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Introduction

Dieudonné theory is named after the French mathematician Jean Dieudonné
(1906-1992), and was developed by him to study formal groups. Today his work
has influenced stable homotopy theory, modular representation theory, and the
theory of abelian varieties over fields of positive characteristic. It is fair to say
that anyone interested in positive characteristic phenomena should hear about
Dieudonné theory at some point in their lifetime.

This document is an expository paper on Dieudonné theory and is written as
accompanying notes for lectures given by the author as part of a reading course
with Professor Julia Pevtsova at the University of Washington in the spring
of 2025. We hope to provide a concise English reference for Dieudonné theory
which is understandable to readers with some background in group schemes,
e.g. from Waterhouse [7]. Our primary reference on Dieudonné theory is De-
mazure and Gabriel [5] and we will frequently translate directly from the French,
changing only basic conventions and notations.

The author’s primary interest is in the representation theory of finite group
schemes over an algebraically closed field of positive characteristic. The ba-
sic application of Dieudonné theory that we will cover is philosophical: we
hope to augment the way we understand Cartier duality for finite abelian group
schemes. Representations over a given finite abelian group scheme coincide with
sheaves over the Cartier dual, which are often more practical to understand. In
most cases, a detailed formulation of the coordinate algebra of the Cartier dual
still proves difficult. Finite abelian group schemes have a nice description as
Dieudonné modules which aide in such a formulation.

Applications outside of representation theory not covered: In stable homo-
topy theory, a stack classifying formal groups is associated to the Thom spec-
trum representing complex cobordisms. Dieudonné theory gives a concrete way
of talking about the heights of formal groups in positive characteristic which in
turn offers a stratification of the associated stack. On another note, Hodge the-
ory and analytical techniques are instrumental to the study of abelian varieties
over the complex numbers, but no directly analogous theories do the trick for
studying abelian varieties over fields of positive characteristic. Dieudonné the-
ory offers a different avenue for understanding abelian varieties which is unique
to positive characteristic base fields.
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1 Recollections

First we will work over an arbitrary field k. Let A be a commutative k-algebra.
We denote by SpecA the affine scheme over k. For most purposes, affine schemes
over k are thought of as representable functors from commutative k-algebras to
sets, as in Waterhouse [7], but it is greatly convenient to think of them also as
locally ringed spaces as in Hartshorne [6]. If X is an affine scheme, we denote
by O(X) the coordinate algebra, also called the representing algebra for the
functor of points. In either description, we have equivalences of categories

{Commutative k-algebras}op {Affine schemes over k}

{Commutative Hopf algebras}op {Affine group schemes}

{Bicommutative Hopf algebras}op {Affine abelian group schemes},

∼

∼

∼

where each horizontal arrow is the equivalence given by the functor Spec(−),
with inverse O(−). On the purely algebraic side, whenever A is an associative
algebra over k, we can dualize to get A∗ = Homk(A,k), a coassociative coalgebra.
Likewise we can dualize coalgebras to get algebras in such a manner that we have
an isomorphism (A∗)∗ ≅ A of algebras whenever A is finite dimensional over k.
In this process, we have A∗ is cocommutative whenever A is commutative and
vice versa. As such, finite dimensional bicommutative Hopf algebras have a
bicommutative Hopf algebra dual. Translated into geometry, this is known as
Cartier duality. That is, if G is a finite abelian group scheme (i.e. an affine
group scheme with a finite dimensional coordinate algebra), we denote by G♯

the Cartier dual of G, which is given by G♯ = Spec(O(G)∗). Cartier duality
respects direct products of groups, as linear duals respect tensor products of
finite vector spaces.

Example 1.0.1. The finite commutative algebra O(µn) = k[x]
xn−1 has the struc-

ture of a bicommutative Hopf algebra with comultiplication x ↦ x ⊗ x. Thus
O(µn) is the coordinate algebra for an abelian group scheme which we call µn

as notation suggests.
The finite group Z/n is a discrete topological group, and after identifying

each point with Speck, is endowed with the structure of a finite group scheme
over k.

We have that Z/n ≅ µ♯n as group schemes, for any n, and over any base field
k. Whenever the polynomial xn − 1 is separable and splits over k (e.g. k is
algebraically closed of characteristic 0) we have also that Z/n ≅ µn as group
schemes, and hence µn is self-dual. If n = pr and p is the characteristic of k, the
group schemes Z/pr and µpr are drastically different, even as schemes: Z/pr is
reduced but not connected, and µpr is connected but not reduced.

Example 1.0.2. Let k be a field of characteristic p > 0. The finite commutative

algebra O(αpr) = k[t]
tpr

has the structure of a bicommutative Hopf algebra with
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comultiplication t ↦ t⊗ 1 + 1⊗ t. Thus O(αpr) is the coordinate algebra for an
abelian group scheme which we call αpr as notation suggests.

For r = 1, we have α♯p ≅ αp, so we have another example of a self-dual finite
abelian group scheme. For larger values of r, αpr is never self dual. In fact, the
coordinate algebra for α♯pr , i.e. the dual Hopf algebra to O(αpr), is given by

O(α♯pr) ≅ k[t0, . . . , tr−1]
(tp0, . . . , t

p
r−1),

.

where each ti is the dual element to tp
i

with respect to the basis of homogeneous
monomials in O(αpr). We have, given that αp is a closed subgroup of αp, that
the comultiplication takes t0 ↦ t0⊗1+1⊗t0. But for for i > 0 the comultiplication
formula on ti is not easy to write down, and is in and of itself a motivation for
Dieudonné theory.

Note 1.0.3. Group schemes over a field of characteristic 0 are étale. For this
reason the structure theory of finite group schemes is comparitively less inter-
esting in this case than in the alternative: over an algebraically closed field
of characteristic 0, finite group schemes are just finite groups, and for non al-
gebraically closed fields it is reasonable to make a statement like ‘finite group
schemes are finite groups plus Galois theory’ to make a distinction between e.g.
µn and Z/n. Non étale group schemes in characteristic p > 0 include both αpr

and µpr : neither are reduced (in fact they are isomorphic to one another as
schemes, just not as groups). It is still true over arbitrary fields that finite
reduced group schemes are étale, and so the structure theory of finite reduced
group schemes over k may still be described as ‘finite groups plus Galois theory’.

