
FUNCTORIAL APPROACH TO ALMOST SPLIT SEQUENCES

JIM STARK

1. Some Category Theory

In this section we introduce functor k-categories and the Yoneda embedding. Fix
a field k and recall that a k-category C is a category such that MorC(M,N) is a
k-vector space and composition is bilinear. A functor F between two k-categories
is k-linear if the induced maps Mor(M,N)→ Mor(FM,FN) are k-linear. In these
notes by category we mean an additive k-category and by functor we mean a k-
linear functor. We will use the notation Nat(F, T ) for the collection of natural
transformations from F to T .

Definition 1. Let B and C be two categories. Then CB is the category whose
objects are all functors F : B → C and whose morphisms from F to T are the
natural transformations Nat(F, T ) with the usual identity and composition law.

Proposition 1.1. If B and C are abelian then so is CB.

Implicit in the definition above is the claim that if B and C are additive k-
categories then so is CB. Instead of a proof of this fact and of the proposition
above we will just give the various constructions, as well as some additional facts,
below. The verification that these constructions satisfy the appropriate universal
properties is straightforward in all cases.

• Let Φ,Ψ ∈ Nat(F, T ), a, b ∈ k. Then aΦ + bΨ ∈ Nat(F, T ) is defined by

(aΦ + bΨ)M = aΦM + bΨM .

• For any F, T ∈ CB the functor F ⊕ T is given by

(F ⊕ T )(M) = FM ⊕ TM and (F ⊕ T )(f) =
[
F (f) 0

0 T (f)

]
.

• The zero object in CB is the functor that maps every object in B to the
zero object in C.

• If Φ ∈ Nat(F, T ) then (ker Φ)(X) = ker(ΦX) for all X ∈ B. The image
and cokernel of a functor are defined similarly.

• A sequence F → T → G is exact at T if and only if FX → TX → GX is
exact at T for every X ∈ B.

• Subobjects of T ∈ CB correspond to subfunctors; that is, functors F ∈ CB
such that FX is a subobject of TX for all X ∈ B and the inclusions give
a natural transformation F → T .

• A morphism Φ ∈ Nat(F, T ) is a monic, an epic, or an isomorphism if and
only if ΦX is for all X ∈ B.

The Yoneda embedding is a way to embed a category into a functor category.
Specifically it embeds as the full subcategory of representable functors.
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Definition 2. A representable functor F is any functor naturally isomorphic to
MorC(X,−). We say that X is the representing object of F .

Lemma 1.2 (Yoneda’s Lemma). Let C be an additive k-category, X ∈ C, and
F : C → k−mod a functor. Then there is a bijection Nat(MorC(X,−), F ) ' FX
that is functorial in X and natural in F .

Sketch of proof. The maps are

Nat(MorC(X,−), F )→ FX and FX → Nat(MorC(X,−), F )
Φ 7→ ΦX(idX) v 7→ [f 7→ F (f)(v)].

That these maps are inverses, functorial in X, and natural in F is straightforward
to check. �

We say the vector in FX represents the transformation associated to it under
this bijection. Of particular interest is the case F = MorC(Y,−) where the map

MorC(Y,X) ∼→ Nat(MorC(X,−),MorC(Y,−))

is given by f 7→ − ◦ f . Functoriality of the Yoneda lemma then implies that if
MorC(X,−) → MorC(Y,−) and MorC(Y,−) → MorC(Z,−) are represented by the
morphisms φ ∈ MorC(Y,X) and ψ ∈ MorC(Z, Y ) respectively then their composi-
tion MorC(X,−)→ MorC(Z,−) is represented by φ◦ψ ∈ MorC(Z,X). The identity
transformation is represented by the identity morphism so we have the following.

Theorem 1.3 (Yoneda Embedding). There is an embedding Cop → (k−mod)C.

