Fixing an exact faithful functor F ∶ C → Vec k to finite dimen-
sional vector spaces allows a finite algebra to be constructed as End(F). Given
an algebra A such that C = mod A, the forgetful functor F is representable by
the free module A. Hence, by the Yoneda lemma End(F) = F(A) = A as a
vector space, and indeed as an algebra. In fact any such exact faithful F has
that C is equivalent to modules over A = End(F), and when modeled as such
F ∶ mod A→ Vec k is isomorphic to the forgetful functor.

Let F ∶ C → Vec k and G ∶ D → Vec k be exact faithful functors with finite k-
linear abelian sources C,D, equivalent respectively to modules over A = End(F)
and B = End(G). Then the exact functors C → D relative to Vec k correspond
to homomorphisms of algebras B → A. In other words, given a commutative
diagram of exact functors

C D

Vec k

Φ

F
G

the homomorphism of algebras Ψ ∶ B → A, defined by precomposition with Φ,
is such that Φ is the pullback of modules along Ψ.

2.1.4. Now we review the relevant version of Tannakian reconstruction of a
Hopf algebra from a finite tensor category. Let A be a finite associative algebra
over k, the category of finite modules is a finite k-linear abelian category we’ll
call C. It is known that C◻×C is equivalent to the category of (A ⊗A)-modules.
By the previous discussion we see the tensor product of finite k-linear abelian
categories is again finite.

Denote by
F ∶ C → Vec k

the forgetful functor. Then the composition

⊗ ○ (F◻×F) ∶ C◻×C → Vec k◻×Vec k → Vec k

is equivalent, when C◻×C is modeled as mod (A ⊗ A), to the forgetful functor.
A tensor category structure on C making F into a functor of tensor categories
is essentially one giving an A-module structure to the k-space V ⊗kW for each
pair of modules V,W . In general a tensor category structure on C is realizable
as an exact functor ⊗ ∶ C◻×C → C, relative to Vec k, together with coherence
laws of associators, etc. By the previous discussion, these are homomorphisms
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A→ A⊗A of algebras with coherence laws of associators corresponding to being
a bialgebra. Tensor categories being rigid by definition will in turn see that these
bialgebras are indeed Hopf algebras. Thus, we have proved the reconstruction
theorem for tensor category structures on a fixed category of modules. That is,
the classification of Hopf algebra structures on a given finite associative algebra
is equivalent to the classification of tensor category structures on its category of
modules. It also follows from reconstruction that Hopf algebra structures on a
fixed finite augmented algebra are equivalent to tensor category structures with
a fixed choice of unit object.

2.2 π-points and a plausibility proposition

We will first review the machinery of π-points, defined by Friedlander and
Pevtsova [16], [17], which are used in Definition 3.1.1 to define when a homo-
geneous prime of cohomology is noble, a fundamental notion in Definition 1.1.1
of Property PC. From this machinery we conclude a basic proof for Proposition
2.2.1 stated below, which is otherwise a deeper consequence of earlier work of
Friedlander and Parshall [14], [15], as well as Suslin, Friedlander, and Bendel
[27]. This shows plausibility for Property PC for any given restricted Lie al-
gebra. Recall for a finite group scheme G over k, that the total cohomology
H∗(G,k) = Ext∗G(k, k) = ⊕i≥0ExtiG(k, k), for k the trivial representation, is a
graded commutative algebra with the cup product (see e.g. Benson [6]).

Proposition 2.2.1. Let g be a finite dimensional restricted Lie algebra over
k, and H∗(g, k) = Ext∗g(k, k) the cohomology ring. Then every homogeneous

prime p ∈ ProjH∗(g, k) is the radical ideal
√
ker(α∗) for the composition

α∗ ∶H∗(g, k) ⊗kKÐÐ→H∗(gK ,K)
H∗(ι)ÐÐÐ→H∗(h,K),

induced by the inclusion ι ∶ h → gK of some 1-dimensional Lie subalgebra h,
restricted by h[p] = 0, of the base change gK = g⊗k K to a field extension K/k.

If A is any algebra over k andM is any module over A, we write AK = A⊗kK
to be the base changed algebra overK andMK =M⊗kK to be the base changed
module over AK .

Definition 2.2.2. [16] Let G be a finite group scheme over k. A π-point of G
(defined over a field extension K/k) is a (left) flat map of K-algebras

αK ∶K[t]/tp →KG

which factors through the group algebra KCK ⊂KGK =KG of some unipotent
abelian subgroup scheme CK of GK .

If βL ∶ L[t]/tp → LG is another π-point of G, then αK is said to be a
specialization of βL, written βL ↓ αK , provided that for any finite dimensional
kG-module M , α∗K(MK) being free implies β∗L(ML) is free.

Two π-points αK , βL, are said to be equivalent, written αK ∼ βL, if αK ↓ βL
and βL ↓ αK .
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The points αK , βL are said to be strongly equivalent if for any module (not
necessarily finite dimensional) M , α∗K(MK) is projective if and only if β∗L(ML)
is projective. It is shown that equivalence implies strong equivalence, and hence
the notions coincide.

2.2.3. Denote by Ga(r) the rth Frobenius kernel for the additive group scheme
Ga over k. A quasi-elementary group scheme is one in the form

E ≅ Ga(r) × (Z/p)s.

When E is quasi-elementary, we have isomorphism of the group algebra

kE ≅ k[t1, . . . , tr+s]/(tp1, . . . , t
p
r+s),

with the first r variables ti dual to the basis elements tp
i

in the coordinate
algebra k[Ga(r)] = k[t]/tp

r

. It is shown in [17] that each π-point defined over
the base k (originally called a p-point with the same equivalence relation) is
equivalent to some α ∶ k[t]/tp → kG which factors through the group algebra
kE ⊂ kG for some quasi-elementary subgroup scheme E ⊂ G. In fact the base
changed statement can be shown for a π-point defined over any field extension.

Notice, for any finite Hopf algebra A with comultiplication ∆ ∶ A→ A⊗A we
may define a restricted Lie subalgebra P (A) ⊂ Lie(A) the primitive subspace of
A, i.e. x ∈ A such that ∆(x) = x ⊗ 1 + 1 ⊗ x. The universal enveloping algebra
u(P (A)) is isomorphic to the Hopf subalgebra of A generated as an associative
algebra by the subspace P (A).

If E is a quasi-elementary group scheme and the group algebra kE is given co-
ordinates ti as above, direct computation shows that P (kE) is one-dimensional,
generated by t1. Thus, Ga(1) is the only quasi-elementary group scheme with
group algebra isomorphic as a Hopf algebra to a universal enveloping algebra
for a restricted Lie algebra.

2.2.4. Now we review the relationship with cohomology. The algebra H∗(G,k)
is graded-commutative, meaning not necessarily commutative. However we do
have that every homogeneous element is either central or nilpotent. So we write
ProjH∗(G,k) to mean the space of homogeneous primes for the reduction of
H∗(G,k), a commutative, graded algebra. In characteristic p = 2 we have that
homogeneous elements of any degree may survive, but for characteristic p > 2,
this means only the even degree elements may survive.

Denote the algebra D =K[t]/tp over K, an extension field of k. There exists
a Hopf algebra structure on D (in fact there are two up to isomorphism, by
a theorem of Oort and Tate [28]) showing that the Hopf algebra cohomology
H∗(D,K) is also a graded-commutative algebra. Given a π-point αK ∶ D →
KGK defined over K/k, we define the ideal p(αK) as the radical of the kernel
for the composition

H∗(G,k) ⊗kKÐÐ→H∗(GK ,K)
H∗(αK)ÐÐÐÐ→H∗(D,K).
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It is shown in [16] that p(αK) is always a homogeneous prime in ProjH∗(G,k),
that every homogeneous prime of ProjH∗(G,k) is of the form p(α) for some
π-point α of G, and further, for two π-points αK , βL, that αK ∼ βL coincides
with the equivalence relation p(αK) = p(βL).

The last thing we need to prove Proposition 2.2.1 is the following theorem
of Milnor and Moore, found as [21, Theorem 6.11]

Theorem 2.2.5. Let g be a finite dimensional restricted Lie algebra over k,
and A = u(g) the restricted enveloping algebra, a cocommutative Hopf algebra
with g ⊂ A the subspace of primitive elements. Then if A′ ⊂ A is any Hopf
subalgebra, there exists a restricted Lie subalgebra g′ ⊂ g such that A′ = u(g′)
and A′ ⊂ A is the induced inclusion.

Contrast now Proposition 2.2.1 with the cohomological structure of π-points
reviewed in 2.2.4. Identifying R = H∗(u(g), k) = H∗(g, k), we claim that each
prime in ProjR comes from a π-point K[t]/tp → u(gK) which is the inclusion of
a Hopf subalgebra isomorphic to KGa(1). It is not true in general that π-points
are equivalent to some Hopf subalgebra inclusion, and in fact the failure of this
property for general finite group schemes is what we are studying with Property
PC (Definition 1.1.1), at the level of tensor categories.

Proof of Proposition 2.2.1

Let G be the finite group scheme with group algebra kG = u(g) as cocommuta-
tive Hopf algebras. Let EK be a quasi-elementary subgroup scheme of GK . By
theorem 2.2.5, the mapKEK →KGK is the induced map of enveloping algebras
for a subalgebra of g. In particular, KEK is generated by its space of primitive
elements. Since E is quasi-elementary, by our discussion 2.2.3 we have E ≅ Ga(1)
with KEK ≅ K[t]/tp. Every π-point is equivalent to some α ∶ K[t]/tp → KGK
factoring through a quasi-elementary subgroup scheme of E of G, and in this
case we have shown K[t]/tp →KEK is an isomorphism, and α is a map of Hopf
algebras assuming t is primitive.

2.2.6. The reason we say Proposition 2.2.1 shows plausibility for Property PC
is as follows. In Definition 1.1.1, we have quantified Property PC over all co-
commutative Hopf algebra structures on A = u(g) for a restricted Lie algebra
g. One such structure is the Lie comultiplication and associated tensor product
∆ = ∆̃,⊗ = ⊗̃, defining a finite group scheme we’ll call G. Without reviewing
definitions of π-support and the categories C(p) yet, it is tautological that the
products ⊗, ⊗̃ define the same Green ring structure on C(p). So for g to satisfy
PC, it is necessary for each π-point to be noble for G i.e. equivalent to the in-
clusion of a Lie subalgebra h ⊂ g by Theorem 2.2.5. This is what is guaranteed
by Proposition 2.2.1.

2.2.7. (Generalized π-points) Let αK ∶ K[t]/tp → KGK be a flat map. The
π-point condition, that αK factors through a unipotent subgroup scheme of GK
turns out to be too strong for some of our purposes. We want to argue when
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the radical of the kernel for the composition H∗(αK)○(⊗kK) is a homogeneous
prime in ProjH∗(G,k). Taking D =K[t]/tp, the cohomology ring is calculated
as

H∗(D,K) = ExtD(K,K) =
⎧⎪⎪⎨⎪⎪⎩

K[ξ] ⊗Λ(η) p > 2
K[ζ] p = 2

where ∣ξ∣ = 2, ∣η∣ = 1, and ∣ζ ∣ = 1. In particular, regardless of characteristic, the
reduced algebra H∗(D,K)red is an integral domain. The radical of the ideal
ker(H∗(αK) ○ (−⊗kK)) in H∗(G,k) agrees with the kernel of the composition
red○H∗(αK)○(⊗kK), i.e. changing the target from H∗(D,K) to H∗(D,K)red.
This ideal is always a homogeneous prime, and so being in ProjH∗(G,k) is
equivalent to the induced map red ○H∗(αK) ○ (⊗kK) being nonzero in some
positive degree. Such nondegenerate flat maps αK we may call generalized
π-points, and we denote by p(αK) the homogeneous prime of ProjH∗(G,k).
Friedlander and Pevtsova [16] show that π-points are nondegenerate in this way,
i.e. that factoring through a unipotent subgroup scheme of GK is sufficient for
knowing the induced map of cohomology is nonzero in some degree. It remains
to be shown, for generalized π-points αK , βL, that p(αK) = p(βL) if and only
if αK ∼ βL, for an equivalence relation ∼ defined similarly in terms of detecting
projectivity. However, this can be shown by repeating the methods of [16] in a
straightforward way, so we take it for granted. Note how it immediately follows
that generalized π-points are always equivalent to some π-point.

Lemma 2.2.8. Let G be a finite group scheme over k, and let φ ∈ Aut(kG) be
an augmented automorphism of the augmented algebra kG. Let α ∶ K[t]/tp →
KGK be a π-point of G over K. Then the composition φK ○ α is a generalized
π-point of G overK, where φK ∈ Aut(KGK) is the base change. If βL is another
π-point and αK ∼ βL, then φK ○ αK ∼ φL ○ βL as generalized π-points.

Proof. Let A = KGK be the group algebra over K, with ∆ ∶ A → A ⊗ A its
cocommutative Hopf algebra structure. Suppose αK ∶ K[t]/tp → A factors
through the inclusion KU ↪ A of a unipotent subgroup scheme U < GK . The
composition φK ○ αK is automatically a flat map (since αK and φK are both
flat). So, to show that φK ○αK is a generalized π-point, it suffices to show that
there is some cocommutative Hopf algebra structure ∆′ on A such that φK ○αK
factors through the inclusion B ↪ A of a local Hopf-subalgebra B. Letting
G′ = (SpecA∗,∆′) and U ′ = SpecB∗, we see U ′ is a unipotent subgroup scheme
of G′. Since the cohomology rings and their induced maps are invariant between
Hopf algebra structures, we see any such choice of ∆′ and unipotent subgroup
scheme U ′ < G′ will have that the induced map of cohomology from φK ○αK is
nondegenerate, making φK ○ αK a generalized π-point of G, as shown in [16].

Define ∆′ = (φK⊗φK)○∆○φ−1K (c.f. 3.1.7). We see ∆′ is indeed a cocommu-
tative comultiplication for a Hopf algebra structure on A. Further, if we define
B = φK(KU) the image of the group algebra, we see B is a Hopf-subalgebra of
A,∆′. Now B is local as it is isomorphic to KU , and φK ○ αK factors through
the inclusion B ↪ A. We conclude φK ○ αK is a π-point for G′ and hence a
generalized π-point for G over K.
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Now let βL be a π-point over L/k such that αK ∼ βL. Then for any kG mod-
uleM we have α∗K(MK) is projective if and only if β∗L(ML) is projective. There
is natural isomorphism ofK[t]/tp modules (φK○αK)∗(M) ≅ α∗K(φ∗(M)K), and
similarly for βL. Since φ

∗(M) is a kG module, we have α∗K(φ∗(M)K) is projec-
tive if and only if β∗L(φ∗(M)L) is projective, and hence φK ○αK ∼ φL ○ βL.