1.1 The Frobenius homomorphism

Let k be a field of characteristic p > 0. For any affine scheme X over k (it is not
really necessary for X to be affine), we define the absolute Frobenius morphism
FX ∶ X → X to correspond to the morphism O(X) → O(X) given by σ ↦ σp

for each coordinate function σ ∈ O(X). By abuse of notation in the case of
X = Speck we will call FX by Fk and also refer to the map of rings k → k as the
absolute Frobenius Fk when the context is clear. Notice, FX is not a morphism
of schemes over k unless k = Fp. Instead we have a commutative diagram of
schemes over Z

X X

Y Y

FX

f f

FY

for any morphism of schemes f ∶X → Y over k. In the case when f ∶X → Speck
is the structure morphism, we see that FX is instead skew -linear over k with
respect to the Frobenius endomorphism on k. Denote by X(p) the base change
Speck ×Fk

X along the absolute Frobenius Fk ∶ Speck → Speck. The relative
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Frobenius morphism FX/k ∶X →X(p) is defined via the base change property

X X(p) X

Speck Speck

FX/k

FX

⌟

Fk

.

Similarly we denote X(p)
r

the base change along the rth iteration F r
K , and

F r
X/k ∶X →X(p)

r

the rth relative Frobenius.

Proposition 1.1.1. Let G be any (affine) group scheme over k. Then G(p) is
also a group scheme over k, and FG/k ∶ G → G(p) is a homomorphism of group
schemes over k.

One may ask how to characterize the Cartier dual of the relative Frobenius
homomorphism on a finite abelian group scheme over k. That is, when G is a
finite abelian group scheme, then since the Cartier dual G♯ is also some group
scheme, we have the relative Frobenius FG♯/k ∶ G♯ → (G♯)(p) is a homomorphism
of group schemes. Now dualizing back we have some homomorphism of group
schemes

VG ∶ G(p) → G

(after identifying ((G♯)(p))♯ ≅ G(p)). The question is then what is a larger
context that our morphism VG can be defined within? For arbitrary affine
group schemes G (again affine is not really a necessary assumption, but it turns
out, over bases other than a field, flatness becomes necessary), we can define
a Verschiebung homomorphism VG ∶ G(p) → G which coincides in the case of
finite abelian group schemes to the Cartier dual of the relative Frobenius defined
above.

1.2 The Verschiebung homomorphism

Verschiebung is German for shift (and is therefore capitalized, being a noun).
Demazure and Gabriel [5] call the Verschiebung homomorphism by its German-
to-French translation décalage, but the convention we’ll follow in English is to
keep the original German word. What precisely is ‘shifting’ in the Verschiebung
homomorphism will become apparent after dealing with Witt vectors. Our
treatment of the Verschiebung homomorphism below is following [5, IV, §3,
no 4].

1.2.1. The n-fold tensor power of a vector space M is denoted by ⊗nM . The
symmetric group Sn acts linearly on ⊗nM by permutation on simple tensors.
The Sn-invariants (⊗nM)Sn are denoted by TSn(M). Denote by s ∶ ⊗nM →
TSn(M) the linear map given by

s(m1 ⊗ . . .mn) = ∑
σ∈Sn

mσ(1) ⊗ . . .mσ(n).
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Denote M (p) = k ⊗Fk
M the extension of scalars along Fk ∶ k → k.

Lemma 1.2.2. Take n = p. The map M (p) → TSp(M)/s(⊗pM) defined by
mapping m to the image of m⊗ ⋅ ⋅ ⋅ ⊗m is a linear isomorphism.

Proof. It’s clear that the map is linear. Fix a basis (mi)i∈I for the vector space
M . For each φ ∈ Ip, denote mφ = mφ1 ⊗ ⋅ ⋅ ⋅ ⊗mφp , and denote ω(φ) the orbit
of φ under the permutation action of Sp on Ip. Whenever ω is an orbit of Sp

in Ip, let mω = ∑φ∈ω mφ. Then the elements mω form a basis for TSp(M), and
s(mφ) = nφmω(φ) for each φ ∈ Ip, where nφ is the order of the centralizer of φ
in Sp. Therefore TSp(M)/(s(⊗p)) has a basis of the images of elements mφ

where φ = (i, . . . i) for some constant index i ∈ I, i.e. the image under our map
of basis elements mi.

1.2.3. LetR be a commutative k-algebra andX = SpecR. The symmetric group
Sp acts on Xp = Spec(⊗pR) by permutation. We denote SpX = SpecTSp(R)
where TSp(R) ⊂ ⊗pR is the invariant subalgebra, and the map of schemes
Xp → SpX is identified as the canonical quotient Xp → Xp/Sp, satisfying the
usual universal property.

Notice the subspace s(⊗pR) is an ideal in the algebra TSp(R) ∶ if v ∈ TSp(R)
then s(uv) = s(u)v for any u ∈ ⊗pR. Further, R(p) is a commutative algebra,
with X(p) = SpecR(p) by the prior definition for schemes, and the linear iso-
morphism R(p) → TSp(R) is indeed an isomorphism of algebras. Therefore for
any affine scheme X over k we have a closed immersion iX ∶X(p) → SpX.

Lemma 1.2.4. If X is an affine scheme over k, then the diagram

X Xp

X(p) SpX

diag

FX

iX

commutes. Here diag is the diagonal and Xp → SpX is the canonical projection
explained above.

1.2.5. Let X be an affine scheme and G an affine abelian group scheme written
additively (both over k) Let f ∶ X → G be any morphism over k. Denote
by σp ∶ Gp → G the p-fold summation for the group G. Since G is abelian,
fp = σp ○ fp ∶ Xp → G is Sp-symmetric in the sense that it descends to a

morphism from the quotient Xp/Sp = SpX we’ll call fp ∶ Sp → G.

Define fV = fp ○ iX ∶X(p) → G. Now we have a commutative diagram

X Xp Gp

X(p) SpX G.

diag

FX

fp

πp

iX

fV

fp
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We conclude that for any morphism f ∶ X → G, thought of as a point in the
Z-module G(X), we have that fV ○ FX agrees with multiplying f by p.

For the identity morphism id ∶ G → G, we call VG = (id)V ∶ G(p) → G the
Verschiebung homomorphism. Indeed, VG is a homomorphism of group schemes.

Proposition 1.2.6. Let G be a finite abelian group scheme over k, and let
V ′ ∶ G(p) → G be the homomorphism defined as the Cartier dual to the relative
Frobenius FG♯/k as before. Then V ′ = VG, the Verschiebung homomorphism.