Proof. Map an object X to MorC(X,−). A morphism f : Y → X in Cop is by
definition a morphism f : X → Y in C so map it to the natural transformation
− ◦ f : MorC(Y,−) → MorC(X,−). We have shown above that this is functorial.
The Yoneda lemma gives that it is fully faithful. �

We end this section with the dual statements about contravariant functors. A
contravariant functor is representable and represented by X if it is naturally iso-
morphic to MorC(−, X).

Proposition 1.4.

(i) If X ∈ C and F : C → k−mod is a contravariant functor then there is a
bijection Nat(MorC(−, X), F ) ' FX that is functorial (contravariant) in
X and natural in F .

(ii) There is an embedding C → (k−mod)C
op

.

Proof. A contravariant functor C → k−mod is the same thing as a covariant functor
Cop → k−mod so we just apply Lemma 1.2 and Theorem 1.3 above. The maps in
(1) are the same as in Lemma 1.2, they are

Nat(MorC(−, X), F )→ FX and FX → Nat(MorC(−, X), F )
Φ 7→ ΦX(idX) v 7→ [f 7→ F (f)(v)].

The functor in (2) maps an object X to MorC(−, X) and a morphism f : X → Y
to the natural transformation f ◦ − : MorC(−, X)→ MorC(−, Y ). �
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2. The Categories Fun(A) and Funop(A)

Specify to the case C = A−mod.

Definition 3. For any k-algebra A let

Fun(A) = (k−mod)A−mod and Funop(A) = (k−mod)(A−mod)op

be the functor categories defined in the previous section. We say that an object F
in either of these categories is finitely generated if it is a quotient of a representable
functor.

In this section we establish the following classifications for Fun(A) and Funop(A):
• The finitely generated projective objects are the representable functors.
• Such a functor is indecomposable if and only if its representing object is.
• Isomorphism classes of simple objects are in bijective correspondence with

isomorphism classes of indecomposable A-modules. The correspondence
maps M to the equivalence class of the functor

SM = HomA(M,−)/radA(M,−) (in Fun(A))

SM = HomA(−,M)/radA(−,M) (in Funop(A)).

To begin we have the Yoneda embeddings

(A−mod)op → Fun(A) and A−mod→ Funop(A).

Recall that an object P in either Fun(A) or Funop(A) is projective if, given any
natural transformation Φ: F → G, the map Φ ◦ − : Nat(P, F ) → Nat(P,G) is
surjective. We take care of the first two points in the above classification with the
following proposition.

Proposition 2.1. The embedding (A−mod)op → Fun(A) induces an equivalence
of categories between (A−mod)op and fgp Fun(A), the full subcategory of finitely
generated projective objects in Fun(A). Moreover if F ∈ fgp Fun(A) is represented
by M then F is indecomposable in Fun(A) if and only if M is an indecomposable
A-module.

Proof. We already know that the embedding is fully faithful so to prove that it is
an equivalence of categories we must show that its image is a dense subcategory
of fgp Fun(A). First we claim that each HomA(M,−) is a projective object. Let
Φ: F → G be an epimorphism. Naturality of Yoneda’s lemma gives the commuta-
tive diagram below.

Nat(HomA(M,−), F )

Φ◦−
��

∼ // FM

ΦM

��
Nat(HomA(M,−), G) ∼ // GM

By hypothesis ΦM is surjective and the other two maps are bijections therefore
Φ ◦ − is surjective. This proves that HomA(M,−) is projective.

Now we prove that the image is dense in fgp Fun(A), so let F be a projec-
tive object and Φ: HomA(M,−) → F an epimorphism (so that F is finitely gen-
erated). As F is projective there exists a splitting Ψ: F → HomA(M,−) and
ΨΦ ∈ End(HomA(M,−)) is an idempotent. By Yoneda’s lemma ΨΦ is represented
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by some idempotent f ∈ End(M) therefore M = im f ⊕ ker f . Additive functors
split over direct sums therefore

HomA(M,−) ' HomA(im f,−)⊕HomA(ker f,−).

But note that ΨΦ = − ◦ f and f idempotent means it is the identity on its image.
Therefore we conclude that HomA(im f,−) ' im(ΨΦ) ' F is representable and the
embedding is dense as desired.

