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Dear ,
You are absolutely correct that there is a problem in defining the continuous,

or fractional derivative. You have correctly identified this as a problem of non-
uniqueness of interpolating a function over a discrete parameter into one over a
continuous parameter. However, when it comes to derivatives of the exponential,
perhaps you should consider the following. I will attempt to apply your mode
of reasoning to a much simpler setting, to point out its shortcoming, and then
offer what I understand about fractional calculus. I have broken my argument
into three sections and only begin to talk about derivatives in my third section.

1 On interpolating an operator

When defining even something simple like the laws of arithmetic for real num-
bers, we are always trying to extend definitions for integers to the real numbers
in a way that preserves as many of the essential properties as we can. For ex-
ample, if we try to define xn as repeated multiplication of x by itself n-times,
this does not immediately tell you how to interpret the operation x1/2 or even
x0 = 1 (x ̸= 0). The reason we decide, for x ≥ 0, that x1/2 =

√
x is due to the

essential properties that

xn+m = xnxm, xnm = (xn)m = (xm)n, (1)

whenever n,m are positive integers. These properties follow from the definition
of powers as repeated multiplication, but are meaningless if n,m are not positive
integers, as there is no formal meaning to multiplying x by itself even 0 times, let
alone 1/2 times. Most math students in, say, highschool or above are probably
satisfied with the intuition that an empty product should be 1, but we are trying
to be formal in how we define things. So really, the only reason we decide x0 = 1
(for x ̸= 0) is so that we can maintain the properties that we’ve decided are
essential, namely

xn = x0+n = x0xn,

and similarly
x = x1 = x2∗1/2 = (x1/2)2.

Even still, this argument breaks apart when trying to define an irrational
power of x such as xπ. No repeated application of the essential properties listed
so far will uniquely determine the value of, for instance 2π. Yet any scientific
calculator will output something like

2π ≈ 8.824977827.
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Instead we may observe that π can be approximated by a sequence of ratio-
nal numbers 3, 3.1, 3.14, 3.141, 3.1415, ... and defining the fractional powers e.g.
x31415/1000 as the 1000th root of x31415, gives a sequence

x3, x31/10, x314/100, ...

which approaches a limit for any positive x, and importantly that this limit
is actually independent of which approximation of π by a sequence of rational
numbers is chosen.

Perhaps it is that we have assumed another property to be essential, for
(nonnegative) rational numbers a, b, that if a < b and x > 1, now that we’ve
defined xa and xb, we can conclude that

xa < xb.

Thus, knowing that 3.1415 < π < 3.1416 means that we should assume for
x > 1 that

8.82441108248 ≈ x31415/10000 < xπ < x31416/10000 ≈ 8.82502276524.

So a sequence of progressively finer upper and lower bounds for the value of π
squeezes the value of xπ into a progressively narrower window.

Ideally, all of the essential properties of taking powers work nicely enough
with one another in order to completely determine how to extend the idea
beyond integer powers. But it’s difficult to know this without really knowing
what makes a property essential.

2 On essential properties

For better or for worse there is no authority in mathematics to tell us what
makes a property essential. In the spirit of your interpolations of derivatives
towards a continuous domain, consider the property, whenever n,m are positive
integers, of taking powers.

xn+m = xnxm + sin(nmπ). (2)

Indeed, we are looking at the same property as before, only I have added a
function f(n,m) = sin(nmπ), which obvioulsy has a continuous domain, and
yet happens to have a value of 0 whenever n,m are both integers.

Now, taking n = m = 1
2 we should get

x = x1 = x1/2+1/2 = x1/2x1/2 + sin(π/4).

So we may try to solve y = x1/2 by noticing

x = y2 +

√
2

2
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and therefore x1/2 = y = ±
√
x−

√
2
2 .

Now there are two possible values of y given x (even if y ends up being

imaginary for x <
√
2
2 ), and both of these values are equally absurd to one

another, for anyone familiar with basic arithmetic. But the only thing we needed
to get to this absurdity was a lack of authority telling us that the property 1 is
essential while the property 2 was not. So why is it that everyone seems to agree
on 1 but not 2? This is, from what I can tell, the same problem you have raised
by seeing different ways to ‘fill in the graph’ for derivatives of the exponential.