Proof. Let R = O(G) and hence R∗ = O(G♯). Then the Frobenius FG♯/k at the
level of algebras has a linear decomposition as

(R∗)(p) → SpR∗ → R∗,

where the first map is the linear map into the pth symmetric power taking x to
x⊗ ⋅ ⋅ ⋅ ⊗ x, and the second map is p-fold multiplication ⊗pR∗ → R∗, descended
to the quotient (since R∗ is a commutative algebra, G being abelian). Dualizing
we then have V ′, at the level of algebras, has a linear decomposition as

R → TSp(R)→ R(p),

identifying the dual as (SpR∗)∗ = (⊗pR∗/Sp)∗ = (⊗pR)Sp = TSp(R). The linear
decomposition of the Frobenius FG♯ was not a diagram of algebras (indeed, what
is the algebra structure on SpA given a finite algebra A?) and hence it wouldn’t
make sense to take Spec. It was however a diagram of coalgebras, and hence
dualizing gets us a diagram of algebras decomposing V ′. It is easily verified,
after dualizing, that R → TSp(R) is the coordinate algebra map for fp, and

that TSp(R)→ R(p) is the quotient of Lemma 1.2.2, i.e. the coordinate algebra
map for our closed immersion iG. Hence taking Spec, our definition of V ′ has
the same decomposition as that which defines VG.

2 Witt Calculus

Ernst Witt (1911 - 1991) was among the last students of Emmy Noether during
her time in Göttingen before the expulsion of all Jews from German universi-
ties by the Nazi regime in 1933. Witt, like his contemporary and friend Os-
walt Teichmüller, was a Nazi stormtrooper. Unlike the fanatical Teichmüller,
the devotion Witt had toward the Nazi party and their racist pseudoscience is
historically disputed and was questioned by Nazi authorities themselves in an
assessment [1]. It is occasionally staggering to remember that the names long
immortalized in mathematics belonged to human beings. Even more so to be
reminded how small mathematics is within the spectrum of human experience.

Let p ≥ 2 be a prime number. We will denote N = {0,1,2, . . .}. In this section
we define a ring scheme over SpecZ, that is, a commutative ring object in the
category of schemes, denoted by W. For a commutative ring R, the functor of
points gives a ring W(R) called the ring of Witt vectors with coefficients in R.
Some key points before we go in-depth are itemized below:
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1. The underlying scheme for W is AN, which has a functor of points taking
a commutative ring to the set of maps N → R, written as infinite tuples
(x0, x1, x2, . . . ) for xi ∈ R.

2. Let k be a field of characteristic p, and denote Wk = Speck ×Z W the

base change. Then the relative Frobenius F = FWk/k ∶ Wk → W(p)k and

Verschiebung V = VWk
∶ W(p)k → Wk on the underlying abelian group

scheme for Wk are given on points by

F (A) ∶ (x0, x1, x2, . . . )↦ (xp
0, x

p
1, x

p
2, . . . )

V (A) ∶ (x0, x1, x2, . . . )↦ (0, x0, x1, . . . )

for a commutative k-algebraA and elements xi ∈ A. The relative Frobenius
is a homomorphism of ring-schemes over k (this actually always holds),
while the Verschiebung is a homomorphism of underlying abelian group
schemes

3. If k is a perfect field of characteristic p, we have that W(k) is a complete
DVR with residue field k, and maximal ideal pW(k). For elements xi ∈ k,
we have the Witt vector (x0, x1, x2, . . . ) coincides with the formal sum

xτ
0 + p(x

1/p
1 )τ + p2(x

1/p2

2 )τ + . . . ,

with all sums taken in the ring W(k), and xτ = (x,0,0, . . . ) denotes the
Teichmüller representative of an element x ∈ k.

2.1 The ring of Witt vectors

2.1.1. (Witt polynomials) Define Φn ∈ Z[X0,X1,X2, . . . ] by

Φn =Xpn

0 + pX
pn−1

1 + p2Xpn−2

2 + ⋅ ⋅ ⋅ + pnXn,

for each n ∈ N. We regard each Φn as a morphism AN → A of affine schemes
with the obvious coordinates for O(AN). It is shown in [5, V §1, 1.2] that every
morphism u ∶ A × A → A lifts uniquely to a morphism û ∶ AN × AN → AN such
that

Φnû = u(Φn ×Φn)
for each n ∈ N. In practice it is not hard to define these lifts inductively.

2.1.2. (The ring of Witt vectors) The affine line A = SpecZ[x] is a com-
mutative ring object in the category of schemes (over Z), a.k.a. a ring scheme.
As such we have addition and multiplication σ,π ∶ A × A → A. In coordinates
A×A = SpecZ[X,Y ], we have σ,π are given by X +Y and XY respectively. By
lifting these morphisms, we can define structure maps σ̂, π̂ ∶ AN×AN → AN defin-
ing AN to be a ring scheme. We take the additive and multiplicative identities
as (0,0,0, . . . ) and (1,0,0, . . . ), realized by maps SpecZ→ AN, respectively.
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The uniqueness of lifting in [5, V §1, 1.2] ensures that σ̂, π̂ indeed satisfy the
associative, commutative, and distributive properties, as well as identities and
inverses, which are necessary to make An, σ̂, π̂ a ring scheme. We denote this
ring scheme by W. For any commutative ring R, we also denote W(R) the ring
of R-points, i.e. the ring of morphisms Mor(SpecR,W). The elements of W(R)
are called Witt vectors with coefficients in R, and for Witt vectors x, y ∈W(R),
we denote σ̂(x, y) ∶= x+̇y and π̂(x, y) = x×̇y. Similarly, we take −̇x the additive
inverse of x and x−̇y = x+̇(−̇y). Notice, by the fundamental property of our lifts,
we have that each Φn ∶W→ A is a homomorphism of ring schemes.

If R is a commutative ring and a ∈ R is any element, we denote aτ =
(a,0,0, . . . ) ∈ W(R), called the Teichmüller representative of a. For any Witt
vector (a0, a1, a2, . . . ) ∈W(R) and a ∈ R, one can verify

aτ ×̇(a0, a1, a2, . . . ) = (aa0, apa1, ap
2

a2, . . . ),

and hence given a, b ∈ R we have (ab)τ = aτ ×̇bτ , but in general we usually have
(a + b)τ ≠ aτ +̇bτ .

We also define ring schemes Wn, with underlying scheme structure An,
thought of as the first n coordinates of W, with projection Rn ∶ W → Wn a
homomorphism of ring schemes. One checks that the lifts σ̂, π̂ indeed give well
defined sum and product structures Wn ×Wn →Wn. The points of Wn(R) are
referred to as Witt vectors of length n (with coefficients in R).

