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We follow chapter 5 of [1]. Nakayama algebras are finite-dimensional
and representation-finite algebras that have a nice representation theory in
the sense that the finite-dimensional indecomposable modules are easy to
describe. In particular, we will show that these algebras are characterized
by the property that any indecomposable module has a unique composition
series. For a basic and connected algebra, Nakayama is equivalent to an
easily-checked condition on the underlying quiver.

Throughout these notes, A is a finite-dimensional algebra over a field k
and A — mod is the category of finite-dimensional left A-modules.

1. LOEWY LENGTH
For M € A — mod, define the radical series of M to be

0C---Crad®M C radM C M.

For M # 0, radM is properly contained in M, and since dimy M < oo,
the radical series of M is finite. We denote by r¢(M) the length of the
radical series of M. Note that rad’M = (radA)*.M, so rad’A = (radA)* and
ré(M) < ri(A).

Define the socle series of M inductively: soc’M := 0, and

soc ™M == 7 soc(M /soc M)
where 7 : M — M /soc' M is the quotient map, i.e.
soc™ ™ M /soc' M 22 soc(M /soc' M).
Since dimy M < oo, socM # 0 if M # 0 and the socle series
0 CsocM Csoc?M C---Cc M
is finite. Denote by s¢(M) the length of the socle series of M.

Remark 1.1. For i > 1, soc't1M is the pull-back of M 5 M/soc’M
soc(M /soc'M):

(1) 0 — soc! M — sociT1 M — soc(M /soc' M) — 0

0 —soc'M M M /soc! M —— 0
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Lemma 1.2. Let M € A—mod. Form € M andi>1, m € soc' M if and
only if rad"A.m = 0.

Proof. We use induction. Suppose the result holds for all ¢ < n. For 7 :
M — M /soc™(M) the quotient map,

m € soc" N <= m(m) € soc(M/soc™(M)) <—=radA.7(m) =0
rad"™ A.m = 0 <= radA.m C soc"M

Thus the result holds for ¢ = n + 1. It remains to show that m € socM <
radA.m = 0.

Suppose m € socM. Then m € Zj S; a finite sum of nonzero simple
submodules of M. By Nakayama’s lemma, radA.S; # Sj, so radA.S; = 0
for each j. Thus radA.m = 0.

Suppose radA.m = 0. Let N = A.m the cyclic submodule generated by
m. Note that radN = radA.(A.m) = 0, so N = N/radN is semisimple.
Thus N C socM, i.e. m € socM. O

Example 1.3. Let ) be the quiver
2
EERN
1 4
N/
3
and A = k(@ the path algebra. Let M be the representation
k
1 0
2R
k k
N A
k

Then M has radical series

0 0
PN AN
0 C &k 0 C k 0O C M
N/ A4
0 k
and socle series
0 ) k
AN AN
0 C k 0 C k 0O C M
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Note that the series are different. However, it is true that s¢(M) = ré(M)
in general, which we now show.

Lemma 1.4 (V.1.1). If f : M — N is a morphism in A — mod, then
f@rad'M) C rad'N for alli > 0. If f is epic, then f(rad'M) = rad'N for
all 1> 0.

Proof. We use induction. The result holds for ¢ = 0. Suppose the result for
1. Then

frad™™' M) = f (rad(rad’M)) = f(radA.rad’M) = rad A. f(rad’ M).
The result follows since radA.N = radN. O

Corollary 1.5 (V.1.2). Let 0 — L I M 4 N =0 be an ezact sequence in
A —mod. Then rf(M) > max{rf(L),r¢(N)}.

Proof. By the previous result, f (radiL) C rad’M and g(rad’M) = rad’N.
So rad*M = 0 implies rad*L = rad'N = 0. O

Remark 1.6. In the previous result, exactness at M is not required.
Recall the duality functor D : A—mod — A%’ —mod, DM = Homy (M, k).
Lemma 1.7. For M € A—mod and i > 0, soc: DM = D(M /rad’M).

Proof. Since soc®? DM = 0 and rad’M = M, the result holds for i = 0. Now
suppose ¢ > 1. Note that

D(M/rad'M) = ker(DM — Drad’M, f — f1)

where ¢ is the inclusion rad’M < M. '
Suppose f € DM such that fo =0. For a € rad"A and m € M,

f.a(m) = f(a.m) = fi(a.m) = 0.

Thus f.rad’A = 0, so by Lemma 1.2, f € soc'DM. '
Suppose f € soc'DM. Then by Lemma 1.2, f.(radA4)* = 0. For a.m €
(radA)*. M = rad'M,

fu(a.m) = fr.a(m) = (f.a)c(m) =0,
so ft = 0. The result follows. O
Corollary 1.8. For M € A —mod, s¢(DM) = r{(M).

Proof. By the previous result, soc DM = DM if and only if M /rad"M =
M, that is, rad" M = 0. O

Proposition 1.9 (V.1.3). For M € A —mod, ré(M) = st(M).