There is a hence a well defined Aut(kG)-action on ProjH∗(G,k) by

φ ⋅ p = p(φ ○ α) for a π-point α such that p = p(α).

2.3 Cohomological support and tt-geometry

2.3.1. In 2.2 we reviewed how the space of π-points for a finite group scheme
G over k is equivalent to X (G) = ProjH∗(G,k). Let R = H∗(G,k), a graded-
commutative algebra. For each representation M of G, the cohomology

H∗(G,M) = Ext∗G(k,M)

has a canonical graded right-module structure over R by the Yoneda splice
product. By the theorem of Friedlander and Suslin [13], X (G) is a (possibly
reducible) projective variety for finite group schemes G, and H∗(G,M) gives
a coherent sheaf over X (G) for finite dimensional M . To M we therefore
associate a closed subvariety of cohomological support

X (G,M) = V (AnnR(H∗(G,M))).

It is further shown by Friedlander and Pevtsova [16] that this subvariety is
equivalent to π-support, i.e.

X (G,M) = suppG(M)
= {[αK] ∣ α∗K(MK) is not projective} ,

defined to range over equivalence classes of π-points αK .

2.3.2. Now that we have a definition for support, we can elaborate on the
equivalence relation for π-points given in Definition 2.2.2. We continue our
assumption that k is algebraically closed, and so the closed points of X (G)
are all of the form p(α) for a π-point α of G, defined over the ground field
k. The equivalence relation α ∼ β between π-points α,β of G over k is, by
definition, that for any finite module M , α∗(M) is projective if and only if
β∗(M) is projective. In practice, we may be given a finite group algebra kG with
generators and relations, and the π-points of G over k make an affine-algebraic
subset Π of A(kG) = SpecS(O(G)). So it is preferable to characterize the
equivalence relation in coordinates. It turns out fixing a closed point p ∈X (G),
in many important cases, there are standard techniques for producing a finite
module M such that X (G,M) = {p}. When such M is known, the equivalence
class of π-points over k {α ∈ Π ∣ p = p(α)} is the same as

{α ∈ Π ∣ α∗(M) is not projective}.
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By computing Jordan canonical forms, fixing α ∈ Π such that p = p(α), it be-
comes straightforward to characterize β ∈ Π such that α ∼ β. The computational
advantage here is that we only need to consider a single finite module M rather
than range over all M .

2.3.3. A universal approach toward support is given for tensor-triangulated
categories in Balmer’s tensor-triangular geometry [1]. For representations of a
finite group scheme G, we look at the tensor triangulated category given by finite
stable representations, denoted stmodkG. That is, with kG the cocommutative
group algebra associated to G, we look at the category of finite dimensional
modules, with Hom spaces between objects X,Y given by

HomG(X,Y ) ∶= HomG(X,Y )/P(X,Y ),

where P(X,Y ) is the subspace of maps factoring through a projective module.
This category is tensor-triangulated, a general fact for the stable category of
a Frobenius category with exact monoidal product (see e.g. Keller, [20]). The
work of Benson, Carlson, Rickard [7], and Friedlander and Pevstova [4], [5],
classifies the thick ⊗-ideals of stmodkG. In Balmer’s tt-geometric terms, what
this means is that the projective variety X (G) defined above is the spectrum
of the tt-category stmodkG.

Recall the basic elements for tt-structure on stmodkG: The algebra kG is
a cocommutative Hopf algebra with counit kG → k defining k to be the trivial
module, the monoidal unit with respect to the product ⊗ of representations
(see Section 2.1). A finite representation P is projective if and only if it is
isomorphic to 0 as an object of stmodkG, and the projective modules form an
⊗-ideal, meaning the monoidal structure of mod kG descends to the quotient
stmodkG.

The triangulated structure has the suspension autoequivalence Σ, defined on
objects as (co)syzygies, i.e. ΣM = coker(ι) where ι ∶M ↪ I is a minimal injective
embedding ofM , and the inverse supspension defined by syzygies Σ−1M = ΩM =
ker(ϵ) where ϵ ∶ P ↠M is a minimal projective cover of M . The exact triangles
come from exact sequences of modules; see, e.g., Happel [18] or Keller [20].

Definition 2.3.4. A full subcategory C of mod kG is triangulated if

(T1) Every finite projective kG-module is contained in C, and

(T2) For every short exact sequence of finite modules

0→M ′ →M →M ′′ → 0,

if two of the modules in {M ′,M,M ′′} belong to C then so does the third.

Notice a triangulated subcategory is closed under isomorphism, and also under
the autoequivalences Σ,Ω.

The subcategory C is called thick if in addition

(T3) Whenever M ⊕M ′ belongs to C, so do the summands M,M ′.
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The subcategory C is called ⊗-ideal if in addition

(T4) Whenever M belongs to C, N ⊗M belongs to M for any module N .

The subcategory C is called radical if in addition

(T5) If the n-fold product M⊗n belongs to C, so does the module M .

The properties (T1)-(T5) for the tensor category mod kG all descend to the
quotient stmodkG to define the corresponding notions [1] for subcategories of
the tt-category. Now we recall what it means to be a classifying support data
on the tt-category stmodkG.

Definition 2.3.5. [1] A support data on the tt-category stmodkG is a pair
(X , σ), where X is a topological space and σ is an assignment which associates
to any objectM ∈ stmodkG a closed subset σ(M) ⊂X subject to the following
rules:

(S1) σ(0) = ∅,

(S2) σ(M ⊕M ′) = σ(M) ∪ σ(M ′),

(S3) σ(ΣM) = σ(ΩM) = σ(M),

(S4) σ(M) ⊂ σ(M ′) ∪ σ(M ′′) for any short exact sequence

0→M ′ →M →M ′′ → 0,

(S5) σ(M ⊗M ′) = σ(M) ∩ σ(M ′).

A support data (X , σ) for stmodkG is a classifying support data if the following
two conditions hold:

(C1) The topological space X is noetherian and any non-empty irreducible

closed subset Z ⊂X has a unique generic point: ∃! x ∈ Z with {x} = Z ,

(C2) We have a bijection

{Thomason subsets Y ⊂X } ∼Ð→
{thick ⊗ -ideals J ⊂ stmodkG}

defined by Y ↦ {M ∈ stmodkG ∣ σ(M) ⊂ Y }, with inverse J ↦ σ(J ) ∶=
⋃M∈J σ(M).

The theorem of Friedlander and Suslin [13] shows that the purely topological
condition (C1) holds for X = X (G). The work of Friedlander and Pevtsova
[16], [17], includes that taking X = X (G) and defining cohomological sup-
port σ(M) = X (G,M) makes (X , σ) into a support data for stmodG. With
Benson, Iyengar, Krause, and Pevtsova [4], [5], we have indeed that cohomol-
ogy gives a classifying support data for stmodG. As a consequence, X (G) has
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a certain universal property for support data (see Balmer’s [1, Theorem 5.2])
making it the spectrum of the tensor triangulated category stmodkG.

Some elementary considerations show that in fact the bijection from condi-
tion (C2) preserves inclusion. Thus, we know how to characterize minimal (rad-
ical, ⊗-ideal) thick subcategories; they are the subcategories C(p) supported at
a singleton closed point p ∈X (G). Any finite module has support a closed set,
so those with a singleton support in particular have support a closed point.

2.3.6. On the constancy of classifying support between different Hopf algebra
structures: If A → k is an augmentation map, we can define a graded algebra
structure on the cohomology H∗(A,k) = Ext∗(k, k) by splicing Yoneda exten-
sions. If A is given a Hopf algebra structure such that A → k is the counit,
one shows the splicing of Yoneda extensions is equivalent to the cup product,
which is known to be graded-commutative (see e.g. Benson, [6] in the case of
cocommutative Hopf algebras). The same is true of the graded right-module
structure on H∗(A,M) = Ext∗(k,M).

What we have now, is that even though applying the tt-geometry methods
discussed for A-modules depends on the existence of a cocommutative Hopf
algebra structure on A giving a symmetric monoidal product to begin with,
the variety X (A) = ProjH∗(A,k) does not depend on which Hopf algebra
structure is chosen, and the supports X (A,M) of a finite moduleM are in this
way also independent. They all satisfy the tensor product property (S5), and
in particular the subcategories C(p) supported at a point p ∈X (A) are closed
under any symmetric tensor product chosen.

We have now concluded our review of terminology used in Definition 1.1.1.

3 A property of some Lie algebras

3.1 Definitions

Definition 3.1.1. Let G be a finite group scheme over a field k. We say a
π-point is noble for G if it is equivalent to a map

α ∶K[t]/tp →KGK

such that the image α(K[t]/tp) is a Hopf subalgebra of KGK , and the point is
ignoble for G otherwise. We may also refer to an equivalence class of a π-point
being noble or ignoble, as well as its realization as a point p ∈ ProjH∗(G,k).

Example 3.1.2. The Klein 4-group G = ⟨h, g ∣ h2 = g2 = (gh)2 = 1⟩, for p = 2,
has 3 noble π-points up to equivalence, corresponding to its 3 cyclic subgroups
generated by j = h, g, hg, and defining a π-point t ↦ j − 1. We revisit this in
Sections 3.2, 3.3. Every flat map k[t]/tp → kG is defined by

t↦ a(h − 1) + b(g − 1) + c(h − 1)(g − 1),
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for nonzero vector (a, b) ∈ k2, and equivalence of π-points identifies the triples
(a, b, c) ∼ (a′, b′, c′) if and only if ab′ − a′b = 0 (this can be seen explicitly after
classifying all modules, G being of tame representation type). Thus X (G) = P1,
i.e. points are given homogeneous coordinates [a ∶ b]. The maps corresponding
to the three generators h, g, gh in these coordinates are [1 ∶ 0], [0 ∶ 1], [1 ∶ 1]
respectively. For G we have now that [1 ∶ 0] is noble and [a ∶ 1] is noble iff
a ∈ F2.

Definition 3.1.3. A full subcategory D of a finite tensor category (C,⊗) (over
a field k) is a semiring subcategory if the set of isomorphism classes of objects D
is closed under direct sum and tensor product. If Φ ∶ C1 → C2 is an equivalence
of (k-linear abelian) categories between finite tensor categories (Ci,⊗i), and Φ
restricts essentially to an equivalence of categories D1 → D2 between semiring
subcategories Di ⊂ Ci, we write (D1,⊗1) ≡ (D2,⊗2) to mean an Φ induces an
isomorphism of Green rings, i.e. Φ(a⊗1b) ≅ Φ(a)⊗2Φ(b) for each pair of objects
a, b ∈ D1.

Definition 3.1.4. Let g be a restricted Lie algebra over k, and A = u(g) the
restricted enveloping algebra. Let ∆̃, ⊗̃ be the Lie comultiplication on A and
its associated tensor product of g representations. When G is a finite group
scheme arising from a Hopf algebra structure on the augmented algebra A,
we let ∆,⊗ denote the group comultiplication on A and its associated tensor
product of G-representations. Denote C(p) the minimal thick subcategory of
finite A-modules, with support a singleton p ∈ ProjH∗(A,k).

A. The algebra g is said to satisfy Property PA if for any finite group scheme
G as above, and any noble p ∈X (A) for G, that (C(p),⊗) ≡ (C(p), ⊗̃) as
semiring subcategories (Definition 3.1.3).

B. The algebra g is said to satisfy Property PB if for any finite group scheme
G as above, and any ignoble p ∈ X (A) for G, there exists V,W ∈ C(p)
such that V ⊗W is not isomorphic to V ⊗̃W.

It is clear from definitions that Properties PA, PB are converse to one another
and that in conjunction they are Property PC of 1.1.1.

3.1.5. We must emphasize the formal meaning of quantifying our properties
PA and PB over all group schemes G having a given group algebra A. On one
hand, k being algebraically closed and A = u(g) being finite dimensional, we
may näıvely define an affine variety B of cocommutative bialgebra structures
∆ ∶ A → A ⊗ A with fixed counit A → k, an affine variety S of linear maps
S ∶ A→ A, and a closed subvariety H ⊂B×S of cocommutative Hopf algebras
(∆, S) with S an antipode for the comutiplication ∆. In fact, antipodes being
uniquely determined by comultiplications, the composition H →B×S →B is
injective on k-points. On the other hand the work of X. Wang et. al. [22], [23],
[24], [29], [30], [31] classifies Hopf algebras in small dimension up to equivalence.
For our purposes, these classifications can provide a computation of the orbit
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space H /Aut(A) (of k-points) where Aut(A) is the group of augmented k-
algebra automorphisms φ ∶ A→ A acting on B ×S by

(∆, S) ↦ (∆φ, Sφ) = ((φ⊗ φ) ○∆ ○ φ−1, φ ○ S ○ φ−1),

making H an invariant subvariety.
In these terms, what we have is that for the properties P = PA, PB, PC,

we defined implicitly an existential P′(s) dependent on a set s ∈H of k-points
such that Property P is in the form

P ∶= ∀s ∈H , (P′(s) holds) ,

per definition. But to make good use the work of X. Wang et. al. while avoiding
the enormous computation of H , we must confirm a curtailment of Property P
to be valid for u(g). That is, we would like to range over the set t ∈H /Aut(A),
realized as a complete set of Aut(A)-orbit representatives in H , and confirm
that

(∀t ∈H /Aut(A), (P′(t) holds )) Ô⇒ P. (3.1.6)

The curtailments 3.1.6 for Properties P = PA, PB, PC are not immediate
for a given g. The curtailments would follow if for example it is known that

P′(s) Ô⇒ (P′(sφ) ∀φ ∈ Aut(A))

for each s = (∆, S) ∈H , where sφ = (∆φ, Sφ). To see why this is not immediate,
consider the following lemmas.

Lemma 3.1.7. (Twisting Hopf algebras) Let φ ∈ Aut(A) be an augmented
algebra automorphism, and φ∗ ∶ ProjH∗(A,k) → ProjH∗(A,k) the induced
automorphism on varieties (2.2.8). If ∆ is the comultiplication for a group
scheme G with kG ≅ A, denote the twisted group scheme Gφ by the comultipli-
cation ∆φ = (φ⊗ φ) ○∆ ○ φ−1. Then p ∈ ProjH∗(A,k) is noble for G iff φ∗(p)
is noble for Gφ.