2.1.3. (Canonical extensions) We have described Wn as the ring of the first
n coordinates of W, and hence we have a canonical projection

R ∶Wn+1 →Wn,

a homomorphism of ring schemes for any n. One checks that the canonical
projections form an inverse system withW ∼Ð→ lim←Ðn

Wn.We also have a canonical

embedding
T ∶Wn →Wn+1,

a homomorphism of group schemes defined on R-points by

T(R) ∶ (a0, . . . , an−1)↦ (0, a0, . . . , an−1)

for Witt vectors with coefficients in a commutative ring R. Passing to the
projective limits gives T ∶W→W. For any n,m ∈ N we have an exact sequence
of group schemes

0→Wn
Tm

ÐÐ→Wn+m
Rm

ÐÐ→Wm → 0,

and similarly in the projective limit we have

0→W Tm

ÐÐ→W RmÐÐ→Wm → 0.
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2.2 Frobenius and Verschiebung revisited

Since W is merely a ring scheme over Z, we don’t have Frobenius morphisms.
Instead we denote F ∶W→W to be defined on points by

F(R) ∶ (a0, a1, . . . )↦ (ap0, a
p
1, . . . )

for any commutative ring R and a = (a0, a1, . . . ) ∈ W(R). It should be clear
that after base changing to k we have Fk = FW/k ∶Wk →Wk, after noticing that

the base change W(p)
k is isomorphic as a ring scheme over k to Wk, since the

underlying scheme is AN.

Proposition 2.2.1. [5, V, §1, 1.7] Let R be any commutative ring and let
a ∈W(R). Now write b = pa−̇T(F(a)). Then we have bi − pai ∈ p2R for each i,
where a = (a0, a1, . . . ) and b = (b0, b1, . . . ).

Corollary 2.2.2. Let k be a perfect field of characteristic p. Then W(k) is a
complete discrete valuation ring, with residue field k and maximal ideal pW(k).
Every Witt vector x ∈W(k) is uniquely expressible in the form

x = xτ
0 + pxτ

1 + p2xτ
2 + . . . ,

for x0, x1, . . . , ∈K.

Notice, by the proposition above it follows by induction that px = T(F(x))
for each x ∈W(k). In particular we have

(a0, a1, a2, . . . ) = aτ0 + p(a
1/p
1 )τ + p2(a

1/p2

2 )τ + . . . ,

where a
1/pi

i ∈ k makes sense, as we’ve assumed k is perfect.
We’ve identified how the relative Frobenius for Witt vectors Wk actually

descends to schemes over Z by F. Our translation map T also shows how
Verschiebung descends to Z:

Corollary 2.2.3. Let k be any field of characteristic p. The Verschiebung
VWk

∶Wk →Wk is identical to the base changed translation Tk ∶Wk →Wk. The
same holds for the base change of length n vectors Wnk = Speck ×Z Wn.

Proof. It suffices to consider the case k = Fp. In this case we have Fk = FWk/k is
an epimorphism (why?) of affine abelian group schemes over k. Now we have,
by the proposition, TkFk is multiplication by p, but also VWk

Fk is multiplication
by p. Since Fk is epi, we have VWk

= Tk.

Lemma 2.2.4. [5, V, §1, 2.4] Assume k is a perfect field. Let m,n ∈ N such
that 1 ≤ n ≤ m and let G an abelian group scheme of finite type, such that
the nth iteration V n

G ∶ G(p)
n → G vanishes. Then for every homomorphism

f ∶ G→Wmk, there exists a unique g ∶ G→Wnk such that f = Tm−n
k g.
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Proof. We have a commutative diagram

G(p)
n

W(p)n
mk

G Wmk

f(p)
n

V n
G V n

Wmk

f

and the vertical arrow on the left vanishes by hypothesis. We have W(p)n
mk ≅

Wmk. Under this isomorphism, V n
Wmk

≅ Rm
k ○ Tn

k . Then the kernel of V n
Wmk

is

the isomorphic image of (Wnk)(p)
n

under (Tm−n
k )(p)n . Now f (p)

n

must factor
through the kernel, and the absolute Frobenius Fk ∶ k → k is an isomorphism of
rings. It follows that f factors through the image of Wnk under Tm−n

k .

3 Unipotent abelian group schemes

We will denote the category of affine abelian group schemes by A. Then A forms
an abelian category. We denote by A1(A,B) the set of isomorphism classes of
extensions of objects B by A in the abelian category A. Recall now, we have
A1(A,B) forms an abelian group under the Baer sum. Under pullbacks and
pushforwards of extensions we have A1(−,−) ∶ Aop ×A → Ab is a bifunctor and
is bilinear. It follows that A1(A,B) has the structure of a (End(B),End(A))-
bimodule.

For the remainder of this paper we will assume that k is a perfect field of
characteristic p.

3.1 Witt group extensions

The underlying abelian group scheme on each of Wnk belongs to A. Recall from
2.1.3, we have canonical elements of A1(Wmk,Wnk) in the form

0→Wnk
Tm

ÐÐ→W(n+m)k
Rn

ÐÐ→Wmk → 0.

Notice W1 = Ga, the general additive group scheme over Z. We will abuse
notation to say Ga is also the base change Speck ×Z Ga. For n ∈ N we let
en ∈ A1(Ga,Wnk) denote the canonical extension. We have cocartesian squares

Wnk W(n+1)k

W(n+1)k W(n+1)k ⊕Ga

T

T (id,Rn)
(id,0)

⌟ ,

W(n+1)k W(n+2)k

Wnk W(n+1)k

T

R R

T

⌟ .

It follows that T ⋅ en = 0 ∈ A1(Ga,W(n+1)k) and Ren+1 = en ∈ A1(Ga,Wnk).

Proposition 3.1.1. [5, V, §1, 2.2] Let H be a closed subgroup of Ga and let
n ≥ 1. Then
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a) The pushforward A1(H,Wnk)→ A1(H,Ga) of Rn−1 is an isomorphism.

b) The pullback A1(Ga,Wnk)→ A1(H,Wnk) of H ↪ Ga is surjective.

c) A1(Ga,Wnk) is free of rank one as a right End(Ga)-module, with basis
element en.

Notice in the case n = 1, we have A1(G,Ga) is identified with the subgroup
of H2(G,k) given by symmetric cocycles G × G → k for any G ∈ A. The sec-
ond assertion for n = 1 is actually a special case of a more general fact about
cohomology of subgroups H < Ga. The rest of the proposition is proven by
induction.

Note 3.1.2. If k is not Fp, the ring End(Ga) is noncommutative. Generally, it
is the skew polynomial ring k[F ] where Fλ = λpF for each λ ∈ k. The element

F ∈ End(Ga) is the Frobenius endomorphism, again identifying G(p)a ≅ Ga.