Proof. We first prove that s¢(M) < ré(M) by induction on s¢(M). Since
sS(M)=0M=0<r{(M)=0,

the result holds for s¢(M) = 0.
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Suppose s¢(X) < r{(X) for all X € A—mod such that s{(X) =i > 0 and
suppose s{(M) =i+ 1. Then r{(M) = j > 0 and rad’ "' M is semisimple
since radrad’~*M = 0. Thus rad’ "M C socM, so there is an epimorphism

M /rad’ =M — M /socM.
By Lemma 1.4, ‘

rl(M /rad’ " M) > r¢(M /socM).
By the induction hypothesis, s¢(M /socM) < r¢(M /socM). Since
rad(M /rad’ ' M) = rad M /rad’~' M,
we have that ‘
r0(M/rad’ 1 M) = r¢(M) — 1,

and since soc(M /socM) = soc?M /socM,

sl(M/socM) = st(M) — 1.
Then

ré(M) —1>rl(M/socM) > st(M/socM) = st(M) — 1.
Thus st(M) < ré(M).
By Corollary 1.8,
ré(M) = st(DM) < rl(DM) = s¢(DDM) = st(M).

Thus r¢(M) = st(M). O
Definition 1.10. We define the Loewy length (¢(M) := rl(M) = st(M).

Since rad(M @& N) = radM & radN, we have that ¢0(M; & --- & M,,) =
max{l{(M),...,0L(M,)}.

2. UNISERIAL MODULES AND ALGEBRAS

Definition 2.1. We say M € A — mod is uniserial if it has a unique
composition series, i.e. if the submodule lattice of M is a chain.

If M is uniserial, then so is any submodule and any quotient of M, and
M is indecomposable.

Remark 2.2. If M € A — mod is uniserial, then M has a unique maximal
submodule, namely radM, and a unique simple submodule, namely socM .

Remark 2.3. The book now says that a uniserial module is determined by
its composition series up to isomorphism, that is, if M and N are uniserial
modules that have the same composition factors in the same place, then
M = N. The book goes on to say that the proof is an obvious induction,
but I don’t see it.

Lemma 2.4 (V.2.2). Suppose M € A—mod. The following are equivalent:
(1) M is uniserial,
(2) the radical series of M is a composition series,
(8) the socle series of M is a composition series,
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(4) €(M) = €L(M).
Proof. (1 = 3) Suppose M is uniserial. Since M /soc!M is uniserial,
soc M M /soct M 22 soc(M /soc' M)

is simple.

(3 = 4) clear.

(4= 2) Let n = ¢(M) = ¢¢(M). If n =0 or 1, the radical series is a
composition series, so suppose n > 1. Consider the exact sequence

0 —radM — M — M/radM — 0.
Then ¢(M) = ¢(M/radM) + £(radM ). Continuing in this fashion, we get

n—1
M) = Zé(radiM/rad”lM) =n.
1=0
For 0 < i < n — 1, rad’M is nonzero so rad’ M /rad"™ M is nonzero. Then

{(rad'M /rad™ 1 M).
(2 = 1) Suppose the radical series

0=rad"M C ---rad’M C radM C M
is a composition series, and let
0=N,C---NhoCNiCM

be a composition series. We show by induction that N; = rad’M for all
0 < i < n. The result holds for ¢ = 0. Suppose the result holds for some
0 < i < n. Since the radical series is a composition series, rad’ M / rad’ ™t M is
simple, so N; = rad’M has a unique maximal submodule, namely rad*' M.
Thus Ny = rad1 M , and M is uniserial. O

Definition 2.5. We say A is left (resp. right) serial if every indecom-
posable projective left (resp. right) A-module is uniserial.

Lemma 2.6 (V.2.5). An algebra A is left serial if and only if for each
indecomposable projective P, radP/radZP s simple or zero.

Proof. (=) By Lemma 2.4, the radical series of P is a composition series.
(<) Consider the radical series

0=rad"P C --- Cc rad’?P Cc radP C P.

We show by induction that radiflP/ rad’P is simple or zero for 1 < i < n.
The result holds for i« = 1 by (1.5.17) and for ¢ = 2 by hypothesis.

Suppose the result holds for some 2 < i < n. Let f : P/ — rad"'P
be a projective cover and 7 : rad”'P — radiilP/radiP the quotient
map. Note that 7f is surjective and ker7f = f~'rad’P. By Lemma 1.4,
f(radP") = rad'P, and if f(p1) = f(p2) € rad’P for p; € radP’, then
p1 — p2 € ker f. Thus kerwf = radP’ + ker f, so ker7f is minimal and
wf: P — radi_lP/ rad’ P is a projective cover. By the induction hypothesis,
rad’~! P/rad’P is simple so P’ is indecomposable by (I.5.17). From Lemma
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1.4 we get epimorphisms f; : radP’ — rad’P and fs : rad*P’ — radiHP by
restricting f. There is an epimorphism h : rad P’/ rad’P’ — rad' P/ rad ™1 P
making the diagram

0 —— rad*P’ rad P’ radP’ /rad’P’ —— 0

|
lfQ lfl I h
\

0 — raditlp ——rad'P — radiP/radi+1P —0

commute. Since P’ is indecomposable projective, rad P’/ rad?P’ is simple or
zero by the induction hypothesis. Thus so is rad’P/rad’ ™! P. O

Theorem 2.7 (V.2.6). A basic k-algebra A is left serial if and only if for
every vertex a in the underlying quiver Qa of A, there is at most one arrow
with source a.