3.1.8. Denote by Ω(A,p) the isotropy subgroup of Aut(A) for π-point p, and

Ω(A) = ⋂
p

Ω(A,p)

the kernel of Aut(A) → Aut(ProjH∗(A,k)) which takes φ to φ∗ as in Lemma
3.1.7.

Suppose that Hopf algebras I =H /Aut(A) on a given A = u(g) are classified
up to equivalence, as ∆i, corresponding to the scheme Gi and product ⊗i for
i ∈ I. Then for any Hopf algebra structure ∆ ∶ A → A ⊗ A, there is some
φ ∈ Aut(A) and i ∈ I with ∆ =∆φ

i . For modulesM with action π ∶ A⊗kM →M ,
denote Mφ the twisted module on the same k-space M , but with action the
composition

π ○ (φ−1 ⊗ idM) ∶ A⊗kMφ →Mφ,

i.e. Mφ ∶= φ(A)⊗AM, the base change along φ. Then a prime p ∈X (A) belongs
to the support variety X (A,M) if and only if φ∗(p) belongs to X (A,Mφ).
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Lemma 3.1.9. Suppose for each closed point p ∈X (A), each finite A-module
M with X (A,M) = {p}, and each isotropy φ ∈ Ω(A,p), that Mφ ≅ M. Then
the curtailment 3.1.6 holds for Properties P = PA, PB, PC.

In words for e.g. P = PA: under the same isotropy hypothesis, if for all
i ∈ I, and any noble point p for Gi, we have (C(p),⊗i) ≡ (C(p), ⊗̃) as semiring
subcategories, then indeed g satisfies Property PA.

The proofs of Lemmas 3.1.7, 3.1.9 are straightforward. One shows with
Lemma 3.1.7 that the isotropy hypothesis of Lemma 3.1.9 has, as a consequence,
that P′(s) Ô⇒ P′(sφ) for Hopf algebras s ∈ H , and Properties P = PA,
PB, PC. But the isotropy hypothesis is not immediate for restricted enveloping
algebras A = u(g), a counterexample is given in 3.2.4.

We conclude this section with two easy examples of restricted Lie algebras
of finite representation type which satisfy Property PC.

Example 3.1.10. Let g = ⟨x⟩ be the one dimensional Lie algebra, with trivial
restriction g[p] = 0. The restricted enveloping algebra is given by

u(g) = A = k[x]/xp,

and by a theorem of Oort and Tate [28], there are only two Hopf algebra struc-
tures on A up to isomorphism. They are given by

1. ∆̃ ∶ x↦ x⊗ 1 + 1⊗ x,

2. ∆ ∶ x↦ x⊗ 1 + 1⊗ x + x⊗ x,

with tensor products denoted ⊗̃,⊗ respectively. The structure (A, ∆̃) is equiv-
alent to the group algebra for Ga(1), and the structure (A,∆) is equivalent to
the group algebra for Z/p. The algebra A is a quotient of a PID and it is easy
to see how there is exactly one indecomposable module Ji of dimension i, for
1 ≤ i ≤ p, with Jp the unique indecomposable projective module. It is known
(see e.g. Benson [3]) that Ji ⊗̃Jj ≅ Ji ⊗ Jj for any 1 ≤ i, j ≤ p.

It follows that g satisfies Property PC. To elaborate, Proposition 2.2.1 (or
better yet, a direct computation of cohomology and cup product) tells us that
ProjH∗(g, k) consists of a single point p, represented by the identity for g,
and with that, each Ji belongs to the unique minimal thick subcategory C(p).
Finally, we may apply Lemma 3.1.9: in this case Ω(A) = Aut(A), and we see
for φ ∈ Ω(A), that Jφi is indecomposable of dimension i, hence isomorphic to Ji.

Example 3.1.11. Let g = ⟨x, y ∣ [x, y] = 0, x[p] = y, y[p] = 0⟩ be the two dimen-
sional abelian Lie algebra with nontrivial restriction. The restricted enveloping
algebra is given by

u(g) = A = k[x]/xp
2

.

By a corollary of X. Wang [30], there are only three Hopf algebra structures on
A up to isomorphism. They are given by

1. ∆̃ ∶ x↦ x⊗ 1 + 1⊗ x,
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2. ∆1 ∶ x↦ x⊗ 1 + 1⊗ x + ω(xp),

3. ∆2 ∶ x↦ x⊗ 1 + 1⊗ x + x⊗ x,

with tensor products ⊗̃,⊗1,⊗2 respectively. The structure (A, ∆̃) is equivalent
to the group algebra for the Frobenius kernel W2(1), where Wi is the algebraic
group of length i Witt vectors. The comultiplication ∆1 depends on a term
ω(xp), defined as

ω(y) = (y ⊗ 1 + 1⊗ y)p − (yp ⊗ 1 + 1⊗ yp)
p

,

a formal division by p in characteristic p. The structure (A,∆1) is the group
algebra for a certain degree p subgroup G2 of the second Frobenius kernel W2(2).
Both G2 and W2(2) are equal to their own Cartier dual. The structure (A,∆2)
is equivalent to the group algebra for Z/(p2).

As in the Oort-Tate example above, there is only one π-point for these group
schemes, this time represented by the map

k[t]/tp xp

Ð→ k[x]/xp
2

,

a subgroup inclusion making the point noble for all three group schemes. It is
not hard to see that the products ⊗̃,⊗1,⊗2 all give the same Green ring, so that
g has Property PC, again making use of Lemma 3.1.9.

3.2 Abelian Lie algebras of dimension 2

Throughout this section we let g be the abelian Lie algebra of dimension 2 with
the trivial restriction g[p] = 0, and A = u(g) the restricted enveloping algebra
which we endow with coordinates

A = k[x, y]/(xp, yp)

and take ∆̃ to be the Hopf algebra comultiplication making x and y as primitive,
and ⊗̃ the corresponding tensor product of A-modules.

For p > 2, A is of wild representation type, and we will show that g does not
meet the hypothesis of Lemma 3.1.9, and in fact, g does not satisfy Property
PA. In the tame case p = 2, we show in Section 3.3 that Lemma 3.1.9 can be
applied directly.

3.2.1. The Hopf algebra structures on A, up to equivalence, are classified by
X. Wang in [30], and the cocommutative structures are given as follows.

0. The Lie algebra kG2
a(1)

∆̃ ∶ x↦ x⊗ 1 + 1⊗ x
y ↦ y ⊗ 1 + 1⊗ y,
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1. The quasi-elementary group algebra kGa(2)

∆1 ∶ x↦ x⊗ 1 + 1⊗ x
y ↦ y ⊗ 1 + 1⊗ y + ω(x),

2. The group-Lie product k (Ga(1) ×Z/p)

∆2 ∶ x↦ x⊗ 1 + 1⊗ x
y ↦ y ⊗ 1 + 1⊗ y + y ⊗ y,

3. The discrete group algebra k(Z/p)2

∆3 ∶ x↦ x⊗ 1 + 1⊗ x + x⊗ x
y ↦ y ⊗ 1 + 1⊗ y + y ⊗ y.

For ∆1 we have used the notation

ω(x) = (x⊗ 1 + 1⊗ x)p − (xp ⊗ 1 + 1⊗ xp)
p

,

a formal division of binomial coefficients by p.

3.2.2. We calculate the spectrum X (G2
a(1)) = ProjH∗(G2

a(1), k), applying

Lemma 2.2.1, to be P1, since each linear subspace of gK over an extension
of fields K/k is a Lie subalgebra with trivial restriction. Each π-point αK is of
the form

K[t]/tp →K[x, y]/(xp, yp)
with t↦ ax+ by + ξ, for a, b ∈K not both 0, where ξ is a polynomial in the ideal
(x2, xy, y2), i.e. a higher order term. From Friedlander and Pevtsova [16], if we
let βL be another π-point with t ↦ a′x + b′y + ξ′ in the same form over L, then
αK ∼ βL if and only if there is a common extension F of K and L such that
[a ∶ b] = [a′ ∶ b′] as F -points of the projective scheme P1.

The group schemes corresponding to the four cocommutative Hopf algebras
listed in 3.2.1 are as we have claimed in notation:

G2
a(1), Ga(2), Ga(1) ×Z/p, (Z/p)2.

We already know that each π-point is noble for the Lie algebra, corresponding to
G2
a(1). The noble points for the three Group schemes representing the remaining

points of H /Aut(A) are calculated below. One checks that each of these group
schemes has finitely many subgroup schemes and that base changing to any field
extension does not change the number of subgroup schemes.

1. The quasi-elementary group scheme Ga(2) has only one nontrivial proper
subgroup, and it is isomorphic Ga(1). The inclusion of Ga(1) gives a noble
π-point k[t]/tp → A which maps t ↦ x. Therefore [1 ∶ 0] ∈ P1 is the only
noble point for Ga(2).
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2. The group schemes Ga(1) and Z/p are disjunct in the sense that any sub-
group of the product Ga(1) × Z/p is the natural inclusion of a product
H1 ×H2 for H1 ≤ Ga(1) and H2 ≤ Z/p. Therefore there are two inclusions
Ga(1)×0 < Ga(1)×Z/p and 0×Z/p < Ga(1)×Z/p, which give noble π-points
k[t]/tp → A, mapping t ↦ x and t ↦ y respectively. Therefore [1 ∶ 0] and
[0 ∶ 1] are the only noble points for the product Ga(1) ×Z/p.

3. The discrete group scheme (Z/p)2 is a 2-dimensional vector space over
the prime field Z/p. Therefore the nontrivial proper subgroups are all
isomorphic to 1-dimensional subspaces, i.e. the cyclic subgroups. The
inclusion of the cyclic subgroup generated by (i, j) ∈ (Z/p)2 gives a noble
π-point k[t]/tp → A mapping t↦ (x+1)i(y+1)j −1. Computing the linear
term then tells us that the of the noble points for the discrete group are
precisely those in the form [i ∶ j] ∈ P1 for i, j ∈ Z/p, and up to equivalence
there are p + 1 of them.

Lemma 3.2.3. Let I = {∆̃,∆1,∆2,∆3} = H /Aut(A), with corresponding
schemes Gi and tensor products ⊗i for i ∈ I. Then for any Gi, and any ignoble
point p for Gi, there exists V,W ∈ C(p) such that V ⊗iW is not isomorphic to
V ⊗̃W.

Proof. Given p = [a ∶ b] ∈ P1, we let α(p) be the canonical π-point, a map

k[t]/tp → A = k[x, y]/(xp, yp)

which takes t ↦ ax + by. We generate a module with support {p} by inducing
up the trivial k[t]/tp module k up to A, i.e. take

V (p) = A⊗k[t]/tp k,

where A is a k[t]/tp algebra via α(p). Explicitly the A-module structure for
V (p) is given as a p-dimensional space over k such that s2 = ax+ by acts as the
0-matrix and, for s1 = cx+ dy with {s1, s2} linearly independent, s1 acts by the
nilpotent p × p Jordan block

Jp =

⎛
⎜⎜⎜⎜⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

,

written in a fixed ordered basis sp−11 v, . . . , s1v, v, where v = 1 ⊗ 1 ∈ A ⊗k[t]/tp k.
Then p ∈X (Gi, V (p)), since t annihilates the restricted module α(p)∗(V (p)).
If q = [c ∶ d] ∈ P1 is a closed point not equivalent to p, then the restriction
α(q)∗(V (p)) is free of rank 1, and hence q /∈ X (Gi, V (p)), and the generic
point is not in X (Gi, V (p)) either. Thus X (Gi, V (p)) is the singleton {p}.

Now we compute the products V (p) ⊗i V (p). First, each canonical π-point
α = α(q), q ∈ P1, is the inclusion of a subgroup scheme of G2

a(1). Therefore for
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any A-modules M,M ′, we have

α∗(M ⊗̃M ′) ≅ α∗(M) ⊗̃α∗(M ′),

where the right-hand ⊗̃ is the tensor product of Ga(1) representations as in
Example 3.1.10. Therefore V (p)⊗̃V (p) is annihilated by s2 and is free of rank
p when restricted along s1, so

V (p)⊗̃V (p) ≅ pV (p).

By Proposition 2.2.1 there are no ignoble points for G2
a(1), so PB′(∆̃) is

vacuously true. To show PB′(∆i) for i = 1,2,3, we show that V (p) ⊗i V (p)
is not annihilated by s2, for each ignoble point p for Gi, and is therefore not
isomorphic to V (p)⊗̃V (p). Notice the point [1 ∶ 0] ∈ P1 is noble for each of
G1,G2,G3. Therefore an ignoble point is always in the form [a ∶ 1] for a ∈ k, so
we may always assume s1 = x and s2 = ax + y.

The elements s2 ⊗ 1,1 ⊗ s2 ∈ A ⊗ A annihilate the k-space V (p) ⊗ V (p).
Therefore the action of s2 for the representation V (p) ⊗i V (p) of Gi, given
by ∆i(s2), is well defined as an element of A ⊗ A/Σ, where Σ is the ideal
(s2⊗ 1,1⊗ s2)◁A⊗A. The elements of the quotient A⊗A/Σ are cosets, which
we write as z +Σ for z ∈ A⊗A.

1. The ignoble points for G1 = Ga(2) are p = [a ∶ 1] for any a ∈ k. We have

∆1 ∶ s2 ↦ s2 ⊗ 1 + 1⊗ s2 + ω(s1) ∈ ω(s1) +Σ.

We described ω(s1) in 3.2.1 using a formal division of binomial coefficients
by p. This makes ω(s1) a sum with coefficients on terms sn1 ⊗ sm1 for

n +m = p, and n,m ≥ 1. Using the same basis elements sp−ℓ1 v from our
description of the Jordan block Jp, we see

ω(s1) ⋅ (sp−21 v ⊗ v) = (s1 ⊗ sp−11 ) ⋅ (s
p−2
1 v ⊗ v) = sp−11 v ⊗ sp−11 v,

so ω(s1) does not annihilate V (p) ⊗k V (p).

2. The ignoble points for G2 = Ga(1) ×Z/p are [a ∶ 1] for a ≠ 0. We have

∆2 ∶ s2 ↦ s2 ⊗ 1 + 1⊗ s2 + (s2 − as1) ⊗ (s2 − as1) ∈ a2s1 ⊗ s1 +Σ.