Proposition 3.1.3. Let G be unipotent, algebraic, and abelian. By unipotent
we mean that the G is affine and the trivial representation is the unique simple
representation, or equivalently that every subgroup scheme L ≤ G other than
the trivial group has a nonzero homomorphism L→ Ga. By algebraic we mean
of finite type. Then there exists n, r, s, ∈ N and a left exact sequence

0→ G→Wr
nk →Ws

nk.

This proposition is proven using ‘artinian induction’ and some techniques
using a corollary of the previous proposition on extensions. That is, assuming
without loss of generality that G is nontrivial and that for each strict subgroup
L < G we have some embedding L ↪ Wr

nk, then a nonzero homomorphism
G → Ga with nontrivial kernel L gives an extension in A1(H,L) for L the
kernel of G → Ga and H ≤ Ga the image of G. It is argued from b) of the
previous proposition that some embedding must then exist for G. By induction
this then holds for arbitrary unipotent G ∈ A. The rest is technical.

3.2 Dieudonné modules

Let x = (x0, x1, x2, . . . ) ∈W(k). For n ∈ Z, denote

x(p
n) = (xpn

0 , xpn

1 , xpn

2 , . . . ) = Fn(x)

(negative n makes sense, we have k is perfect). Recall we have px = T(x(p)) and
in particular p = p ⋅ 1 = (0,1,0, . . . ).

Definition 3.2.1. A Dieudonné module (over k) is a W(k)-module with the
additional structure of two endomorphisms FM and VM satisfying the following
conditions (denoting xM(m) = xm for x ∈W(k) and m ∈M)

⎧⎪⎪⎨⎪⎪⎩

FMxM = x(p)FM , xMVM = VM(x(p))M ,

FMVM = VMFM = pM .
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The Dieudonné ring Dk (or simply D) is defined to be the skew-algebra over
W(k) generated by symbols F and V subject to the relations

⎧⎪⎪⎨⎪⎪⎩

Fx = x(p)F, xV = V x(p), x ∈W(k)
FV = V F = p.

Thus, Dieudonné modules are equivalent to left modules over the ring D.

3.2.2. The ring Dk is noetherian, has no zero divisors, and is free as a left or
right module over W(k), with basis 1 and positive powers of F and V . For
perfect fields K/k, we have also that DK ≅ W(K) ⊗W(k) Dk. Notice the left
ideals DV and DF are two sided, and D/DV ≅ End(Ga) is the skew polynomial
ring over k discussed before, in a natural way identifying the action of F with
the relative Frobenius endomorphism. In this way, the action of V ∈ D is also
identified with the Verschiebung annihilating Ga.

Proposition 3.2.3. For each n, the abelian group scheme Wnk is a functor of
D-modules. The homomorphism D → End(Wnk) is surjective, and induces and
isomorphism

D/DV n → End(Wnk).

Proof. The first claim follows from the W(k) action on each ring Wnk(A) for
commutative k-algebras A, together with Corollary 2.2.3 and Proposition 2.2.1.
It is then also clear that V n vanishes under D→ End(Wnk) for each n.

Now, for n = 1, the isomorphism follows from the previous claim on End(Ga).
Assume for induction that D/DV n → End(Wnk) is an isomorphism. Then we
have an induced map of short exact sequences

DV n/DV n+1 D/DV n+1 D/DV n

End(Wnk)

Hom(Ga,W(n+1)k) End(W(n+1)k) Hom(Wnk,W(n+1)k)

T∗

Rn∗ T∗

Indeed, the top row is canonically short exact, and the bottom row is the image
of the canonical extension en ∈ A1(Ga,Wnk) under Hom(−,W(n+1)k). Thus
we only need surjectivity of T∗, which follows from a corollary of Proposition
3.1.1. By Lemma 2.2.4, the map T∗ ∶ End(Wnk) → Hom(Wnk,W(n+1)k) is
an isomorphism, and D/DV n → End(Wnk) is an isomorphism per inductive
hypothesis. Then if the induced map DV n/DV n+1 → Hom(Ga,W(n+1)k) is an
isomorphism, the inductive step follows from the snake lemma. Indeed, by 2.2.4
we also have Tn

∗ ∶ End(Ga) → Hom(Ga,W(n+1)k) is an isomorphism. This is
essentially the isomorphism D/DV → DV n/DV n+1, so we’re done.
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3.3 The structure theorem

Consider the directed system

W1k
TÐ→W2k

TÐ→W3k → ⋯.

By the proposition 3.2.3, we know each term is a functor of D-modules, and
further it is not hard to show that each T ∶Wnk →W(n+1)k is a natural homo-
morphism of D-modules, with T(A) isomorphic to VW(n+1)k(A)↪W(n+1)k(A),
the inclusion of a D-submodule, for each algebra A.

3.3.1. Let U be a unipotent abelian group scheme over k. We denote by M(U)
the Dieudonné module associated to U , defined by

M(U) = limÐ→
n

Hom(U,Wnk).

Each U being affine, we have a D-module structure on the set of pointsWnk(U) =
Wnk(O(U)), and Hom(U,Wnk) is a subset of Wnk(U) = Mor(U,Wnk). One
checks, since Verschiebung and Frobenius are both compatible with homomor-
phisms of abelian group schemes, we indeed have that Hom(U,Wnk) is a D-
submodule of Wnk. Notice each T, and hence each T∗ = Hom(U,T), is a
monomorphism. We identify Hom(U,Wnk) with its image in M(U). For any
homomorphism of unipotent abelian group schemes f ∶ U → U ′, we have an
induced map M(f) ∶M(U ′)→M(U) of D-modules.

Example 3.3.2. By Lemma 2.2.4, it follows, for each n, that Hom(Wnk,T)
is an isomorphism of D-modules for T ∶ Wmk → W(m+1)k whenever m ≥ n.
Therefore M(Wnk) ≅ End(Wnk) ≅ D/V nD for each n, by Proposition 3.2.3.

Recall the Verschiebung VWnk
factors as Wnk

TÐ→W(n+1)k
RÐ→Wnk. With these

identifications, under the functor M this composition becomes

D/DV n → D/DV n+1 → D/DV,

the first map taking the image of 1 in D/DV n to V ∈ D/V n+1, and the second
map being the canonical projection. The composition agrees with multiplication
by V on the right for the D-bimodule M(Wnk) = D/DV n (a left D-module
homomorphism).

A Deiudonné module M is called effaceable if it is V -torsion, i.e. if for each
m ∈M there exists some n such that V nm = 0.

Theorem 3.3.3. The contravariant functorM(−) from unipotent abelian group
schemes to (left) D-modules is fully-faithful. The essential image of M(−) is the
full subcategory of effaceable D-modules.