In any abelian category a direct summand of a projective object is projective
and by Yoneda the representing object of F is uniquely determined up to isomor-
phism therefore HomA(M ⊕ N,−) ' HomA(M,−) ⊕ HomA(N,−) implies that a
representable functor is indecomposable if and only if its representing object is. �

To classify the simple objects we first prove that the SM are in fact simple.

Lemma 2.2. If M is an indecomposable A-module then radA(M,−) is the unique
maximal subfunctor of HomA(M,−).

Proof. Clearly radA(M,−) is a proper subobject because radA(M,M) doesn’t con-
tain the identity map therefore it suffices to show that every proper subfunctor
F ⊆ HomA(M,−) is a subfunctor of radA(M,−). Being additive functors both
HomA(M,−) and radA(M,−) split over direct sums so it suffices to show that
F (N) ⊆ radA(M,N) when N is an indecomposable A-module. If N 6' M then
radA(M,N) = HomA(M,N) and the conclusion is trivial so all that remains is to
show that F (M) ⊆ radA(M,M).

As F is a subfunctor of HomA(M,−) we have F (f) = f ◦−. Assume φ ∈ F (M).
By Yoneda’s lemma −◦φ defines a natural transformation HomA(M,−)→ F , hence
a natural transformation HomA(M,−) → F → HomA(M,−). As F is a proper
subfunctor this natural transformation is not an isomorphism therefore Yoneda
implies that φ is not an isomorphism either. Hence φ ∈ radA(M,M) as desired. �

Clearly this is well defined as a mapping of isomorphism classes. Part 2 of the
following implies that it is a bijection.

Proposition 2.3. Let S ∈ Fun(A) be a simple object.
(i) If M is indecomposable and πM : HomA(M,−) → S is nonzero then for

any Φ if πM ◦ Φ is an epimorphism then so is Φ.
(ii) There is a unique indecomposable A-module M such that S(M) 6= 0. For

such an M we have S ' SM and S(X) 6= 0 if and only if M is a direct
summand of X.

Proof. Assume we have Φ: F → HomA(M,−) such that πM ◦Φ: F → S is an epi-
morphism. Then because HomA(M,−) is projective there is a map HomA(M,−)→
F making the diagram below commute.

HomA(M,−)

��

πM

%%KKKKKKKKKKK

−◦φ

""

F

Φ

��

S

HomA(M,−)

πM

99sssssssssss
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The composition HomA(M,−) → F → HomA(M,−) is represented by some ele-
ment φ ∈ End(M). As M is indecomposable End(M) is local so φ is either nilpotent
or an isomorphism. Commutativity of the diagram and πM nonzero shows that φ is
not nilpotent therefore it must be an isomorphism. The composition is represents
is therefore an isomorphism so Φ is an epimorphism. This proves (i).

For (ii) we know S is nonzero therefore S(M) 6= 0 for some M . As S splits
over direct sums we can assume M is indecomposable. By Yoneda there exists a
nonzero map πM : HomA(M,−)→ S. As S is simple the kernel of πM is a maximal
subobject in HomA(M,−), so by Lemma 2.2 the kernel is radA(M,−) and S ' SM .

Assume that S(X) 6= 0 for some X and let πX : HomA(X,−) → S nonzero
be given by Yoneda as well. As above these are epimorphisms so HomA(X,−)
projective implies there is a map Φ: HomA(X,−)→ HomA(M,−) such that πX =
πM ◦Φ. By Part (i) the map Φ is an epimorphism so HomA(M,−) projective implies
HomA(M,−) is a direct summand of HomA(X,−). As in the proof of Proposition
2.1 this implies M is a direct summand of X. In particular this shows that M is
unique. �

Last but not least we state the dual results for Funop(A).

Proposition 2.4.

(i) The embedding A−mod → Funop(A) induces an equivalence of categories
between A−mod and fgp Funop(A). Moreover if F ∈ fgp Funop(A) is rep-
resented by M then F is indecomposable in Funop(A) if and only if M is
an indecomposable A-module.