Using the same sp−ℓ1 v we see

(a2s1 ⊗ s1) ⋅ (v ⊗ v) = a2s1v ⊗ s1v,

and in particular, supposing a ≠ 0, we have a2s1 ⊗ s1 does not annihilate
V (p) ⊗k V (p).

3. The ignoble points for G3 = (Z/p)2 are [a ∶ 1] for ap − a ≠ 0. We have

∆3 ∶ s2 ↦ s2 ⊗ 1 + 1⊗ s2 + as1 ⊗ s1 + (s2 − as1) ⊗ (s2 − as1)
∈ (a + a2)s1 ⊗ s1 +Σ.
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The same considerations as for G2 above shows that, supposing a+a2 ≠ 0,
we have (a+a2)s1⊗s1 does not annihilate V (p)⊗k V (p). Note that ap −a
is divisible by a2 + a in k[a] in any characteristic p > 0.

We conclude that if p is ignoble for Gi, then V (p) ⊗i V (p) /≅ V (p) ⊗̃V (p), for
each i = G1,G2,G3 ∈ H /Aut(A), since V (p) ⊗̃V (p) is annihilated by s1 and
V (p) ⊗i V (p) is not. Thus PB′(s) holds for s ∈H /Aut(A).

Theorem 3.2.4. (c.f. Theorem 1.1.3) If p > 2, then g does not satisfy Property
PA.

Proof. Consider the automorphism φ ∶ A→ A of algebras, with inverse φ−1

φ ∶ x↦ x φ−1 ∶ x↦ x

y ↦ y + x2, y ↦ y − x2.

Now fix p = [0 ∶ 1]. By examining linear terms of φ(ax + by) we see that
φ ∈ Ω(A). For this reason Mφ has the same support p. We compute directly
that the module Mφ is determined by the p × p-matrix below, representing the
action of a generic ax + by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 a −b 0 . . . 0
0 0 a −b . . . 0
⋮ ⋮ ⋮ ⋱ ⋱ ⋮
0 0 0 0 a −b
0 0 0 0 0 a
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Now letting α(p) be the canonical π-point with t ↦ y, we see α(p)∗(Mφ) has
a Jordan block of size N = p+1

2
(we have assumed p is odd). In particular Mφ

is not isomorphic to M because it is not annihilated by y, thus contradicting
the hypothesis in Lemma 3.1.6. The Jordan block of size N is also present in

α(p)∗(Mφ−1). We shall see that M ⊗̃M is not isomorphic as an A-module to
M ⊗̃φM, despite p being noble for both the group scheme G asssociated to the
Lie algebra ∆̃, and its twist Gφ associated to ∆̃φ = (φ⊗φ)○∆̃○φ−1. This proves
Theorem 1.1.3, as our claim shows that g does not satisfy Property PA.

Our argument is as follows: if ⊗ is induced from any ∆, and ⊗φ induced
from the twist ∆φ, then we have for A-modules V,W, that there is equality of
A-modules

V φ ⊗φWφ = (V ⊗W )φ.

Therefore M ⊗̃M is isomorphic to M ⊗̃φM = (Mφ−1⊗̃Mφ−1)φ if and only if

(M ⊗̃M)φ−1 is isomorphic to Mφ−1⊗̃Mφ−1 . But we see that the latter is false by
restricting along α(p).

We know already that M ⊗̃M is a direct sum of p copies of M from the

restriction property of ⊗̃ used in 3.2.3. In particular (M ⊗̃M)φ−1 = pMφ−1 has
no Jordan blocks of size p when restricted along α(p), the largest Jordan block
is instead of size N = p+1

2
.
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But we also have the restriction property

α(p)∗(Mφ−1⊗̃Mφ−1) ≅ α(p)∗(Mφ−1) ⊗̃α(p)∗(Mφ−1),

where the right-hand ⊗̃ is of k[t]/tp-modules as in Example 3.1.10. The product
⊗̃ of k[t]/tp-modules is known to multiply a pair of Jordan blocks of size n to a
module containing a Jordan block of size max{2n − 1, p} (see e.g. Benson [3]).

We conclude α(p)∗(Mφ−1⊗̃Mφ−1) has a Jordan block of size 2N − 1 = p but

α(p)∗((M ⊗̃M)φ−1) does not, and hence

M ⊗̃M /≅M ⊗̃φM.

3.3 A tame algebra

We continue the assumptions of Section 3.2, and we specialize to p = 2, so that
A = k[x, y]/(x2, y2) is of tame representation type. Note that in X. Wang’s
classification 3.2.1, we can now replace the term ω(t) = t ⊗ t for t ∈ A, per its
definition.

The Hopf algebra ∆3 of 3.2.1 corresponds to the discrete group G3 = (Z/2)2.
Finite indecomposable A-modules were first classified by Bašev [2], identifying
A = k(Z/2)2. The semirings relative to G3,⊗3 for thick subcategories C(p),
supported at noble points p ∈ X (A) for G3, were also successfully calculated
by Bašev, and we will see that g satisfies property PA. So for each V,W sup-
ported only at a noble point for G3, we will see that V ⊗3 W ≅ V ⊗̃W with
the same methods as likely used by Bašev. For the 2-dimensional modules
V (p) = A⊗k[t]/t2 k defined in 3.2.3, our computations of V (p)⊗3V (p) also agree
with Bašev for p both noble and ignoble points for G3. Note that the complete
semiring (C(p),⊗3) for the ignoble points p for G3 was initially computed in
error in [2], and corrected first by Conlon in [10].

3.3.1. Our argument for Theorem 1.1.2 is as follows. The algebra A is local
so there is up to isomorphism only one projective indecomposable we call P ,
of dimension 4. For each closed point p ∈ X (A,k) = P1, the minimal thick
subcategory C(p) contains up to isomorphism only P , and for each n = 1,2, . . . ,
a single indecomposable module V2n(p) of dimension 2n with support {p}. This
is shown by Bašev [2]. We will see for n = 1 that V2(p) agrees with our induced
module V (p) defined in 3.2.3. Bašev’s classification shows for us that the algebra
A satisfies the isotropy hypothesis for applying the curtailment Lemma 3.1.9.
By Lemma 3.2.3 we then know that g satisfies Property PB. What remains is
to repeat the methods of [2] to conclude that

V2n(p) ⊗ V2m(p) ≅ 2V2min(n,m) + (nm −min(n,m))P (3.3.2)

for each point p which is noble for the group scheme G, having induced product
⊗ = ⊗̃,⊗1,⊗2,⊗3, and each n,m. Then by the curtailment Lemma 3.1.9, as well
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as Propositon 2.2.1 and X. Wang’s classification 3.2.1, we know in particular
that V2n(p) ⊗ V2m(p) ≅ V2n(p) ⊗̃V2m(p) for each Hopf algebra structure of H ,
with group scheme G, product ⊗, and p noble for G. Since these are all possible
pairs of nonprojective indecomposables, we conclude that g satisfies Property
PA and thus Property PC.

The next three results below extend the techniques of [2] and reduce Bašev’s
formula 3.3.2 to direct computation with matrices.

Proposition 3.3.3. Let n,m ∈ Z>0 and p ∈ P1. Then for ⊗ = ⊗̃,⊗1,⊗2,⊗3, we
have

V2n(p) ⊗ V2m(p) = V ⊕ (nm −min(n,m))P
for some finite A-module V with no nontrivial projective submodule.

Lemma 3.3.4. [2] Let R be a (nonunital) associative, commutative ring with
a Z-linear basis {xs ∣ s = 1,2, . . .} ; x0 = 0. Assume that each product xmxn is a
nonnegative integer combination of the xs for s > 0, and further that x1x2 = 2x1.
If the Z-linear functional f ∶ R → Z defined by f(xs) = s satisfies f(xsxt) =
2min(s, t), then xmxn = 2xmin(m,n) whenever m ≠ n.

Corollary 3.3.5. Let n > m ∈ Z>0 and p ∈ P1. Then for ⊗ = ⊗̃,⊗1,⊗2,⊗3, we
have

V2n(p) ⊗ V2m(p) = 2V2m(p) ⊕ (nm −m)P.

The proof of Proposition 3.3.3 comes from the fact that P = A is an injective
module over A, and has a linear basis 1, x, y, xy. So the element xy annihilates
any indecomposable module which is not free. It follows that for the module
M = V2n(p) ⊗ V2m(p), the rank of the matrix in Endk(M) representing xy ∈ A
is equal to the rank of the largest free submodule (a direct summand) of M .
Then since the ideal (xy ⊗ 1,1⊗ xy)◁A⊗A is in the A⊗A-annihilator for M ,
we see all the matrices in Endk(M) represented by the elements

∆̃(xy), ∆1(xy), ∆2(xy), ∆3(xy) ∈ A⊗A

are the same as that of x ⊗ y + y ⊗ x ∈ A ⊗ A. After properly defining the A-
modules V2n(p) for n = 1,2, . . . , it is easily verified that the matrix representing
x ⊗ y + y ⊗ x indeed has rank (nm − m). Lemma 3.3.4 is a tedious exercise
in induction. Corollary 3.3.5 is immediate from taking R to be the semiring
generated by the indecomposables xs = V2s with products ⊗ defined modulo P ,
and applying Lemma 3.3.4.

All that is left to verify the formula 3.3.2 is the square in each dimension

V2n(p) ⊗ V2n(p) = 2V2n(p) ⊕ (n2 − n)P (3.3.6)

when p is noble for the group scheme G having product ⊗ = ⊗̃,⊗1,⊗2,⊗3. For
this, before defining the modules V2n(p), we state two more tedious results
pertaining to Lemma 3.3.4.
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Proposition 3.3.7. Let S be any subset of the natural numbers such that no
two consecutive numbers are elements of S. Let R = ⟨xi⟩∞i=1 be the free abelian
group, denoting x0 = 0, with multiplication defined by

xsxt =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2xmin(s,t) s ≠ t
2xs s = t /∈ S
xs−1 + xs+1 s = t ∈ S,

extended linearly. Then R is an associative, commutative ring admitting a
functional f ∶ R → Z as in Lemma 3.3.4.

Lemma 3.3.8. Let R be a ring with functional f ∶ R → Z as in Lemma 3.3.4.
Then there is some subset S of the positive integers such that R is the ring
defined in Proposition 3.3.7.

Now let us define the modules V2n(p) in Bašev’s classification theorem be-
low. We omit the classification of modules supported everywhere in X (A),
which includes the structure of the syzygy modules Ωnk = Σ−nk for n ∈ Z, and
that these are all such everywhere-supported indecomposable modules up to
isomorphism.

Theorem 3.3.9. (Bašev, 1961, [2]) Let p = [a ∶ b] ∈ X (A) = P1, and define
s2 = ax + by ∈ A and s1 = cx + dy such that s1, s2 forms a basis for the subspace
⟨x, y⟩ ⊂ A.

Let M denote a vector space of dimension 2n, with k-linear decomposition
into lower and upper blocks M = Mℓ ⊕Mu, with Mℓ,Mu each of dimension
n. We define V2n(p) = M to be the A-module defined by following matrix
representations of the actions of s1, s2 ∈ A

s1 ∶ (
0 In
0 0

) , s2 ∶ (
0 Nn

0 0
) ,

where In is the diagonal ones matrix and Nn is an upper triangular nilpotent
Jordan block of rank n − 1.

Then we have that

I. The module V2n(p) is, up to isomorphism, not dependent on choice of
a, b, c, d, such that p = [a ∶ b] ∈ P1, and such that s1 = cx + dy and s2 are
linearly independent,

II. The module V2n(p) is indecomposable,

III. The support X (A,V2n(p)) is {p} ⊂ P1, and

IV. Any finite indecomposable module V with support X (A,V ) = {p} is of
even dimension 2n and is isomorphic to V2n(p), for some n.

The following Lemma is proven with the exact same method used for com-
puting V (p)⊗̃V (p) ≅ 2V (p) in 3.2.3, after noting V (p) = V2(p) and applying
the curtailment Lemma 3.1.9.
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Lemma 3.3.10. Let p ∈ X (A) be a noble π-point for a group scheme G
corresponding to a Hopf algebra structure ∆ ∈H on A, with ⊗ the product of
G-representations. Then V2(p) ⊗ V2(p) ≅ 2V2(p).

Now we prove the formula 3.3.6, giving an original proof of the computations
of tensor products, first described in the case G = G3 from 3.2.1, by Bašev [2]
and Conlon [10] without proof.

Theorem 3.3.11. Let G be the group scheme associated to one of the Hopf
algebras H /Aut(A) = {∆̃,∆1,∆2,∆3} from X. Wang’s classification 3.2.1. Let
⊗ be the associated tensor product of representations of G. Then for each noble
point p for G and each n, we have an isomorphism

V2n(p) ⊗ V2n(p) ≅ 2V2n(p) ⊕ (n2 − n)P

Proof. We will make explicit computations using matrices in each case of 3.2.1
for representatives Gi ∈ H /Aut(A), and promote this to a general formula
of G with our curtailment Lemma 3.1.9. Throughout, we fix a noble π-point
p ∈X (A) for G and denote V2n = V2n(p).

Given the basic matrix construction 3.3.9 of the indecomposable reps V2n,
the choice of basis induces short exact sequences of modules we call the canonical
monos/epis

0→ V2p → V2(p+q) → V2q → 0.

Suppose for n > 1 the contrary to formula 3.3.6, which by Lemma 3.3.8 lets
us assume

V2n ⊗ V2n ≅ V2(n−1) ⊕ V2(n+1) ⊕ (n2 − n)P.
But also by Lemma 3.3.8 we have

V2(n+1) ⊗ V2(n+1) ≅ 2V2(n+1) ⊕ (n2 + n)P.

Consider the canonical mono ι ∶ V2n → V2(n+1). Then its ⊗-square

ι⊗ ι ∶ V2n ⊗ V2n → V2(n+1) ⊗ V2(n+1),

is also a monomorphism, and by the injectivity of P , this descends to

ι′ ∶ V2(n−1) ⊕ V2(n+1) → 2V2(n+1) ⊕ (2n)P.