Proof. By Lemma 2.6, A is left serial if and only if, for every a € (Q4)o, the
left A-module
radP(a)/rad>P(a) = (radA/rad’A)e,

is simple or zero, i.e. 1-dimensional since A is basic. The result follows since

(radA/rad?A)e, = @ ep(radA/rad’A)e,
bE(Qa)o
and
dimy, e (radA/rad?A)e, = [{a — b € (Qa)1}].
O

Corollary 2.8. A basic k-algebra A is right serial if and only if for every
vertex a in the underlying quiver Q4 of A, there is at most one arrow with
sink a.

Proof. Since the right projective A-modules are the left projective A°P-
modules, A is right serial if and only if A is left serial. The result follows
from the theorem since Qg0r = (Q ). O

Remark 2.9. The results above give conditions only on the underlying
quiver, not on the admissible ideals (except that the algebra need be finite-
dimensional).

3. NAKAYAMA ALGEBRAS

Definition 3.1. We say A is a Nakayama algebra if it is both left and
right serial, i.e. the indecomposable projectives and indecomposable injec-
tives are uniserial.

Theorem 3.2 (V.3.2). A basic and connected algebra A is a Nakayama
algebra if and only if the underlying quiver Q 4 is
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or
/ 1 \
2 n

Proof. This follows from Theorem 2.7 and Corollary 2.8. (]

Remark 3.3. This previous result is a condition simply on the underlying
quiver of A (except that for the second quiver, a power of the cycle has to
be in the admissible ideal since A is finite-dimensional).

Lemma 3.4 (V.3.3). Let A be an algebra and J a proper 2-sided ideal.
(1) If A is left (or right) serial then so is A/J.
(2) If A is Nakayama then so is A/J.

Proof. Suppose A is left serial. Write A = @, P;, each P; indecomposable.
Then A/J = @, P;/JP;. Since A is left serial, P; is uniserial, thus so is
P;/JP;. Then P;/JP; is indecomposable, so A/J is left serial.

The result for right serial follows similarly, and 2 follows easily from 1. [J

Note that socM = socE(M) for E the injective envelope of M.

Lemma 3.5 (V.3.4). Let A be Nakayama and P € A — mod an indecom-
posable projective such that LL(P) = L(A). Then P is also injective.

Proof. Let u : P — E be an injective envelope. Since P is uniserial, socP
is simple, thus so is socE = socP. Thus F is indecomposable. Since A is
Nakayama, F is uniserial and

VU(A) =L(P) < U(E)=UE)<UA).
Thus (P) = {(E) and P = E. O
Theorem 3.6 (V.3.5). Let A be Nakayama, M € A — mod indecomposable

and t = UU(M). There exists an indecomposable projective P € A — mod
such that M = P/rad'P. In particular, A is representation-finite.

Remark 3.7. The book supposes in addition that A is basic and connected.
I don’t see where these conditions are used.

Proof. Since ¢4(M) = t, rad'M = rad’A.M = 0 so M is naturally a left
A/rad! A-module (write B = A/rad’A). Since rad’™! # 0, rad"1A # 0 so
(B) = t. Since A is Nakayama, B is Nakayama by Lemma 3.4, and we
decompose B into its indecomposable projectives

B = @;P;/rad' P,
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where A = @;P; with each P, indecomposable. Let f : @;Zle — M be a
projective cover in B — mod with each Pj’ indecomposable. Since
t = 00(B) > max{ll(P]),...,00(P)} > (M) =t,
2(P]) =t for some j. Rearrange the Pjs so that ¢/(P]) =t for all j < s, so
CU(P]) <t forall j > s.
Write f; = f \pJ{. Suppose no f; is injective for j <s. Then
EE(Ime) = EE(PJ//Kel"fJ) <t

for all j. Since

Pimf; - M

j=1
is surjective, £¢(M) < t by Lemma 1.4, a contradiction. Thus f, is injective
for some ¢ < s. By Lemma 3.5, Pj is injective since £4(F)) = t = L{(DB).
Thus f, is a section. Since M is indecomposable, f, is an isomorphism, and

M = P, = P;/rad'P;
for some 1. O

Corollary 3.8. An algebra A is Nakayama if and only if every indecom-
posable A-module is uniserial.

Example 3.9. Let ) be the quiver

129 P30y

with relation vSa = 0. Then all the indecomposable A-modules are

i || P, | Pi/radP; | Pi/rad®P; | P;/rad’P; |
1 kkkO | %000 kk00 P
2 | Okkk | 0Kk00 0kkEO Py
3 00kk | 00kO Ps
4 [ 000k Py
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