Proof.

a) If a unipotent abelian group scheme U is the limit of a inverse system
(Ui), then the canonical map limÐ→M(Ui) → M(U) is an isomorphism of
D-modules.
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b) The functor M(−) is left exact, because each Hom(−,Wnk) is left exact.
We’ll show now that it’s exact. Let ι ∶ U ′ → U be a monomorphism of
group schemes, for unipotent abelian U ′, U . We will show M(ι) ∶M(U)→
M(U ′) is surjective. By the above it suffices to assume U is algebraic (and
therefore so is U ′!), since U is the limit of an inverse system of algebraic
unipotent abelian group schemes, and the directed limit of surjections is
surjective. Now U is unipotent and algebraic so we may assume that U
admits a composition series

U ′ = U0 ⊂ U1 ⊂ ⋅ ⋅ ⋅ ⊂ Ur = U

such that every subquotient Ui/Ui−1 is a subgroup of Ga for i > 0. Let
f ∈ M(U ′), i.e. f ∈ Hom(U ′,Wnk) for some n, identified also with each
Trf ∈ Hom(U ′,W(n+r)k). Each Hi = Ui/Ui−1 being a subgroup of Ga, we
can use the theory of extensions in A1(Hi,Wmk) from Proposition 3.1.1 to
conclude by induction that there exists some g ∈ Hom(Ur,W(n+r)k) with
M(ι)(g) = gι = Trf .

c) Here we’ll show M(−) is faithfully flat. Let U,H be unipotent abelian
group schemes over k. We must show the canonical

ϕH ∶ Hom(U,H)→ HomD(M(H),M(U))

taking each map to the induced map of Diedonné modules is a bijection. In
the case H =Wnk, this follows after noticing that Hom(U,Wnk) consists
precisely of those elements in

M(U) = limÐ→
m

Hom(U,Wmk)

which are annihilated by the left action of V n. Thus, Hom(U,Wnk) ≅
HomD(D/DV n,M(U)). By Proposition 3.1.3, we may ‘resolve’ any alge-
braic H by an exact sequence in the form

0→H →Wr
nk →Ws

nk.

We have a commutative diagram

Hom(U,Wr
nk) Hom(U,Ws

nk)

HomD(M(Wr
nk),M(U)) HomD(M(Ws

nk),M(U))

ϕWr
nk

ϕWs
nk

,

with both vertical arrows bijective. Therefore the induced map of kernels,
i.e. ϕH , is bijective. Passing to inverse limits shows now that ϕH is
bijective in general.

d) The last step is to determine the essential image. It is clear that each
M(U) is indeed effaceable now that we have M(−) is fully faithful, as the
V -torsion submodule of M(U) can be calculated as

limÐ→HomD(D/DV n,M(U)) = limÐ→Hom(U,Wnk) =M(U).
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Now let M be an effaceable D-module and assume M is finitely generated,
say by r elements. Then M is annihilated by some V n, and is thus covered
as (D/DV n)r ↠M . Recall D is noetherian, and hence we can go further
and produce some ‘resolution’ of M as an exact sequence

(D/DV n)s → (D/DV n)r →M → 0.

But since M(−) is fully faithful, we have (D/DV n)s → (D/DV n)r is the
image under M(−) of some f ∶Wr

nk →Ws
nk. By exactness, we realize M

as M(U) for the kernel U of f . Passing to inverse limits, we’re done.

4 Examples

Assume now that k is an algebraically closed field of characteristic p. We are
ready to explore Cartier duality via Dieudonné theory. Since the structure
theorem applies to unipotent abelian group schemes, the intersection of the
relevant classes of group schemes consists precisely of those finite abelian group
schemesG such that bothG andG♯ are unipotent. A finite abelian group scheme
G is unipotent if and only if G♯ is connected. Connected finite group schemes
are often called infinitesimal groups. Thus, we are interested in characterizing
infinitesimal unipotent abelian group schemes as Dieudonné modules.

4.1 Frobenius kernels and fixed points

We’ll arrive at the characterization of infinitesimal unipotent abelian group
schemes as Dieudonné modules by first considering a non-example:

Example 4.1.1. For any n the group Z/pn is unipotent: indeed, Z/p embeds
into Ga since it is isomorphic to the additive group functor A↦ {x ∈ A ∣ xp = x},
so we conclude that every nonzero subgroup of Z/pn has a nonzero map to Ga.
We claim M(Z/pn) ≅ D/D(V n, F − 1). We do this in steps:

a) First recall how each Wnk is isomorphic to the base change W(p)
nk and

therefore the relative Frobenius FWnk/k is really an endomorphism of group
schemes. For any endomorphism φ ∶ G → G of a group scheme, we may
write Gφ to mean the subfunctor of φ-fixed points, i.e. Gφ(A) = {x ∈
G(A) ∣ φ(x) = x}. It is clear that Gφ is a subgroup functor and, group
schemes over k being separated, we have that Gφ is a closed subgroup.
Now whenever G(p) ≅ G, we can define GF to be a closed subgroup of G,
identifying F as the relative Frobenius endomorphism.

b) Now we claim Z/pn ≅WF
nk. This is easy to see at the level of points, since

for any k-algebra A with SpecA connected, we have that WF
nk(A) really

is just the group Z/pn. To see this, consider the A-points of WF
nk which

are in the form
(x0, x1, . . . , xn−1)
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with xp
i = xi ∈ A for each i = 0,1, . . . , n − 1. Since SpecA is connected,

there are pn such points. But WF
nk(A) is clearly a cyclic group, since

(1,0, . . . ,0) is order pn, noticing that multiplication by p agrees with the
shift T. Thus we can induce up from connected affine schemes to all
schemes and establish an isomorphism of functors WF

nk → Z/pn.

c) Notice, each M(U) is actually a (D,End(U)) bimodule. There is a ho-
momorphism of rings Z[F,V ]/(FV = V F = p) → End(U) whenever U
descends to the integers (hence U (p) ≅ U), identifying F,V with the rel-
ative Frobenius and Verschiebung endomorphisms. One checks now that
for M =M(U) for such U , we have for each f ∈ Z[F,V ]/(FV = V F = p)
the left D-module Mf agrees with (f)M , where (f) is the two sided ideal
generated by the image of f in D, and IM denotes the left submodule con-
sisting of sums of elements xm for x ∈ I,m ∈M whenever I is a two-sided
ideal.

d) Now we want to argue that whenever U is unipotent abelian and descends
to the integers that the D-module M(UF ) is isomorphic to M/D(F −1)M
for M =M(U). By the above, M/D(F −1)M is the same as M/M(F −1),
given that M(F − 1) makes sense in this context. We have that UF can
be defined via the equalizer diagram

UF U U
FU/k

id
.