We will show directly that the restriction ι′ of ι⊗ ι indeed has image contained
in the nonprojective component of V2(n+1) ⊗ V2(n+1), and argue that ι′ is a sum
of canonical monos composed with the split embedding. From this it will follow
that the cokernel of ι⊗ι is isomorphic to V4⊕(2n)P . But this is a contradiction:
by the restriction formula (see 1.2) there is no exact sequence

0→ V2n ⊗ V2n → V2(n+1) ⊗ V2(n+1) → V4 ⊕ (2n)P → 0,

for its restriction to the subgroup representing p is an exact sequence of k[t]/t2-
modules (see 3.1.10)

0 4J1 ⊕ 4(n − 1)J2 4J1 ⊕ 4(n + 1)J2 2J1 ⊕ (4n + 1)J2 0
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This is a contradiction when n > 1 since J2 is projective and injective, and
4(n + 1) < (4n + 1) + 4(n − 1).

For direct computation we consider two cases, one in which p = [1 ∶ 0], hence
we may assume s2 = x, and s1 = y, and the other, in which p = [a ∶ 1] for
a = 0,1 ∈ k we take s2 = ax + y and s1 = x.

Suppose p = [1 ∶ 0], s2 = x, s1 = y. Now we have

∆̃ ∶ s1 ↦ s1 ⊗ 1 + 1⊗ s1
s2 ↦ s2 ⊗ 1 + 1⊗ s2,

∆1 ∶ s1 ↦ s1 ⊗ 1 + 1⊗ s1 + s2 ⊗ s2
s2 ↦ s2 ⊗ 1 + 1⊗ s2,

∆2 ∶ s1 ↦ s1 ⊗ 1 + 1⊗ s1 + s1 ⊗ s1
s2 ↦ s2 ⊗ 1 + 1⊗ s2,

∆3 ∶ s1 ↦ s1 ⊗ 1 + 1⊗ s1 + s1 ⊗ s1
s2 ↦ s2 ⊗ 1 + 1⊗ s2 + s2 ⊗ s2.

Now we describe the action of the ∆(si) ∈ A⊗A over the k-linear decompo-
sition

M ⊗M = (Mℓ ⊗Mℓ) ⊕ (Mℓ ⊗Mu) ⊕ (Mu ⊗Mℓ) ⊕ (Mu ⊗Mu)

into blocks of size n2, where V2n = M = Mℓ ⊕Mu as in Theorem 3.3.9. There
are four actions to check:

0. ∆ = ∆̃

∆(s1) ∶
⎛
⎜⎜⎜
⎝

0 1⊗ In In ⊗ 1 0
0 0 0 In ⊗ 1
0 0 0 1⊗ In
0 0 0 0

⎞
⎟⎟⎟
⎠
, ∆(s2) ∶

⎛
⎜⎜⎜
⎝

0 1⊗Nn Nn ⊗ 1 0
0 0 0 Nn ⊗ 1
0 0 0 1⊗Nn

0 0 0 0

⎞
⎟⎟⎟
⎠
,

1. ∆ =∆1

∆(s1) ∶
⎛
⎜⎜⎜
⎝

0 1⊗ In In ⊗ 1 Nn ⊗Nn

0 0 0 In ⊗ 1
0 0 0 1⊗ In
0 0 0 0

⎞
⎟⎟⎟
⎠
, ∆(s2) ∶

⎛
⎜⎜⎜
⎝

0 1⊗Nn Nn ⊗ 1 0
0 0 0 Nn ⊗ 1
0 0 0 1⊗Nn

0 0 0 0

⎞
⎟⎟⎟
⎠
,

2. ∆ =∆2

∆(s1) ∶
⎛
⎜⎜⎜
⎝

0 1⊗ In In ⊗ 1 In ⊗ In
0 0 0 In ⊗ 1
0 0 0 1⊗ In
0 0 0 0

⎞
⎟⎟⎟
⎠
, ∆(s2) ∶

⎛
⎜⎜⎜
⎝

0 1⊗Nn Nn ⊗ 1 0
0 0 0 Nn ⊗ 1
0 0 0 1⊗Nn

0 0 0 0

⎞
⎟⎟⎟
⎠
,
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3. ∆ =∆3

∆(s1) ∶
⎛
⎜⎜⎜
⎝

0 1⊗ In In ⊗ 1 In ⊗ In
0 0 0 In ⊗ 1
0 0 0 1⊗ In
0 0 0 0

⎞
⎟⎟⎟
⎠
, ∆(s2) ∶

⎛
⎜⎜⎜
⎝

0 1⊗Nn Nn ⊗ 1 Nn ⊗Nn

0 0 0 Nn ⊗ 1
0 0 0 1⊗Nn

0 0 0 0

⎞
⎟⎟⎟
⎠
,

with each block entry of the matrices above representing an n2 × n2 matrix.
The projective component of M ⊗M is actually a subspace which is inde-

pendent of choice of ∆, and free of rank n2 −n. To see this, as in the discussion
following Corollary 3.3.5, we see for each choice ∆ = ∆̃,∆1,∆2,∆3, that ∆(s1s2)
has the same matrix representation as that of s1⊗s2+s2⊗s1, given by the block
matrix

⎛
⎜⎜⎜
⎝

0 0 0 In ⊗Nn +Nn ⊗ In
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟
⎠
.

We can check that this matrix has rank n2−n as follows: writing the linear map

In ⊗Nn +Nn ⊗ In ∈ Homk(Mu ⊗Mu,Mℓ ⊗Mℓ)

with respect to the tensor basis, we get the n2 × n2 block matrix, with each
entry an n × n matrix, as below

⎛
⎜⎜⎜⎜⎜
⎝

Nn In 0 . . . 0
0 Nn In . . . 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 Nn In
0 0 0 0 Nn

⎞
⎟⎟⎟⎟⎟
⎠

.

Then of the columns numbered 0, . . . , n2 − 1, the ith column is a pivot column
if and only if i is not divisible by n (i.e. it is not the leftmost column of its
respective block). The basis elements B of Mu⊗Mu corresponding to the pivot
columns identified in turn generate a free submodule FB ⊂M⊗M of rank n2−n,
with total dimension 4(n2 − n) over k.

Now, the canonical mono ι ∶ V2n → V2(n+1) is induced from an inclusion
of basis elements, between upper blocks V2n(u) → V2(n+1)(u) and lower blocks
V2n(ℓ) → V2(n+1)(ℓ). Our assertion now follows, that ι⊗ ι ∶ V2n ⊗ V2n → V2(n+1) ⊗
V2(n+1) is the direct sum of monomorphisms between projective components and
between nonprojective components, for each ⊗ = ⊗̃,⊗1,⊗2,⊗3.

Further, the basic module structure of the indecomposables V2n in Theorem
3.3.9 tells us any embedding V2n → V , for V a finite module with X (A,V ) = {p},
and such that V is annihilated by s1s2, is a canonical mono into one indecom-
posable factor of V . Thus the assertion follows that ι′ ∶ V2(n−1) ⊕ V2(n+1) →
2V2(n+1) → 2V2(n+1) ⊕ (2n)P is a direct sum of canonical monos. Hence, a
contradiction, as explained above.
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We will be able to make the same contradiction by observing the same
projective components in the case of p = [a ∶ 1] for a = 0,1 ∈ k, but we omit the
matrices that let us see this directly.

Theorem 3.3.12. (c.f. Theorem 1.1.2) The restricted Lie algebra g satisfies
Property PC.

Proof. From Theorem 3.3.9 and Lemma 3.1.7, our curtailment Lemma 3.1.9
applies. Then with Lemma 3.2.3, we have that g satisfies Property PB.

We know from Lemma 3.3.10, and the calculation of projective components
in Proposition 3.3.3, that we may apply 3.3.4 to calculate that each non-square
product of indecomposables in C(p) agrees with Bašev’s formula 3.3.2 regardless
of Gi chosen from 3.2.1, and regardless of nobility of p for Gi. Finally Theorem
3.3.11 tells us that the remaining products of indecomposables, the squares of
those supported at a noble point, all follow the same formula 3.3.2. Then by
the curtailment Lemma 3.1.9, we have that g satisfies property PA.

3.4 Conjectures for Lie algebras

Consider the Lie algebra sl2, with presentation

⟨e, f, h ∣ [e, f] = h, [h, e] = 2e, [h, f] = 2f⟩.

In characteristic p = 2, any restriction g of sl2 which includes relations

e[2] = f [2] = 0

has in turn that u(g) is a quotient of the tame noncommutative algebra B =
k⟨x, y⟩/(x2, y2). The modules of B are classified by Bondarenko [8], originally
applied to determine how dihedral groups are tame. In turn the work applies
directly to the case of the restriction g1 of sl2 which has h[2] = 0 (this restricted
Lie algebra coincides with the canonical restriction for the Heisenberg algebra).
This is because the dihedral group of order 8 has group algebra isomorphic as
an associative algebra to u(g1). Thus, A = u(g1) has been shown so far to
have two different cocommutative Hopf algebra structures, but it is an open
problem to classify all of the cocommutative Hopf algebra structures on A.
There are at least ten, including those of the Lie algebra and dihedral group,
each specializing under h ↦ 0 to a Hopf algebra on the commutative algebra
k[e, f]/(e2, f2) covered in Sections 3.2 and 3.3. Similar local algebras of order
p3 have Hopf algebra structures classified as a corollary of the work of Nguyen,
L. Wang, and X. Wang [23] for p > 2.

The other restriction g2 on sl2 with u(g2) a quotient of B, is the canonical
restriction derived from the trace-free 2 × 2 matrix representation of sl2, which
has that h[2] = h. We present three conjectures, each encompassed by the next.

Conjecture 3.4.1. The restrictions g1 and g2 of the Lie algebra sl2 satisfy
Property PC.
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Conjecture 3.4.2. Let g be a restricted Lie algebra of tame representation
type over k. Then g satisfies Property PC.

Conjecture 3.4.3. Let g be any restricted Lie algebra over k. Then g satisfies
Property PC if and only if g is of tame or finite representation type.

A fourth conjecture is also likely to hold, but we also suspect a proof would
require classification of Hopf algebras far beyond what is known.

Conjecture 3.4.4. All restricted Lie algebras satisfy Property PB regardless
of representation type.

The first point to address the ‘if’ direction of Conjecture 3.4.3 is to show
whether tame and finite representation type is equivalent to the isotropy hy-
pothesis of Lemma 3.1.9. For converse, in the wild case, we can continue in
Section 4 to give ad-hoc arguments for how the failure of the isotropy hypothe-
sis leads to a failure of Property PA, as per our technique in 3.2.4, which proved
Theorem 1.1.3. Tame restricted Lie algebras of dimension ≤ 3 for odd character-
istic may also be studied making direct use of Nguyen, L. Wang, and X. Wang’s
classification [23], towards Conjecture 3.4.2.

4 Lie algebras of wild representation type

In this section we will move toward one direction of Conjecture 3.4.3, that no
Lie algebra of wild representation type satisfies Property PA.

We begin by adapting our proof of Theorem 3.2.4 into a more general situ-
ation. Recall the setting for disproving Property PA for a given restricted Lie
algebra g: we wish to produce a Hopf algebra structure ∆ on the enveloping
algebra A = u(g), differing from the Lie structure ∆̃, corresponding to a tensor
structure ⊗ on A-modules differing from the Lie structure ⊗̃. Then we pro-
duce A-modules V,W , with the support condition X (A,V ) =X (A,W ) = {p},
where p is noble for the group scheme G corresponding to ∆, but there is non-
isomorphism

V ⊗W /≅ V ⊗̃W.
Our technique proving Theorem 3.2.4 was to leverage the action of Aut(A)

on the space of Hopf algebra structures H , on A-modules, and on the variety
X (A), with the natural isomorphism

(V ⊗W )φ ≅ V φ ⊗φWφ.

Specifically, we found one representation V of G̃ = G2
a(1) satisfying a polynomial

identity ρ2 = nρ, i.e.
V ⊗̃V ≅ nV, (4.0.1)

where n = dimV , in the Green ring for the infinitesimal group scheme G̃, which
corresponds to a Lie Hopf algebra structure ∆̃. But there exists an augmented

automorphism φ ∈ Aut(A) such that the identity ρ2 = nρ is not satisfied by V φ
−1
,
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provided p > 2. Now, if we take ⊗ = ⊗̃φ, having V ⊗ V ≅ V ⊗̃V is equivalent to

V φ
−1⊗̃V φ−1 ≅ nV φ−1 , which is known to be false. All that is left is to confirm the

support condition that X (A,V ) =X (A,V φ−1) = {p} for some point p ∈X (A).
This follows from construction, that V was chosen to meet this support condition
and φ was chosen to be an isotropy in Ω(A,p) < Aut(A) (3.1.8).

We will see that very little needs to be changed for a given abelian restricted
Lie algebra g of wild representation type. The polynomial identity 4.0.1 will
always be satisfied by a given induced module V = k ↑gh, but not by some twist

V φ
−1
, for a choice of Lie subalgebra h ⊂ g with k the trivial h-module. In fact,

in most cases h can be taken to be a subalgebra isomorphic to ⟨t ∣ t[p] = 0⟩. For
p = 2, we will see in Proposition 4.3.2 that some wild abelian algebras require
extra care.

For nonabelian Lie algebras, the polynomial identity 4.0.1 usually fails for
similarly constructed induced modules. But Frobenius reciprocity can still be
used to find other polynomial identities involving induced modules: whenever
h ⊂ g is a Lie subalgebra, denoting ⊗̃ the tensor product for both h and g
representations, we have a natural isomorphism

M ↑gh ⊗̃N ≅ (M ⊗̃(N ↓
g
h)) ↑

g
h, (4.0.2)

whenever M is an h-representation and N is a g-representation. Choosing h to
be a subalgebra with an easily calculated Green ring can then let us derive ad-
hoc polynomial identities (4.1.2, 4.1.3) for induced representations of g, which
fail after twisting by some isotropy φ ∈ Ω(A,p). We offer the Heisenberg Lie
algebra of arbitrary dimension 2n + 1, n ≥ 1, as an example of a nonabelian Lie
algebra, of wild representation type (p > 2), for which this generalized technique
can be applied.

4.1 Induction from the nullcone

Let g be a restricted Lie algebra over a field k of characteristic p. Define Nr(g)
to be the rth restricted nullcone of g, i.e. the subset of g defined by

Nr(g) = {x ∈ g ∣ x[p]
r

= 0},

with N0(g) = 0 and N (g) = ⋃r Nr(g).
Each Nr(g) is a homogeneous subvariety (i.e. a cone) of the affine space

A(g) = SpecS(g∗). A simple argument showed in Proposition 2.2.1 how the pro-
jective variety P(N1(g)) covers the support variety X (u(g)) = ProjH∗(g, k),
using the machinery of π-points. But the earlier work of Friedlander and Par-
shall [15] showed how the support variety X (u(g)) maps homeomorphically
onto P(N1(g)), an inverse to our map using π-points.