I may have you convinced at this point, but there is in fact a saving grace
which at the very least rules property 2 out as not only non-essential, but
actually self-contradictory. Because of the associative property

(n+m) + ℓ = n+ (m+ ℓ),

we get a contradiction when extending n,m, ℓ to a continuous domain as follows.
Assuming property 2, we see that

x(n+m)+ℓ = xn+mxℓ + sin((n+m)ℓπ),

and applying 2 again expands this further as

x(n+m)+ℓ = (xnxm + sin(nmπ))xℓ + sin((n+m)ℓπ)

= xnxmxℓ + sin(nmπ)xℓ + sin((n+m)ℓπ).

But, using the other association, we do the same thing to get

xn+(m+ℓ) = xn(xmxℓ + sin(mℓπ)) + sin(n(m+ ℓ)π)

= xnxmxℓ + xn sin(mℓπ) + sin(n(m+ ℓ)π).

Now clearly we need x(n+m)+ℓ = xn+(m+ℓ) for our continuous extension of
raising x to a power, and the two expressions seem to be incompatible. But to
be rigorous, we take n = m = 1 and try to see what this determines about xℓ,
for some non-integer value of ℓ. Now we have

x(1+1)+ℓ = x2xℓ + sin(π)xℓ + sin(2ℓπ)

= x2xℓ + sin(2ℓπ),

while

x1+(1+ℓ) = x2ℓ+ x sin(ℓπ) + sin((1 + ℓ)π).

We may fix x = 1 now and study two functions of the continuous value
ℓ. One being sin(ℓπ) + sin((1 + ℓ)π), we can actually see that this function is
identically 0, as

sin((1 + ℓ)π) = sin(π + ℓπ) = − sin(ℓπ)
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by symmetry of the sinusoid.
The other function sin(2ℓπ) is not identically 0, and actually is only 0 for

integer values of ℓ. Therefore property 2 can only possibly make sense for integer
values of n,m.

Let’s generalize what we’ve done so far. We started with observing that
property 1 is adaptable to a strange looking property

xn+m = xnxm + f(x, n,m), (3)

for a continuous function f(x, n,m), and this can only make sense as an ex-
tension of the usual rule for positive integer powers if f(x, n,m) = 0 for any
positive real number x, whenever n,m are positive integers. If f(x, n,m) is
identically 0, then we recover property 1, and the previous section explored how
this successfully defines xa for positive rational numbers a. The current section
showed that in order for property 3 to serve as any sort of defining property for
fractional powers, it must at least be compatible with the associative property
in order not to contradict itself. That is, property 3 implies that

x(n+m)+ℓ = xn+mxℓ + f(x, n+m, ℓ)

= (xnxm + f(x, n,m))xℓ + f(x, n+m, ℓ)

= xnxmxℓ + f(x, n,m)xℓ + f(x, n+m, ℓ),

as well as

xn+(m+ℓ) = xnxm+ℓ + f(x, n,m+ ℓ)

= xn(xmxℓ + f(x,m, ℓ)) + f(x, n,m+ ℓ)

= xnxmxℓ + xnf(x,m, ℓ) + f(x, n,m+ ℓ).

To avoid contradiction, we must have equality

f(x, n,m)xℓ + f(x, n+m, ℓ) = xnf(x,m, ℓ) + f(x, n,m+ ℓ)

for all x, n,m, and so not just any function f(x, n,m) will do.
So far I have failed to mention that the commutative property must also be

respected. That is, because n+m = m+ n, in order to avoid contradiction, we
must also have

f(x, n,m) = f(x,m, n)

for all x, n,m.
So we have that the properties we are looking to preserve when extending

to fractional powers come down to a system of functional equations. It may be
the case that the only continuous solution to these equations is f(x, n,m) = 0,
meaning there is only one definitive way to define fractional powers in such a
way that extends the property of addition in the exponent. It is beyond my
capabilities to try to think of another such f(x, n,m).

But to reiterate the point, given such a rule as property 3, we can try to define
the simple fractional power 11/p. To do this we first note that by induction,
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we get a formula for xnm whenever n is an integer, and it’s quite a bit more
complicated than (xm)n. Instead we get

xnm = xm+(n−1)m = (xm)n+f(x,m, (n−1)m)+

n−2∑
k=1

(xm)kf(x,m, (n−k−1)m).