Since M(−) is an exact antiequivalence we have a coequalizer diagram for
M(UF ) given as

M M M(UF )
M(FU/k)

id
.

Identifying M(FU/k) as right multiplication by F , we have

M(UF ) ≅M/M(F − 1) ≅M/D(F − 1)M.

e) Now it follows: by quotienting D by the left ideal D(V n, F − 1), we could
instead quotient the ring D/DV n by the left ideal generated by (F − 1).
Thus, M(Z/pn) =M(WF

nk) = D/D(V,F − 1).

By the above example, so long as an effaceable Dieudonné module M does
not contain any D/D(V n, F −1) as a direct summand, we have that M ≅M(U)
for some connected unipotent abelian group scheme U . If in addition M is
a finite length module (over D or over W(k)), it follows that U is then an
infinitesimal unipotent abelian group scheme.

The first claim follows from the general structure of abelian group schemes:
any quasi-compact abelian group scheme G decomposes as G0 ×Γ, where G0 is
the connected component of the identity, and Γ is a finite abelian group, the
group of connected components of G. SinceM(−) takes direct products of group
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schemes to direct sums of D-modules, we’re done if we know that the group Υ
of connected components for any unipotent abelian U is a p-group. Notice
Υ, and hence any subgroup of Υ, is unipotent. But the cyclic group of order
n, whenever n > 1 is not divisible by p, has no nonvanishing homomorphism
into Ga, so we’re done. The second claim follows from the characterization of
finite unipotent abelian group schemes as finite length Dieudonné modules [5,
Corollaire V, §1, 4.4]. Infinitesimal being synonymous with finite and connected
means we are done.

Example 4.1.2. For any n and for any r the group Wnk(r) is unipotent: it is
a closed subgroup of Wnk. Further, Wnk(r) is connected: this is simple to see
given O(Wnk(r)) is a local artinian ring. Hence, being finite, we say Wnk(r) is
infinitesimal, unipotent, and abelian. We claim M(Ga(r)) = D/D(V n, F r). We
do this in steps:

a) Let U be a unipotent abelian group scheme, and M =M(U). We have an
exact sequence defining the rth Frobenius kernel U(r)

0→ U(r) → U
F r

U/kÐÐÐ→ U (p)
r

and therefore an exact sequence of D-modules

M(U (p)
r

)
M(F r

U/k)ÐÐÐÐÐ→M(U)→M(U(r))→ 0.

b) It is simpler to assume U descends to the integers to then claim that
M(U(r)) ≅ M(U)/D(F r)M(U). In general it still makes sense to claim
M(U(r)) ≅ M(U)/(M(U)F r), identifying M(U)F r with the image of

the induced map F r = M(F r
U/k) ∶ M(U (p)

r) → M(U). Either general-

ity applies and then proves the claim for M(Wnk(r)), given how we know
M(Wnk) ≅ D/DV n.

4.2 Applications to representation theory

Recall Proposition 1.2.6, which states how for finite abelian group schemes, the
Verschiebung and relative Frobenius are actually dual in the sense of Cartier
duality. Notice, a finite unipotent abelian group scheme U necessarily van-
ishes under some power of the Verschiebung, since M(U) is finite length and
effaceable. Therefore, provided U is connected, we must have that U#, being
unipotent, must also vanish under some power of the Verschiebung. We con-
clude infinitesimal unipotent abelian groups vanish under some power of the
relative Frobenius as well. If U is infinitesimal unipotent abelian, we define the
height to be the smallest ℓ such that F ℓ

U/k vanishes, and similarly the width
respective to iterations of VU . We will find in some cases that the isomorphism
class of the Cartier dual of G can be deduced simply by understanding how the
Frobenius and Verschiebung have interchanged, in a sense, and in particular the
height and width have interchanged explicitly.
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Our application of Dieudonné theory to representations is purely through
Cartier duality. Recall, if G is an affine scheme and V is a representation,
by definition this means we have fixed a homomorphism G → GL(V ), and
consequently V is given the structure of a comodule over the coalgebra O(G),
i.e. we have a structure map

V → O(G)⊗ V

defining a ‘coaction’ by O(G). If G is finite, the tensor-hom adjunction gives
us a structure map

O(G)∗ ⊗ V → V

defining V to now be a module over O(G)∗. In practice, it is advantageous to
reduce questions in representation theory to module theory whenever possible.
The cocommutative Hopf algebra O(G)∗ is usually called the group algebra of G
and is denoted by kG. If G is a finite (discrete) group, the group algebra O(G)∗
agrees with the usual group algebra over k which is ‘generated’ by elements of
the group G.

For finite abelian G, we note O(G♯) = O(G)∗ per definition, so we have now
that representations of G are the same thing as modules over O(G♯), which
may be thought of as sheaves over the scheme G♯. Thus, if G is infinitesimal,
unipotent, and abelian, Dieudonné theory can help us reduce representations of
G into module theory by simply helping us understand the structure of G♯.

Example 4.2.1. Let n < p. There is an (n + 1) dimensional representation Ln

of the algebraic group Ga, which we define by identifying GLn+1 = GL(Ln) and
defining Ga → GLn+1 on points by

a↦
⎛
⎜⎜⎜⎜
⎝

1 a a2

2
⋯ an

n!

0 1 a ⋯ an−1

(n−1)!
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

⎞
⎟⎟⎟⎟
⎠
,

for x ∈ Ga(A) given a commutative k-algebra A. By restricting to the Frobenius
fixed points and to the first Frobenius kernel, we get some n + 1 dimensional
representations of Z/p and of Ga(1) = αp. We claim that each restriction of
Ln to either closed subgroup is indecomposable (that is, nontrivial and not the
direct sum of any nontrivial subrepresentations), and that every indecomposable
representation of Z/p and of Ga(1) is the restriction of Ln for some 0 ≤ n < p.
To show this, we use our previous computations of the Cartier duals of Z/p and
αp, namely µp and αp. We have isomorphisms of algebras

k(Z/p) ≅ O(µp) ≅ k[x]/(xp − 1) ≅ k[y]/yp,

the last isomorphism taking x to y − 1. A consequence of the structure theorem
for modules over a PID is that there is precisely one indecomposable module
of each dimension 0 < n + 1 ≤ p over the ring k[y]/yp. The n + 1 dimensional
indecomposable representation is isomorphic to the quotient k[y]/yn+1, and the
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matrix representing the action of y with respect to the ordered basis 1, y, . . . , yn