We will say the elements in the difference of sets x ∈ Nr(g) ∖Nr−1(g) have
order r. When x ∈N (g) has order r, we denote ⟨x⟩ ⊂ g to be the subalgebra of
dimension r, with basis x,x[p], . . . x[p]

r

. Notice the restricted enveloping algebra
u(⟨x⟩) is of the form

k[x]/xp
r

,
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a Hopf algebra with x primitive. This Hopf algebra agrees with the group
algebra for the infinitesimal group Wr(1) of length r Witt vectors. When r = 1,
we have W1(1) ≅ Ga(1).

For nonzero x ∈ N (g) having any order r ≥ 1, we have that x[p]
r−1

has
order 1. Thus the subalgebra ⟨x⟩ ⊂ g will always produce a π-point over k
for the infinitesimal group scheme G̃ corresponding to g, in the form of the
composition

u(⟨x[p]
r−1
⟩) ↪ u(⟨x⟩) ↪ u(g).

For x ∈ N (g), we will denote p(x) ∈ X (u(g)) the homogeneous prime arising
from this π-point.

4.1.1. (Representations of Witt vectors) Consider the algebra A = k[x]/xpr over
a field k of characteristic p. Assuming x is primitive, i.e. ∆̃(x) = x⊗ 1 + 1⊗ x,
definesA to be a cocommutative Hopf algebra, and in fact a restricted enveloping
algebra for the r-dimensional P (A) = ⟨x⟩ (x being of order r in N (P (A))). The
infinitesimal group scheme corresponding to P (A) is denoted Wr(1), the first
Frobenius kernel for length r Witt vectors.

The representations of Wr(1) are modules over A. The indecomposable rep-
resentations are thus described by Jordan blocks Ji, for 1 ≤ i ≤ pr, each of
dimension i. The block Jpr is the unique indecomposable projective A-module.
The Green ring for Wr(1) is easily calculated, and especially well known when
r = 1. For now we will only use the following calculation, pertaining to the
polynomial identity 4.0.1.

Let G = Wr(1). The blocks Jps for s ≤ r are isomorphic to the induced

modules k ↑GH of trivial modules for the infinitesimal subgroup H corresponding

to the subalgebra ⟨xpr−s⟩. By Frobenius reciprocity 4.0.2, we get the identity

Jps⊗̃Ji ≅ Ji ↓GH↑GH .

In particular, since Jps is annihilated by xp
r−s

, we get that each Jps satisfies the
polynomial identity 4.0.1, i.e.

Jps⊗̃Jps ≅ nJps ,

where n = ps = dimJps . In fact, the only G-modules M (of dimension n) such
thatM ⊗̃M ≅ nM are of the formM ≅ n

ps
Jps for some s. This follows from basic

considerations using Jordan canonical forms.

Definition 4.1.2. For a restricted Lie algebra g and t ∈ N (g) of order r > 0,
denote Vi,g(t) = Ji ↑g

⟨t⟩
for i = 1, . . . , pr. Define the nth Mackey coefficients at t

for g, denoted cni,g(t), such that

Vn,g(t) ↓g
⟨t⟩
≅ ∑ cni,g(t)Ji

as ⟨t⟩-representations. We define the polynomial identity

ρ21 = ∑ c1i,g(t)ρi,
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we call the 1st Clebsch-Gordon-Mackey (CGM) polynomial identity for g-representations.
Hence, by Frobenius reciprocity, the 1st CGM polynomial identity is always sat-
isfied by ρi = Vi,g(t), i.e.

V1,g(t)⊗̃V1,g(t) ≅ ∑ c1i,g(t)Vi,g(t).

Higher CGM polynomials are derivable from the Green ring for Wr(1), but we
don’t make use of these.

Definition 4.1.3. Let g be a restricted Lie algebra. Let

F = F (ρ1, . . . , ρn) ∈ Z[ρ1, . . . , ρn]

be an integer polynomial, with F+, F− the positive and negative components
of F respectively, so that F = F+ + F−. If V1, . . . , Vn are representations of
g and G ∈ Z[ρ1, . . . , ρn] is a polynomial with positive coefficients, we write
G(V1, . . . , Vn) to mean the representation of g built from sums ⊕ and products
⊗̃. If t ∈N (g) is of positive order and there is isomorphism

F+(V1, . . . , Vn) ↓g
⟨t⟩
≅ −F−(V1, . . . , Vn) ↓g

⟨t⟩

as representations of ⟨t⟩, then we say the identity F = 0 (or equivalently F+ =
−F−) is witnessed by t for ρi = Vi. Note that if there exists some t such that
a polynomial identity is not witnessed by t for ρi = Vi, then the polynomial
identity does not hold as representations of g.

The following lemma may be used to extend the negation of Property PA
to a larger restricted Lie algebra in a general, nonabelian setting, provided that
the induced modules Vi,g(t) are not projective.

Lemma 4.1.4. Let g′ be a restricted Lie algebra and B = u(g′) the restricted
enveloping algebra. Assume there exists t ∈ N (g′) with associated prime p′ =
p(t) ∈X (B), and an isotropy ψ ∈ Ω(B,p′) such that the 1st CGM polynomial

identity is not witnessed by t for ρi = Vi,g′(t)ψ
−1
.

Now suppose that g is a restricted Lie algebra with g′ ⊂ g a central Lie subal-
gebra, i.e. [g′,g] = 0. Suppose that there exists an augmented automorphism φ
of the algebra A = u(g) extending ψ, i.e. denoting A = u(g), that the following
diagram commutes

B A

B A.

ψ φ

Then the 1st CGM polynomial identity is not witnessed by t for ρi = Vi,g(t)φ
−1
,

where t ∈N (g) by the inclusion N (g′) ⊂N (g).

Proof. Let Wi = Vi,g′(t) = Ji ↑g
′

⟨t⟩
and Vi = Vi,g(t) =Wi ↑gg′ . Let di = c1i,g′(t) and

ci = c1i,g. Now we have

W1 ↓g
′

⟨t⟩
≅ ∑diJi, V1 ↓g

⟨t⟩
≅ ∑ ciJi.
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Since g′ ⊂ g is central, we have W ↑gg′↓
g
g′≅ nW for all representations W of g′,

and hence also ci = ndi, where n = [g ∶ g′]. This follows from the theorem of
Nichols and Zoeller [25], which states that u(g) is free of rank n as a left module
over the Hopf-subalgebra u(g′), and the PBW theorem.

By assumption, there is non-isomorphism

(Wψ−1
1 ⊗̃Wψ−1

1 ) ↓g
′

⟨t⟩
/≅ ∑diW

ψ−1
i ↓g

′

⟨t⟩
,

and we want to show

(V φ
−1

1 ⊗̃V φ
−1

1 ) ↓g
⟨t⟩
/≅ ∑ ciV

φ−1
i ↓g

⟨t⟩
.

Let C denote the image ψ(u(⟨t⟩)) ⊂ B. Since φ extends ψ, we have also C =
φ(u(⟨t⟩)) ⊂ A. For representations W of g′ and V of g, we have by definition

Wψ−1 ↓g
′

⟨t⟩
= W ↓BC and V φ

−1 ↓g
⟨t⟩
= V ↓AC as representations of Wr(1), where r is

the order of t. Now on one side we have isomorphisms

(V φ
−1

1 ⊗̃V φ
−1

1 ) ↓g
⟨t⟩
≅ V1 ↓AC ⊗̃V1 ↓AC
≅ k ↑g

′

⟨t⟩
↑gg′↓

A
B↓BC ⊗̃k ↑g

′

⟨t⟩
↑gg′↓

A
B↓BC

≅ n2W1 ↓BC ⊗̃W1 ↓BC
≅ n2(Wψ−1

1 ⊗̃Wψ−1
1 ) ↓g

′

⟨t⟩
.

On the other side we have similarly V φ
−1

i ↓g
⟨t⟩
≅ nWψ−1

i ↓g
′

⟨t⟩
for each i, and hence

∑ ciV
φ−1
i ↓g

⟨t⟩
≅ n2 (∑diW

ψ−1
i ↓g

′

⟨t⟩
) .

The desired non-isomorphism follows immediately.

For abelian restricted Lie algebras, or more generally whenever t ∈N (g) is
central, the Mackey coefficients are quite simple. We state the next few results
which are considerably specialized to this situation, and directly adapt the proof
of Theorem 3.2.4.

Lemma 4.1.5. Let g be a restricted Lie algebra and A = u(g) its restricted
enveloping algebra. Suppose there exists a central nilpotent element t ∈ N (g)
with associated prime p = p(t) ∈ X (A), and an isotropy φ ∈ Ω(A,p) (3.1.8),
such that V φ

−1↓g
⟨t⟩

is not isomorphic to the ⟨t⟩-module nJps , for any n, s ≥ 0,

where V = V1,g(t). Then g does not satisfy Property PA.

In particular, X (A,V ) = {p}, and p is noble for both G̃, G̃φ (the infinitesimal
group scheme and its twist), but there is non-isomorphism

V ⊗̃V /≅ V ⊗̃φV.
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Proof. The support condition X (A,V ) = {p} is automatic for V = V1,g(t) with t
a central nilpotent element: For general t, it follows from the PBW theorem that
X (A,V1,g(t)) ⊆ {p(t)}, and for central t we have V1,g(t) ↓g

⟨t⟩
= [g ∶ ⟨t⟩]J1. The

prime p = p(t) is noble for G̃ by construction, and since we assumed φ ∈ Ω(A,p),
we also have, by Lemma 3.1.7, that φ∗(p) = p is noble for G̃φ.

Suppose t ∈ N (g) is of order r, and let h = ⟨t⟩ be the r-dimensional subal-
gebra. Since g is abelian, say of dimension n, we get

V ↓gh= k ↑
g
h↓

g
h= [g ∶ h]k,

where [g ∶ h] = dimV = pn−r. By 4.0.2, we have the polynomial identity 4.0.1 is
satisfied by V :

V ⊗̃V ≅ [g ∶ h]V.

But we assumed that V φ
−1↓gh is not isomorphic to any nJps . Supposing that

V φ
−1

satisfies the same polynomial identity 4.0.1, by restricting we get

[g ∶ h]V φ
−1
↓gh ≅ (V

φ−1⊗̃V φ
−1
) ↓gh

≅ (V φ
−1
↓gh)⊗̃(V

φ−1↓gh).

This contradicts the calculation we gave at the end of 4.1.1. Now we know

V φ
−1⊗̃V φ−1 /≅ [g ∶ h]V φ−1 and therefore, twisting both sides, we have

V ⊗̃φV /≅ [g ∶ h]V ≅ V ⊗̃V.

Corollary 4.1.6. Let g′ be an abelian restricted Lie algebra, and let B = u(g′)
denote the restricted enveloping algebra. Assume there exists t ∈ N (g′) with
associated prime p′ = p(t) ∈ X (B), and an isotropy ψ ∈ Ω(B,p′) such that

Wψ−1↓g
′

⟨t⟩
is not isomorphic to the ⟨t⟩-module nJps for any n, s ≥ 0, where W =

V1,g′(t).
Now suppose that g is a restricted Lie algebra with g′ ⊂ g a central Lie

subalgebra. Suppose that there exists an augmented automorphism φ of the
algebra u(g) extending ψ.

Let p = p(t) ∈X (A) be the prime associated to t ∈N (g′) ⊂N (g). Then we

have that φ ∈ Ω(A,p) is an isotropy such that V φ
−1↓g
⟨t⟩

is not isomorphic to any

nJps , for any n, s ≥ 0, where V = V1,g(t). Further, we have that X (A,V ) = {p},
that p is noble for both the infinitesimal group scheme G̃ associated to g and
for its twist G̃φ, and that

V ⊗̃V /≅ V ⊗̃φV,
so we may conclude that g does satisfy Property PA.

Proof. Let C denote the subalgebra ψ(u(⟨t⟩) ⊂ B. That ψ ∈ Ω(B,p′) is equiv-
alent to the claim, for any B-module M , that M ↓BC is projective if and only if
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M ↓B
⟨t⟩ is projective. A similar equivalence will work to show φ ∈ Ω(A,p). Since

φ extends ψ, we have C = φ(u(⟨t⟩)) also as a subalgebra of A.
Let M be any A-module, and let N = M ↓AB be its restriction. Assuming

ψ ∈ Ω(B,p′), we have immediately that M ↓AC= N ↓BC is projective if and only if
M ↓Au(⟨t⟩)= N ↓Bu(⟨t⟩) is projective. Thus φ ∈ Ω(A,p).

Now we have V = k ↑g
⟨t⟩
= W ↑gg′ , and we have assumed that Wψ−1↓g

′

⟨t⟩
is

not isomorphic to any nJps . By definition V φ
−1

is the base change of V along

A
φ−1ÐÐ→ A. Since V =W ↑gg′= A ⊗B W , we then have V φ

−1
is the base change of

W along the composition B ↪ A
φ−1ÐÐ→ A. Since φ extends ψ, we also have φ−1

extends ψ−1. Hence we have isomorphism V φ
−1 ≅Wψ−1 ↑gg′ .

By Lemma 4.1.4 we have V φ
−1 ↓g

⟨t⟩
is not isomorphic to any mJps , as we

know this restriction result is equivalent to the CGM polynomial identity being
witnessed by t, by Lemma 4.1.5.

What remains is to show that X (A,V ) = {p}. For this, assuming again
that g′ is central in g, the Nichols-Zoeller basis shows that, supposing t is of
rank r, V ↓

⟨t[p]r−1 ⟩ is not projective. Therefore p = p(t) belongs to X (A,V ).
A simple argument using the PBW basis (reviewed in 4.4.1) shows, for any
restricted Lie algebra g, that if V = k ↑g

⟨t⟩
for some nonzero t ∈ N (g), then

X (u(g), V ) ⊆ {p(t)}, so we are done.

Corollary 4.1.7. Let g′ be a restricted Lie algebra meeting the same hypotheses
as Lemma 4.1.5, and g′′ any restricted Lie algebra. Then g = g′ ⊕ g′′ also meets
the hypotheses of Lemma 4.1.5 and therefore g does not satisfy Property PA.