Substituting x = 1, n = p, and m = 1/p, we can deduce a polynomial equation
that y = x1/p must satisfy, namely that

1 = 1p(1/p) = yp + f(1, 1/p, (p− 1)/p) +

p−2∑
k=1

ykf(1, 1/p, (p− k − 1)/p.

For p = 2, this is simple to solve. It is a quadratic equation

1 = y2 + f(1, 1/2, 1/2),

and therefore the solutions are

11/2 = y = ±
√
1− f(1, 1/2, 1/2).

This is the case we already saw at the beginning of this section.
But already for p = 3 this becomes difficult, as we are solving a cubic

equation
1 = y3 + f(1, 1/3, 2/3) + yf(1, 1/3, 1/3).

There is a cubic formula that works to solve equations of this kind, but it is
rarely taught because it is quite complicated compared to quadratic equations.
I used a computer algebra system to get at least this one solution

11/3 = y =
3
√√

3
√
27A2−54A+4B3+27−9(A−1)

3√18
−

3
√

2
3B

3
√√

3
√
27A2−54A+4B3+27−9(A−1)

,

where A = f(1, 1/3, 2/3) and B = f(1, 1/3, 1/3) are the constants appearing in
the original polynomial in the variable y. It is clearly in our best interest to
assume that A = B = 0, so that 11/3 = 1, for what other sensible values would
11/3 ever take on? For any function f(x, n,m) other than 0, what hope is there
to ever even conclude how to define x1/p, if it involves solving a polynomial
equation of degree p? No highschool math student is ever going to consider any
function f(x, n,m) other than 0 when considering the most natural properties
of taking powers of x, and we hardly need to go to these depths to see why.

3 Fractional derivatives

The purpose of the last two sections was to establish that extending an integer
parameterized operator into a continuous parameterized operator can be an ex-
tremely subtle task, and that we don’t have to look at calculus to find examples
of this. I tried to illustrate this with the simple operation of taking powers for
a good reason: taking the nth derivative itself may be intepretted as an nth
power of an operator.
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When we write the expression D = d
dx , we are defining an operator which

inputs a smooth function of a single variable f(x), and outputs the derivative
D{f}, another smooth function, and this may also be notated as

D{f}(x) = d

dx
f(x) = f ′(x).

If you have seen the notation dn

dxn f(x) = f (n)(x), this notation is already showing
how the nth derivative is like an nth power. For example at n = 2 we are
interpretting this as an associative ‘multiplication’ between operators and the
function inputs, i.e.

d2

dx2
f(x) =

(
d

dx

)2

f(x) =
d

dx

(
d

dx
f(x)

)
.

The notation Dn = dn

dxn =
(

d
dx

)n
is convenient, so that we are not writing the

derivative operator as a fraction every time. To be clear, since we know how
to take a derivative once, we are representing by the operator Dn, taking a
derivative n times in succession, just as it makes sense to write xn to represent
multiplying x by itself n times.

Hopefully from the previous two sections you can now be convinced that the
only reasonable way to express how one adds powers of a derivative together is
as

Dn+m = DnDm,

i.e. taking the derivative first m times and then another n times. Thus, however
we try to define Ds for fractional powers s, it should obey

Ds+t = DsDt,

and not a crazy identity dependent on s, t which happens to be 0 whenever s, t
are positive integers.

This is hardly enough to even define what is meant by D1/2. What we need
is an operator T , which inputs and outputs a smooth function, such that

T{T{f}}(x) = D{f}(x) = f ′(x).

but it should still highlight a problem in your approach. It is not quite enough
to look at the nth derivatives of a single function, evaluated at a point like
x = 0, and then simply guess how to fill it in. We must define what Dsf means
for every smooth function f .

After chatting today with an expert in analysis and geometry, I have learned
a few things about the theory of fractional calculus that I didn’t know even
yesterday. As I understand, it revolves around finding which properties of an
nth derivative, beyond how they compose together as operators, interact with
one another nicely enough to define what is meant by Ds for fractional values
of s. But perhaps as you suspected, there is not just one way to do this, as even
when refining one’s approach, we find not all properties behave nicely together,
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and some of them contradict each other when trying to define the fractional
derivative.

For example, given a constant a, if g(x) = x + a, and f ◦ g denotes the
composition f ◦ g(x) = f(g(x)) = f(x+ a), then the chain rule tells us

D{f ◦ g} = D{f} ◦ g.