is nilpotent lower triangular (n+1)×(n+1) Jordan block. We identify y with the
dual element to t with respect to the basis 1, t, . . . , tp−1 for O(Z/p) = k[t]/(tp−t).
One then checks directly that the action of y on the restriction of Ln describes
precisely the same lower triangular Jordan block. Similarly for modules over
the group algebra k(αp) ≅ O(αp) = k[t]/tp.
Example 4.2.2. Assume that U is an infinitesimal unipotent abelian group
scheme such that A = O(U) is generated by primitive elements (i.e. elements x
with coproduct ∆(x) = x⊗1+1⊗x). Then we have an isomorphism A ≅ u(g) for
some abelian restricted Lie algebra g. The relationship between g and U is that
the Cartier dual U ♯ is the first Frobenius kernel G(1) of a smooth connected

group G with tangent space g. Hence U ♯ has height 1 and U has width 1. It
is known that if G has Krull dimension d, then g is d-dimensional as a vector
space, and O(G(1)) is isomorphic as an associative algebra to

k[t1, . . . , td]
tp1, . . . , t

p
d

.

Hence, representations of U are equivalent to modules over some algebra in the
above form. For a specific example, this is how we know the algebra structure of
O(α♯p), without Dieudonné theory. But again, the coalgebra remains mysterious
without more computations.

The above are examples of understanding Cartier duals via direct compu-
tations in order to reduce representation theory into module theory. But for a
general bicommutative Hopf algebra of large dimension, finding generators and
relations for the dual is not always easy. Below we see how Dieudonné can help!

Example 4.2.3. For any n, r ≥ 1, the finite group scheme Wnk(r) has finite
representation type if and only if r = 1. If r > 1, then Wnk(r) has tame repre-
sentation type if and only if pnr = 4, i.e. r = p = 2 and n = 1. In any other case
pnr > 4 and Wnk(r) is of wild representation type. Perhaps the best method
to see this is to simply compute the Cartier dual and examine its category of
sheaves, i.e. modules over the group algebra for Wnk(r). This can be done with
Dieudonné theory. We know that Wnk(r) is of height r and width n and further
that M(Wnk(r)) = D/D(V n, F r) (an indecomposable D-module) by the example

last section. Thus we know that W♯
nk(r) is of height n and of width r. It follows

that the Dieudonné module M =M(W♯
nk(r)), being indecomposable, admits an

epimorphism D/D(Fn, V r)↠M. But D/D(Fn, V r) ≅M(Wrk(n)) and M(−) is
an antiequivalence. Hence we know there is a monomorphism W♯

nk(r) ↪Wrk(n).
Both finite group schemes Wnk(r),Wrk(n) have the same dimension pnr of coor-

dinate algebras, and hence so does W♯
nk(r). By dimension, the monomorphism

W♯
nk(r) ↪ Wrk(n) is an isomorphism. Thus the coordinate algebra for W♯

nk(r),
i.e. the group algebra for Wnk(r) determining its representations, is isomorphic
to

O(Wrk(n)) =
k[t0, . . . , tr−1]
tp

n

0 , . . . , tp
n

r−1
.
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The coalgebra structure is determined inductively with Witt calculus but is
irrelevant now for defining modules. These algebras are also isomorphic as
associative algebras to the group algebras for the abelian p-groups (Z/pn)r. For
such groups, the representation type is well known to agree with our claim:
finite if and only if cyclic, tame if and only if n = 1 and p = r = 2, and wild in
any other case.

Example 4.2.4. Consider the local algebra A = k[t]/tpr

. We know that A is
isomorphic as an associative algebra to O(µpr) and to O(αpr). Since µ♯pr ≅ Z/pr
and

α♯pr ≅ G♯a(r) ≅W♯
1k(r) ≅Wrk(1),

we have found two different finite abelian unipotent group schemes Z/pr and
Wrk(1) sharing a group algebra A, and hence sharing an abelian category of
representations. In fact any finite group scheme with a group algebra isomorphic
to A is going to be unipotent abelian, as A is commutative, and the Cartier dual
will then have underlying scheme SpecA, which is connected. Such finite group
schemes correspond precisely to the cocommutative Hopf algebra structures
on A, and since they are all unipotent, they are all described equivalently as
Dieudonné modules.

Dually, we know there is a coalgebra isomorphism between O(Z/pr) and
O(Wrk(1)), but more explicitly we know that they are in a generic form

k[t0, . . . , tr−1]
(tp0 − λ0, . . . , t

p
r−1 − λr−1)

for some polynomials λi in the r variables with the degree of any given tj being
at most p − 1, to ensure the algebra is of dimension pr. For Wrk(1) we have
each λi = 0, and for Z/pr, we have each λi = ti. Any specialization of the
generic form above which is compatible with the fixed coalgebra defined on the
monomial basis is defining a closed finite subgroup scheme of Wrk. All finite
group schemes with group algebra A are in this form, and so to classify them,
it is equivalent to find which quotients of M(Wrk) correspond to a unipotent
group scheme of the desired form.

Recall M(Wrk) = D/DV r. We have Z/pr is the subgroup of fixed points WF
rk

while Wrk(1) is the Frobenius kernel by definition. As such, we have

M(Z/pr) ≅ D/D(F − 1, V r), M(Wrk(1)) ≅ D/D(F,V r).

In order for U to be a finite group scheme with group algebra A, we must
have M(U) is a finite-length quotient of D/DV r. Thus we find the action of
F ∈ D has a minimal polynomial with coefficients in the noncommutative ring
Wr(k){V }/(V r, xV = V xp). It is not hard to see why the minimal polynomial
has to be linear in F , given the generic form. Then we knowM(U) is isomorphic
as a D-module to D/D(F −V ℓ, V r) for some 0 ≤ ℓ ≤ r. We have ℓ = r gives Wrk(1)
while ℓ = 0 gives Z/pr. We have shown, including the obvious two, that there
are r + 1 group schemes having group algebra A up to isomorphism.
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Notice again, that all r + 1 group schemes, by sharing a group algebra,
share an abelian category of representations. But by Tannakian duality [4],
group schemes are reconstructed from their category of representations, when
formalized as symmetric tensor categories. Thus we have a profound application
of Dieudonné theory to representation theory: an example of classifying all
tensor category structures on a given abelian category. Paradoxically, all r + 1
tensor categories defined this way have the same ring of representations under
the respective tensor product for the corresponding group scheme (exercise!).
With this, in a sense, the tensor category is only changing in the symmetric
braiding structure. This is far from a general fact about changing the tensor
category structure on a fixed abelian category. The ring of representations can
change spectacularly; see the author’s preprints [2], [3].
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