Proof. We have isomorphism of algebras u(g) ≅ u(g′) ⊗ u(g′′). Therefore an
isotropy ψ ∈ Ω(g′,p′) extends to an automorphism φ ∶ u(g) → u(g), defined by
φ = ψ ⊗ u(g′′). Since g′ is a central subalgebra of g, we apply Corollary 4.1.6,
and get that fg meets the hypothesis of Lemma 4.1.5.

4.2 Representation type of abelian restricted Lie algebras

We begin by recalling the structure theorem for abelian restricted Lie algebras
over an algebraically closed field k. We denote nn the p-nilpotent cyclic Lie
algebra of dimension n, i.e.

nn = ⟨x1, . . . , xn ∣ x[p]i = xi+1, where xn+1 = 0⟩.

Denote t = ⟨x ∣ x[p] = x⟩ the 1-dimensional torus.

Theorem 4.2.1. (Seligman, 1967 [26]) Let g be an ablian restricted Lie algebra
of finite dimension over k. Then g has a direct sum decomposition as

g ≅ tr ⊕∑
i≥1

nsii

for some r ≥ 0 and finitely many nonzero si ≥ 0.
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For any restricted Lie algebra g, the algebra t⊕g has the same representation
type as g. This is because u(t) is isomorphic to a direct product of p many
copies of k, so u(t⊕g) ≅ u(t)⊗u(g) is a direct product of p many copies of u(g).
Therefore, in classifying abelian Lie algebras g according to representation type,
we may reduce to the nullcone N (g), which for g abelian is a Lie subalgebra.
By Seligman’s structure theorem, N (g) is a direct sum of copies of nn, n ≥ 1.

Theorem 4.2.2. Let g be an abelian restricted Lie algebra of finite dimension
over k, and let n be the dimension of N (g).

I. If N (g) is cyclic (i.e. isomorphic to nn), then g is of finite representation
type.

II. If N (g) is not cyclic and pn = 4 (i.e. p = n = 2), then g is of tame
representation type.

III. In any other case pn > 4 and we have g is of wild representation type.

Proof. Since N (g) is a Lie subalgebra with enveloping algebra isomorphic as
an associative algebra to the group algebra of some finite abelian p-group over
k, we may appeal directly to modular representation theory of finite groups. It
has long been known (see Bondarenko and Drozd [9]) that a group is of wild
representation type over k if and only if its Sylow p-subgroup is not cyclic, with
abelianization of order > 4, with the only tame p-groups appearing in character-
istic p = 2. In particular the only abelian p-group of tame representation type
is the Klein 4-group, and any noncyclic abelian p-group of order > 4 is of wild
representation type.

Corollary 4.2.3. Let g be an abelian restricted Lie algebra of wild represen-
tation type with no nontrivial wild direct summands (for any decomposition
g ≅ g′ ⊕ g′′, if g′ is of wild representation type then g′′ = 0).

I. If p = 2, then g = n1 ⊕ n1 ⊕ n1, or g = nn ⊕ nm for n +m ≥ 3, and n,m ≥ 1.

II. If p > 2, then g = nn ⊕ nm for n,m ≥ 1.

4.3 No wild abelian Lie algebra satisfies Property PC

We have proven in Theorem 3.2.4 that no abelian algebra g of dimension 2 with
trivial restriction g[p] = 0 may satisfy Property PA for p > 2. We will show how
to extend this result to all wild abelian Lie algebras.

Proposition 4.3.1. Let g be an abelian restricted Lie algebra of wild repre-
sentation type, with no nontrivial wild direct summands as in Corollary 4.2.3.
If g /≅ nn ⊕ nn or if p ≠ 2, then g meets the hypotheses of Lemma 4.1.5 for a
nilpotent t ∈ N (g) of order 1: there exists t ∈ N1(g) with u(⟨t⟩) ↪ u(g) rep-
resenting p ∈ X (A), and an isotropy φ ∈ Ω(u(g),p) such that V φ

−1 ↓g
⟨t⟩

is not

trivial (isomorphic to some nJ1) and not projective (isomorphic to some nJp).
Therefore g does not satisfy Property PA.

39



Proof. By Corollary 4.2.3 we have three cases to consider. But by Lemma 3.2.4,
we have already covered the case where p > 2 and n = m = 1 for nn ⊕ nm. For
the remaining cases we may assume that n +m ≥ 3 in any characteristic.

Let p = 2 and assume g = ⟨x, y, z ∣ x[2] = y[2] = z[2] = 0⟩, so A = u(g) =
k[x, y, z]/(x2, y2, z2). Define h to be the subalgebra ⟨x⟩ and define φ ∈ Aut(A)
by

φ(x) = x + yz, φ(y) = y, φ(z) = z.

Then φ ∈ Ω(A,p) where p is represented by u(h) ↪ A, and V φ
−1

is not annihi-

lated by x. Therefore the restriction V φ
−1 ↓gh is neither trivial nor projective.

Now assume g = nn⊕nm, for n ≥ 1 and m ≥max{n,2}. Denote xn+1 = ym+1 =
0 and take bases for cyclic summands

nn = ⟨x1, . . . , xn ∣ x[p]i = xi+1⟩, nm = ⟨y1, . . . , ym ∣ y[p]i = yi+1⟩,

so A = u(g) = k[x, y]/(xpn , ypm) for x = x1, y = y1.We take h to be the subalgebra

⟨xn = xp
n−1⟩. Now define φ ∈ Aut(A) by

φ(x) = x + y2, φ(y) = y.

Then φ ∈ Ω(A,p), where p is represented by u(h) ↪ A. We have φ(xn) =
(x + y2)pn−1 = xn + y2p

n−1
. But 2pn−1 < pm provided either m > n or p > 2 so

V φ
−1

is not annihilated by xn. Hence V φ
−1↓gh is neither trivial nor projective.

The remaining case of p = 2 and m = n ≥ 2 has been excluded from the above
Proposition, as one finds it is necessary to use a t ∈N (g) of order n, not simply
order 1. Indeed, have A = u(g) = k[x, y]/(x2n , y2n), and any 1-dimensional

restricted Lie subalgebra h ⊂ g is generated by t = ax2n−1 + by2n−1 for a, b not
both 0. We may assume a = 1, b = 0. Any φ ∈ A fixing the corresponding point
p = [1 ∶ 0] ∈ P1, must have φ(x) = x + ξ for a higher order term ξ, in which case

φ fixes x2
n−1 ∈ A. This case is dealt with in the next proposition.

Proposition 4.3.2. Let k be an algebraically closed field of characteristic p = 2,
and let g = nn⊕nn for n ≥ 2, with A = u(g) = k[x, y]/(x2n , y2n). Then x ∈Nn(g),
so take h = ⟨x⟩ be the cyclic Lie subalgebra of g of dimension n. The associated

prime p = p(x) ∈X (A), written in coordinates dual to the basis x2
n−1
, y2

n−1
for

N1(g), is the point p = [1 ∶ 0] ∈X (A) = P1. Let V = k ↑gh be the induced module

of the trivial h module. Then there exists an isotropy φ ∈ Ω(A,p) such that

V φ
−1

is not isomorphic to any nJ2s . Therefore g does not satisfy Property PA.

Proof. Define an automorphism φ ∈ Aut(A) by

φ(x) = x + y2
n−1
−1, φ(y) = y.

Then φ ∈ Ω(A,p). Now we examine the representation V φ
−1 ↓gh, which has its

decomposition into Jordan blocks determined by the action of x ∈ A on V φ
−1
.
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The action of x on V φ
−1

is a matrix agreeing with the action of y2
n−1
−1 on V, the

induced module. The module V = u(g)⊗u(h)⊗k has a k-linear basis of elements

yi⊗1, for 0 ≤ i ≤ 2n−1. The Jordan decomposition of y2
n−1
−1 consists of two blocks

isomorphic to J2, with k-linear bases {y2
n−1 ⊗ 1, y ⊗ 1} and {y2n−1−1 ⊗ 1,1⊗ 1}.

The other blocks are all isomorphic to J1. In particular not all the blocks are of
the same size so we are done.

4.4 A family of nonabelian wild Lie algebras

Assume for this section that p > 2. Let gn be the Heisenberg Lie algebra of
dimension 2n + 1, having presentation

gn = ⟨xi, yi, z; 1 ≤ i ≤ n ∣ [xi, yj] = δijz, [z, xi] = [z, yi] = 0, x[p]i = y
[p]
i = z

[p] = 0⟩.

We have canonical embeddings gn ⊂ gn+1 of Lie algebras by keeping the
indexing of xi, yi the same. Assuming p > 2, we have that each gn is of wild
representation type. In this section we will first show that g1 does not satisfy
Property PA by an argument of polynomial identities à la Lemma 4.1.5, and
then that this can be extended to any gn via Lemma 4.1.4 (note each subalgebra
gn ⊂ gn+1 is central).

Since [[gn,gn],gn] = 0 and a basis for gn is annihilated by the [p] restriction
mapping, it follows that g

[p]
n = 0. Thus N1(gn) = gn, and we may identify X (gn)

with P(gn), i.e. the variety P2n of 1-dimensional subspaces of gn.

4.4.1. For abelian restricted Lie algebras g and their corresponding infinitesimal
group schemes G̃, the equivalence relation on general π-points is straightforward.
On one hand the structure of cohomology is easier to deal with, using well-
known constructions for minimal resolutions. On the other hand even our note
2.3.2 is easier to apply in the case of abelian Lie algebras: the induced module
V = k ↑g

⟨t⟩
from a subgroup ⟨t⟩ ∈ P(N1(g)) is easily shown to be supported only

at the corresponding point p(t) ∈X (G̃), by restricting along each subalgebra in
P1(N1(g)). The equivalence class of π-points corresponding to p(t) is therefore
{α ∣ α∗(V ) is not projective}.

The latter approach is adaptable to the following: let g be any finite di-
mensional restricted Lie algebra and A = u(g). Let p = p(t) for some nonzero
t ∈ N (g), and let V = k ↑g

⟨t⟩
be the induced module. Say t is of order r and so

⟨t⟩ is r-dimensional. Identifying X (A) = P(N1(g)) by Friedlander and Parshall
[15], we want to show that X (A,V ) ⊂ {p}. Without loss of generality assume
{p} ⊊ X (A), and let q = p(s) ∈ X (A) be distinct from p, for some nonzero

s ∈N1(g). In particular s, t, t[p], . . . t[p]
r−1

is a linearly independent set. Extend
this to an ordered basis

s1 < ⋅ ⋅ ⋅ < sn
for g, by assuming s = s1 and sn−i = t[p]

i

for 0 ≤ i ≤ r − 1. By the PBW theorem,
u(g) has a k-basis of ordered monomials in the coordinates sj , 1 ≤ j ≤ n.
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Therefore, for the trivial ⟨t⟩-module k, the induced module

V = k ↑g
⟨t⟩
= u(g) ⊗u(⟨t⟩) k

has a k-basis of simple tensors sα⊗1, for ordered monomials sα in the coordinates
sj for 1 ≤ j ≤ n − r. Hence V ↓⟨s⟩ is free over u(⟨s⟩) = k[s]/sp, since

s ⋅ sℓ1sβ ⊗ 1 = sℓ+11 sβ ⊗ 1

for any ordered monomial sβ in the coordinates sj for 2 ≤ j ≤ n−r. We conclude
q /∈X (A,V ).

If V is known to be not projective over u(g), then we know in fact that
X (A,V ) = {p}, as the support must be nonempty. Recall the algebra g is
called unipotent if u(g) is a local ring (having a unique maximal left ideal).
Whenever g is unipotent, the induced module V can not be projective because
V has dimension pn−r, which is strictly smaller than the rank 1 free module, the
smallest projective. If g = g′ ⊕ u for some unipotent u, and t ∈ N (u), then the
induced module V also can not be projective. Thus if g is any abelian restricted
Lie algebra, we have another proof that X (A,V ) = {p} using Seligman’s struc-
ture theorem, since any sum of p-nilpotent cyclic Lie algebras is unipotent. But
we have in fact done enough work to compute when two π-points are equivalent
in some important nonabelian cases as well, without resorting to resolutions!

4.4.2. (Induced modules for g1) Here we will give matrices describing the in-
duced modules Vr = V1,g(x) for g = g1, where x = x1 ∈ g and Jr denotes
the unique indecomposable ⟨x⟩-representation of dimension r. We also denote
y = y1,A = u(g), and D = u(⟨x⟩) ≅ k[x]/xp. Now we have Jr ≅ D/Dxr, where
Dxr is the left-ideal, and hence Vr ≅ A/Axr. We choose y < z < x as an ordered
basis for g, so ordered monomials yizjxℓ, 0 ≤ i, j, ℓ ≤ p − 1, are a basis for A.
The action of x on A is given by

x ⋅ yizjxℓ = yizjxℓ+1 + iyi−1zj+1xℓ.

Now we’ll give matrices for the action of x on Vr, to find the D-module
structure of each Vr ↓AD . We put a lexicographical order on the basis of repre-
senting monomials yizjxℓ, 0 ≤ i, j ≤ p− 1, 0 ≤ ℓ ≤ r − 1, for Vr ≅ A/Axr by the
following relations:

yizjxℓ < yizj
′
xℓ ⇐⇒ j > j′ ∀i, ℓ,

yizjxℓ < yi
′
zj
′
xℓ ⇐⇒ i < i′ ∀j, j′, ℓ

yizjxℓ < yi
′
zj
′
xℓ
′
⇐⇒ ℓ > ℓ′ ∀i, i′, j, j′.

Recall our notation Np for the p × p upper triangular nilpotent Jordan block of
rank p − 1. Now we define the block matrix M, with p × p blocks, each of size
p × p
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M =

0 Np 0 ⋯ 0

0 0 2Np ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 (p − 1)Np

0 0 0 0 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

i

Then with respect to our ordered basis of monomials, the matrix representing
the action of x on Vr is given by the upper triangular block matrix Lr, with
r × r blocks, each of size p2 × p2

Lr =

M Ip2 0 ⋯ 0

0 M Ip2 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 M Ip2

0 0 0 0 M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

ℓ

where Ip2 is the identity matrix. Column positions of Lr correspond to a set of
monomials yizjxℓ for fixed ℓ, increasing to the left. Within ℓth column, each
column (of e.g. M or Ip2) is a fixed i, increasing to the right.