I like to interpret this as, if you shift a graph to left by a factor of a, then the
derivative is also shifted to the left by a factor of a.

We also have linearity: that for any constants a, b, and any smooth functions
f1, f2, we have

D{af1 + bf2} = aD{f1}+ bD{f2}.
From these properties of the derivative D, we get some properties of the nth

derivative, namely that

Dn{f ◦ g} = Dn{f} ◦ g

and
Dn{af1 + bf2} = aDn{f1}+ bDn{f2}.

Now, these properties of D combined, actually determine how to take the
derivative of an exponential! Consider the function f(x) = ax for some constant
a > 0, and let b be some other constant, with g(x) = x + b. Then f(x + b) =
f ◦ g = abf(x). Therefore, we have

D{f ◦ g} = D{f} ◦ g,

as well as
D{f ◦ g} = abD{f},

and therefore
D{f} ◦ g = abD{f}.

If we plug in 0 we get

D{f} ◦ g(0) = D{f}(b) = abD{f}(0),

but this holds for any b. So we may let b = x be the variable, which tells us the
entire function D{f}(x) = Cax = Cf(x) for the constant C = D{f}(0). We
only need the actual definition of the derivative, beyond its properties, to know
conclusively that C = ln(a). In fact, we may repeat this argument, using instead
the properties of Dn, to know that Dn{f} = Cf for some constant C (which
again, we should know is ln(a)n, So when defining the fractional derivative, we
should already expect it to behave nicely with exponentials. That is, provided
that the properties

Ds{f ◦ g} = Ds{f} ◦ g, Ds{af1 + bf2} = aDs{f1}+ bDs{f2}

hold for fractional values of s, we already know that

Ds{ax} = C(a, s)ax
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for some C(a, s) depending only on a and s.
Notice, since f(0) = 1, we have that C(a, s) is precisely Ds{f}(0). What we

know about C(a, s) is that whenever s = n is a positive integer, that C(a, n) =
ln(a)n. What you’ve shown in the document you sent me, is that there are many
continuous functions C(e, s) that have the property that C(a, n) = ln(e)n = 1.
We may find any function F (s) such that F (n) = 0 whenever s = n is a positive
integer, and then C(e, s) = 1 + F (s) is an ‘extension’ of the nth derivative of
ex to the sth derivative for fractional s. You found F (s) = sin(sπ) as well as
F (s) = sin(2π(s+ 0.25)) = cos(2πs)− 1 as two different options, which may be
added to 1 to get some value of C(e, s) which is 1 at each positive integer s.
It’s true now that defining Ds{f} = C(e, s) for f(x) = ex this way does satisfy
the shifting and linearity properties. But unfortunately this does not satisfy the
first property I mentioned in this section: We still need Ds+t = DsDt. This is
fundamentally why it is so important to consider how we are defining the entire
operator Ds for any function, rather than the sth derivative of a single function
at a time.

By this, what I mean is that, we have already concluded, for f(x) = ax, that
Ds{f} = C(a, s)f, by simply assuming the shifting and linearity properties of
Ds.

Therefore

DsDt{f} = Ds{C(a, t)f} = C(a, s)Ds{f} = C(a, t)C(a, s)f,

again, using only linearity. But if we are to assume Ds+t = DsDt, we must also
have

DsDt = Ds+t{f} = C(a, s+ t)f.

We now conclude that the function C(a, s) must satisfy

C(a, t)C(a, s) = C(a, s+ t).

Given C(a, n) = ln(a)n for positive integers s = n, there is only one continu-
ous function which has this property, and it is C(a, s) = ln(a)s. In particular
C(e, s) = 1 for all values s. In conclusion, Ds{f}(x) = ex for f(x) = ex, i.e.
the sth derivative of ex is always ex, even for fractional values of s, provided we
assume how the sth derivative should behave.

It turns out, in my chat with an expert, that not all of these properties are
always assumed in the theory of fractional calculus. Linearity is practically al-
ways assumed, as well as the composition of operators property Ds+t = DsDt,
but the shifting property I mentioned is not. So for some other definitions of
the fractional derivative, it may be the case that the sth derivative of ex is
something other than ex for non-positive integers s. I would not be able to
elaborate why. But he said to understand any of this better, you should learn
real analysis, linear algebra, and in particular the theory of Hilbert spaces and
the spectral theorem. I hope this helps!
Best wishes,
-Justin Bloom
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