(ii) If M is an indecomposable A-module then radA(−,M) is the unique max-
imal subfunctor of HomA(−,M).

(iii) If πM : HomA(−,M)→ SM is the canonical quotient map then for any Φ
if πM ◦ Φ is an epimorphism then so is Φ.

(iv) Let S ∈ Funop(A) be a simple object. Then there is a unique indecompos-
able A-module M such that S(M) 6= 0. For such an M we have S ' SM

and S(X) 6= 0 if and only if M is a direct summand of X.

3. Projective presentations and almost split sequences

In Fun(A) and Funop(A) we have projective objects and epimorphisms. In order
to define projective covers and minimal projective presentations we need only define
the notion of a minimal epimorphism. The remaining definitions are the same as
in A−mod.

Definition 4. An epimorphism Φ ∈ Nat(F,G) is minimal if for every H and
every Ψ ∈ Nat(H,F ) it is the case that Φ ◦ Ψ an epimorphism implies Ψ is an
epimorphism. In general a map is minimal if it is a minimal epimorphism onto its
image.

Corollary 3.1. The maps πM : HomA(M,−)→ SM and πM : HomA(−,M)→ SM

are projective covers.

We will now start to link minimal projective presentations in Fun(A) and Funop(A)
to almost split sequences in A−mod.
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Lemma 3.2.

(i) Let L be an indecomposable module. A map f : L → M is left almost
split if and only if the image of − ◦ f : HomA(M,−) → HomA(L,−) is
radA(L,−).

(ii) Let N be an indecomposable module. A map g : M → N is right almost
split if and only if the image of g ◦ − : HomA(−,M) → HomA(−, N) is
radA(−, N).

Proof. We prove (i), the proof of (ii) is similar. Images are pointwise and functors
split over direct sums so the condition on −◦f is equivalent to the condition that for
every indecomposable module X the image of −◦ f : HomA(M,X)→ HomA(L,X)
is radA(L,X), the non-invertible maps L → X. Assume this is the case. Then f
is not a section because h ◦ f ∈ radA(L,L) is always non-invertible. The lifting
property can be shown for indecomposable modules so assume X is indecomposable
and u : L → X is not a section. Then it is not invertible so u ∈ radA(L,X) =
im(− ◦ f) which means h lifts as desired. This proves that f is left almost split.

Next assume f is left almost split and X is an indecomposable module. A section
between two indecomposable modules is an isomorphism so each h ∈ radA(L,X)
is not a section and f left almost split implies h ∈ im(− ◦ f). Conversely X 6' L
implies HomA(L,X) = radA(L,X) and for X ' L the fact that f is not a section
implies h ◦ f is never invertible, so in either case im(− ◦ f) ⊆ radA(L,X). �

Lemma 3.3.

(i) Let L be an indecomposable module. A map f : L → M is left minimal
if and only if the induced map − ◦ f : HomA(M,−) → HomA(L,−) is
minimal.

(ii) Let N be an indecomposable module. A map g : M → N is right minimal
if and only if the induced map g ◦ − : HomA(−,M) → HomA(L,−) is
minimal.

Proof. We prove (i), the proof of (ii) is similar. First assume f is left minimal
and Φ: F → HomA(M,−) is natural such that (− ◦ f) ◦ Φ is an epimorphism. We
proceed as in the proof of Proposition 2.3, projectivity gives the diagram below

HomA(M,−)

��

−◦f

''OOOOOOOOOOO

−◦h

""

F

Φ

��

im(− ◦ f)

HomA(M,−)
−◦f

77ooooooooooo

and Yoneda gives h. The bijectivity of Yoneda gives hf = f so h, and hence the
natural transformation it represents, is an isomorphism. Thus Φ is surjective.