In Proposition 4.4.3, we will also need the matrix Or representing the action
of (yz)p−1 ∈ A on Vr. First define E to be the p × p matrix

E =

0 ⋯ 0 1

⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0

0 ⋯ 0 0

⎛
⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟
⎠

j

,

and define the block matrix F, with p × p blocks, each of size p × p, by

F =

0 0 ⋯ 0

0 0 ⋯ 0

⋮ ⋮ ⋱ ⋮
E 0 ⋯ 0

⎛
⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟
⎠

i

.

Now we have Or is a block matrix, with r × r blocks, each of size p2 × p2, given
by
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Or =

F 0 ⋯ 0

0 F ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ F

⎛
⎜⎜⎜⎜⎜⎜
⎝

⎞
⎟⎟⎟⎟⎟⎟
⎠

ℓ

.

Proposition 4.4.3. Let g = g1 be the Heisenberg Lie algebra of dimension 3.
Let A = u(g). There exists t ∈N (g) (of order 1), such that, for p = p(t) ∈X (A),
there exists an isotropy φ ∈ Ω(A,p), for which V ⊗̃V /≅ V ⊗̃φV , where V = V1,g(t).
Further, g is unipotent and therefore X (A,V ) = {p}. So g does not satisfy
Property PA.

Proof. Denote x = x1, y = y1 and so we have

A = k⟨x, y, z⟩
([x, y] − z, [z, x], [z, y], xp, yp, zp) .

Define an automorphism φ ∈ Aut(A) by

φ(x) = x + (yz)p−1; φ(y) = y.

Note that φ(z) = z, and the inverse is given by

φ−1(x) = x − (yz)p−1; φ−1(y) = y.

We will take t = x ∈N1(g), and argue that φ ∈ Ω(A,p), for p = p(x) by following
the arguments 2.3.2 and 4.4.1. So let V = k ↑g

⟨x⟩
be the induced module. Then

X (A,V ) = {p} (since g is unipotent) and so φ ∈ Ω(A,p) if and only if the
restriction V ↓AB , to the image subalgebra B = φ(u(⟨x⟩)), is not a projective
module.

By the PBW theorem using the ordered basis y < z < x for g, we get the
following basis for V = A⊗u(⟨x⟩) k

{yizj ⊗ 1 ∣ 1 ≤ i, j,≤ p − 1}.

The subspace ⟨1 ⊗ 1, (yz)p−1 ⊗ 1⟩ is a Jordan block of size 2 for the element
(yz)p−1 ∈ A acting on V . One checks that x ∈ A annihilates both 1 ⊗ 1 and
(yz)p−1 ⊗ 1, and neither are in the image of x. It follows that V ↓AB has J2 as a
direct summand, as the action of φ(x) = x + (yz)p−1 contains a Jordan block of
size 2. We conclude V ↓AB is not projective and hence φ ∈ Ω(A,p).

Now, we want to argue that V ⊗̃φV /≅ V ⊗̃V. Frobenius reciprocity (4.0.2)
gives us

V ⊗̃V ≅ V ↓g
⟨x⟩
↑g
⟨x⟩

.

Recall our notation Ji to mean the unique indecomposable ⟨x⟩-module of di-
mension i for 1 ≤ i ≤ p. We can compute directly with the basis {yizi⊗ 1} for V
that we have a Mackey decomposition

V ↓g
⟨x⟩
≅ 2J1 ⊕ 2J2 ⊕ ⋅ ⋅ ⋅ ⊕ 2Jp−1 ⊕ Jp, (4.4.4)
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and therefore a polynomial identity

V1⊗̃V1 ≅ 2V1 ⊕ 2V2 ⊕ ⋅ ⋅ ⋅ ⊕ 2Vp−1 ⊕ Vp,

the 1st CGM polynomial identity for g at x, where Vi = Vi,g(x) (note V = V1
and Vp is the free A-module of rank 1). All we must do now is verify that the
same polynomial idenity fails after twisting by φ−1, i.e. that

V φ
−1

1 ⊗̃V φ
−1

1 /≅ 2V φ
−1

1 ⊕ 2V φ
−1

2 ⊕ ⋅ ⋅ ⋅ ⊕ 2V φ
−1

p−1 ⊕ V φ
−1

p . (4.4.5)

This will follow from seeing that the number of J1 blocks in (V φ
−1

1 ⊗̃V φ
−1

1 ) ↓g
⟨x⟩

differs from that of the restriction of the right hand side. By restriction property
for ⊗̃, we have

(V φ
−1

1 ⊗̃V φ
−1

1 ) ↓g
⟨x⟩
≅ V φ

−1
1 ↓g

⟨x⟩
⊗̃V φ

−1
1 ↓g

⟨x⟩

= V1 ↓AB ⊗̃V1 ↓AB .

Here we use ⊗̃ to also denote the tensor product of ⟨x⟩-representations. We have

also abused notation to assert that V φ
−1

1 ↓g
⟨x⟩
= V1 ↓AB , identifying B modules as

⟨x⟩-representations using the fixed isomorphism φ ∶ u(⟨x⟩) → B.
Let L1 = V1 ↓AB . We compute the number of J1 summands in L1⊗̃L1 directly

as follows: The matrix representing the action of x on L1 is given by L1 +O1,
as defined in 4.4.2. The Jordan canonical form of L1 +O1 will then tell us the
number of summands Jr for each 1 ≤ r ≤ p, within L1, say

L1 ≅
p

∑
r=1

crJr.

Then the number of J1-blocks in L1⊗̃L1 is ∑p−1r=1 c
2
r, a standard computation for

⟨x⟩-representations.
Note now, in 4.4.2, for r = 1, we have L1 =M and O1 = F, so we have

L1 +O1 =M + F =

⎛
⎜⎜⎜⎜⎜
⎝

0 Np 0 ⋯ 0
0 0 2Np ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 (p − 1)Np

E 0 0 0 0

⎞
⎟⎟⎟⎟⎟
⎠

.

Notice (M+F)n =Mn for each power n ≥ 2. The rank ρn of (M+F)n is therefore

ρ1 = (p − 1)2 + 1; ρn = (p − n)2, n ≥ 2.

We conclude L1 ≅ 3J2 ⊕ 2J3 ⊕ ⋅ ⋅ ⋅ ⊕ 2Jp−1 ⊕ Jp, and so L1⊗̃L1 has 9 + 4(p − 3)
many J1 summands.

On the other side of the polynomial identity, we want to find the number of
J1 summands in each Lr = Vr ↓AB , for the remaining values r > 1. The action of
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x on Lr is given by the matrix Lr +Or. So the number of J1 summands is the
nullity of Lr +Or, minus the number of its Jordan blocks of size > 1.

We find Lr +Or is given by the r×r block matrix, with blocks of size p2 ×p2

Lr +Or =

⎛
⎜⎜⎜⎜⎜
⎝

M + F Ip2 0 ⋯ 0
0 M + F Ip2 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 M + F Ip2
0 0 0 0 M + F

⎞
⎟⎟⎟⎟⎟
⎠

.

Noting again (M + F)2 =M2, we have (Lr +Or)2 is the block matrix

(Lr +Or)2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

M2 M + F Ip2 0 ⋯ 0
0 M2 M + F Ip2 ⋯ 0
0 0 M2 M + F ⋱ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋯
0 0 0 M2 M + F Ip2
0 0 0 0 M2 M + F
0 0 0 0 0 M2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

For the rank of Lr+Or: We may construct a similar matrix, which is a diagonal
p×p matrix, with blocks of size rp×rp, by using a partition of the blocks of size
p × p. Each pr × pr diagonal entry we will call a string. Each string has 2r − 1
nonzero block entries of size p×p. There are r strings containing E, in the form

⎛
⎜⎜⎜
⎝

E Ip
(p − 1)Np Ip

(p − 2)Np Ip
⋱ (p − (r − 1))N

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

N Ip
E Ip
(p − 1)Np Ip
⋱ (p − (r − 2))Np

⎞
⎟⎟⎟
⎠
,

⎛
⎜⎜⎜
⎝

2Np Ip
Np Ip

E Ip
⋱ (p − (r − 3))Np

⎞
⎟⎟⎟
⎠
, . . . ,

⎛
⎜⎜⎜
⎝

(r − 1)Np Ip
⋱ Ip

Np Ip
E

⎞
⎟⎟⎟
⎠
.

The remaining p − r strings, not containing E, are of the form

⎛
⎜⎜⎜
⎝

iNp Ip
(i − 1)Np Ip

(i − 2)Np Ip
⋱ (i − r + 1)Np

⎞
⎟⎟⎟
⎠

for i = r, . . . , p − 1. The rank of Lr +Or is the sum of the ranks of the p strings,
each a matrix of size pr × pr. Each of the strings not containing E has rank
r(p−1). Each string containing E has rank (r−1)p. Thus the rank of Lr +Or is
(p− r)r(p− 1) + r(r − 1)p = rp2 − 2rp+ r2, and the nullity of Lr +Or is 2rp− r2.

For r = 2 the rank of (L2 +O2)2 is 2(p − 3)(p − 2) + 2(p − 1) + 1.
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For r ≥ 3, we find the rank of (Lr +Or)2 again using strings, which are still
r × r block matrices, with blocks of size p × p. We abbreviate c(n) = n(n − 1).
There are (r − 1) strings containing E, each of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 E Ip
0 (p − 1)Np Ip

c(p − 1)N2
p (p − 2)Np ⋱

c(p − 2)N2
p ⋱

⋱ c(p − (r − 1))N2
p (p − (r − 2))Np

c(p − (r − 2))N2
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2N2
p Np Ip

0 E Ip
0 (p − 1)Np ⋱

c(p − 1)N2
p ⋱

⋱ c(p − (r − 2))N2
p (p − (r − 3))Np

c(p − (r − 3))N2
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

. . . ,

⎛
⎜⎜⎜⎜⎜
⎝

c(r − 1)N2
p (r − 2)Np Ip ⋱

c(r − 2)N2 (r − 3)Np ⋱
⋱ 2N2

p Np I0
0 E

0

⎞
⎟⎟⎟⎟⎟
⎠

.

Each of these matrices has a rank of (r − 2)p.
The remaining p − (r − 1) strings don’t contain E. Provided r ≤ p − 1, there

are p− (r + 1) such strings which have no zero blocks along the diagonal. These
strings have a rank of r(p− 2). There are 2 strings having a zero block either in
the top left or bottom right entry. Still assuming r ≥ 3, these types have a rank
of (r − 1)(p − 1) − 1 when r is divisible by 3, and (r − 1)(p − 1) when r is not
divisible by 3.

If p = r, the module Lr is projective so we already know the Jordan decom-
position. The rank of (Lp +Op)2 is hence p2(p − 2).

We have now the rank of (Lr +Or)2, for r ≤ p is given by

ρ(r, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2p2 − 8p + 11 r = 2,
rp2 − 2pr + r2 − 4r 3 ≤ r < p, 3 ∣ r,
rp2 − 2pr + r2 − 4r + 2 3 ≤ r < p, 3 /∣ r,
p2(p − 2) r = p.

The nullity (i.e. the total number of Jordan blocks) of (Lr +Or) was calculated
as 2rp−r2 for any r, and (rp2−2rp+r2)−ρ(r, p) is giving the number of Jordan
blocks of size > 1. Hence Lr contains τ(r, p) many J1 summands, where

τ(r, p) = 4pr − 2r2 − rp2 + ρ(r, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3 r = 2
(2p − 4)r − r2 3 ≤ r < p, 3 ∣ r,
(2p − 4)r − r2 + 2 3 ≤ r < p, 3 /∣ r,
0 r = p = 3.
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The number of J1 summands in the right hand side of the 1st CGM polynomial
for ρi = Li 4.4.4

2L1 ⊕ 2L2 ⊕⋯⊕ 2Lp−1 ⊕Lp
is therefore the sum

2
p−1

∑
r=2

τ(r, p) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

6 p = 3
36m3 − 3m2 − 35m + 20 p = 3m + 1
36m3 + 27m2 − 29m + 10 p = 3m + 2.

and is never equal to 9 + 4(p − 3).
We conclude the non-isomorphism 4.4.5, as the 1st CGM polynomial identity

is not witnessed by x for ρi = V φ
−1

i . Therefore

V ⊗̃V /≅ V ⊗̃φV,

and so g does not satisfy Property PA.

Corollary 4.4.6. For any n ≥ 1, the Heisenberg Lie algebra gn of dimension
2n + 1 does not satisfy Property PA.

Proof. We have calculated the 1st Mackey coefficients at x = x1 ∈ g1 as

c1i,g1
(x) =

⎧⎪⎪⎨⎪⎪⎩

2 1 ≤ i < p
1 i = p.

For each n, define an augmented automorphism φn of An = u(gn) by

φn ∶ x1 ↦ x1 + (y1z1)p−1,
xi ↦ xi 2 ≤ i ≤ n,
yi ↦ yi 1 ≤ i ≤ n,

hence φ(z) = z. Each gn contains g1 as a central subalgebra, and φn extends
φ1. We see φn ∈ Ω(An,p(x1)) for each n: since each gn is unipotent, we know

X (An, V1,g(x1)) = {p(x1)}, and we already showed that V1,g1(x1)φ
−1
1 ↓g1

⟨x1⟩
is

not projective, hence φ∗1(p(x1)) = p(x1). For general n we have V1,gn(x1) =
V1,g1(x1) ↑gn

g1
, so copying our base-change argument from Corollary 4.1.6 we

have V1,gn(x1)φ
−1
n ≅ V1,g1(x1)φ

−1
1 ↑gn

g1
. Hence

V1,gn(x1)φ
−1
n ↓gn

⟨x1⟩
≅ V1,gn(x1)φ

−1
n ↓gn

g1
↓g1

⟨x1⟩

≅ V1,g1(x1)φ
−1
1 ↑gn

g1
↓gn
g1
↓g1

⟨x1⟩

≅ [gn ∶ g1]V1,g1(x1)φ
−1
1 ↓g1

⟨x1⟩
,

so φ∗n(p(x1)) = p(x1).
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By Proposition 4.4.3, we have that the 1st CGM polynomial identity is not

witnessed by x1 for ρi = Vi,g1(x1)φ
−1
1 . By Lemma 4.1.4, we then have that the

1st CGM polynomial identity is not witnessed by x1 for ρi = Vi,gn(x1)φ
−1
n .

Therefore, V = V1,gn(x1) is a representation of gn, with X (An, V ) = {p(x1)},
such that

V ⊗̃V /≅ V ⊗̃φnV.

Since p(x1) is noble for G̃n and G̃φn
n (the infinitesimal group scheme for gn and

its twist), we have that gn does not satisfy Property PA.
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