Now assume −◦f is minimal and h ∈ End(M) such that hf = f . Minimality and
the diagram above imply that − ◦ h : HomA(M,−) → HomA(M,−) is surjective.
By projectivity the kernel K is a direct summand of Hom(M,−) so the diagram is
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the following:
K ⊕G

−◦f

''OOOOOOOOOOOO

−◦h

��

im(− ◦ f)

HomA(M,−)
−◦f

77ooooooooooo

Commutativity implies that the inclusion G→ K⊕G followed by −◦f is surjective
so G→ K⊕G is surjective. Hence −◦h is injective and therefore an isomorphism.
By Yoneda h is an isomorphism. �

Now we have the tools we need to present the main theorem.

Main Theorem.
• Let L be an indecomposable module.

(i) L is injective and f : L → M is left minimal almost split if and only
if

0→ HomA(M,−)
−◦f→ HomA(L,−) πL→ SL → 0 (∗)

is a minimal projective resolution of SL in Fun(A).

(ii) L is not injective and 0→ L
f→M

g→ N → 0 is an almost split exact
sequence if and only if N 6= 0 and

0→ HomA(N,−)
−◦g→ HomA(M,−)

−◦f→ HomA(L,−) πL→ SL → 0 (∗∗)
is a minimal projective resolution of SL in Fun(A).

• Let N be an indecomposable module.
(i) N is projective and g : M → N is right minimal almost split if and

only if

0→ HomA(−,M)
g◦−→ HomA(−, N) π

N

→ SN → 0

is a minimal projective resolution of SL in Funop(A).

(ii) N is not projective and 0 → L
f→ M

g→ M → 0 is an almost split
exact sequence if and only if L 6= 0 and

0→ HomA(−, L)
f◦−→ HomA(−,M)

g◦−→ HomA(−, N) π
N

→ SN → 0

is a minimal projective resolution of SL in Funop(A).

Proof. We prove the covariant case, the contravariant case is similar. First note
that Lemmas 3.2 and 3.3 imply that f is left minimal almost split if and only if

HomA(M,−)
−◦f→ HomA(L,−) πL→ SL → 0

is a minimal projective presentation of SL. For (i) assume this is the case and L is
injective, we need that − ◦ f is a monomorphism. But Proposition 3.5 in the text
gives that f is an epimorphism so left exactness of HomA implies that the induced
map − ◦ f is a monomorphism as desired.

Conversely if (∗) is a minimal projective resolution then f is left minimal almost
split by the above reasoning, we need that L is injective. Evaluating at coker f gives
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an injective map − ◦ f : HomA(M, coker f) → HomA(L, coker f). The standard
projection M → coker f is the zero map because both are sent to the zero map
under − ◦ f . This gives coker f = 0 so f is surjective, hence not the left map in an
almost split short exact sequence, hence L is injective.

For (ii) assume L is not injective and 0 → L
f→ M

g→ N → 0 is an almost
split short exact sequence. Then f is left minimal almost split so the minimal
projective presentation is as above. Left exactness of HomA them implies that (∗∗)
is the minimal projective resolution. By uniqueness of almost split exact sequences
L ' τ−1L 6= 0 because L is not injective.

Conversely assume N 6= 0 and (∗∗) is the minimal projective resolution. Then
f is left minimal almost split. If L were injective then by (i) the map − ◦ f would
be injective and therefore HomA(N,−) = 0. But then HomA(N,N) = 0 and this is
a contradiction, because N 6= 0 implies that the identity map is distinct from the
zero map. So L is not injective and f is left minimal almost split. Proposition 3.1
in the text (and uniqueness of minimal almost split morphisms) gives an almost

split short exact sequence 0→ L
f→ M

g′

→ τ−1L→ 0. The previous direction then
implies that HomA(τ−1L,−) ' HomA(N,−). In particular we have a commutative
diagram

HomA(N,−) ∼ //

−◦g
��

HomA(τ−1L,−)

−◦g′
vvmmmmmmmmmmmmm

Hom(M,−)

so by Yoneda we have a commutative diagram

N τ−1L
∼oo

Hom(M,−)

g

OO

g′

88rrrrrrrrrr

therefore 0→ L→M → N → 0 is an almost split short exact sequence. �
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