SIMPLE ROOTS, CARTAN MATRICES AND DYNKIN DIAGRAMS

SNOW CLOSURE LECTURE NOTES FOR 581C

ABSTRACT. We show that if ® is an irreducible root system then at most two different root lengths can occur
in ®. We define Cartan matrix and Dynkin diagram associated to a root system and state the Classification
theorem to be proven next week. The material covered can be found in [H], sections 10.4, 11.1, 11.2, 11.3,
11.4.

2. SIMPLE ROOTS, CONTINUATION
We fix a base I1 C @, IT = {a, ..., an}, so that «;, 1 <i <n, are simple roots.

Definition 2.1 (Partial order on ®). Let a,3 € ®. Wesay a = 0iff a € o4, and a < 0iff a € O_.
We also say « > (3 iff @« — [ is a sum of positive roots (equivalently, simple roots).

Remark 2.2. Note that it can happen that a > § but a« — 8 is NOT a root, only a sum of positive roots.
Find an example in By or Gbs.

Fact 2.1. Suppose ® is irreducible. Then there exists a unique mazimal root with respect to the partial order
=. Moreover, if « = c;a; then all coefficients ¢; are non-zero.

Definition 2.3. Let a =) ¢;a; be a root. Then hta = Y ¢; is called the height of a.

Exercise*. Determine maximal roots for all irreducible root systems of rank 2.

Remark 2.4. Recall from last time that any root is an image of a simple root under the action of the Weyl
group.

Lemma 2.5. Let @ be irreducible. Then E does not have non-trivial proper W -invariant subspaces (that is,
E is an irreducible representation of W ).

Proof. Proof by Contradiction. Suppose E; C E is a proper, non-trivial W-invariant subspace. Let Ej be
the orthogonal complement to E; with respect to the bilinear form we have on E. Then E = E; x Ei-. 1
claim that for any root o we have that either o € Ey or a € Ef-.

Suppose a € E;. Let P, be the hyperplane perpendicular to a. We’'ll show that Fy C P,. Suppose not.
Since Fj is W-invariant, we have o,(E7) = F;. If there exists A € F7 such that A ¢ P,, then we have that

oA —A=—-(\, o)a € E.

Since A € P,, we have that (A, «) # 0. Therefore, a non-zero multiple of « is in Fj, and, hence, « itself is
in E;. This contradicts our assumption and we conclude that E; C P,. This, in turn, implies that o L Fj.
Hence, o € Ei-. This proves the claim.

Let ®; = {a € By} and ®3 = {a € E{-}. We just showed that ® = ®;I1®, which contradicts irreducibility
of @. O

Proposition 2.6. Let ® be an irreducible root system. Then at most two different root lengths occur in ®.

Proof. Let a, 5 € ®, B # +«. Since W acts irreducibly on E by the lemma, we have that the orbit of «,
Wa, generates F as a vector space. This implies that we can find w € W such that (w(«), 8) # 0. Replacing
a with w(a) or —w(a) (which does not change the length), we can assume that («, 3) > 0.
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Recall the table we constructed after making “Observation 17 in this chapter that noted that (o, 8) =
0,+1, £2, £3 (we assumed for the table that ||G]] > ||«a]]):

{a, 8) | (B, ) ¢ | cosg
0| w/2 0
1] 7/3 1/2

~1|27/3| -1/2
2 w/4| 1/V2

—2 | 37/4 | —1/V2

3| n/6] V3/2

-3 | 57/6 | —V3/2

It follows that 121 takes values 1,2,3,1/2,1/3. Fix a and go over all roots 3 in ®.
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1. Suppose we find 31, B2 such that ”ﬁl”; =2or 1/2 and llﬁz”; =3 or 1/3. Then ”ﬁl”z =2 3 6or i
[al] o] 118211 372 6
But from our table we know that this is not possible.

2. Now suppose llllielI'I'; =2 and ||||[;2||||22 = % Then Hg;”j = 4. Contradiction again. Similarly for 3 and 1/3.

We conclude that the values of ||||[2|||22 can be 1 and at most one more value from {2,1/2,3,1/3}. Therefore,

only one root length besides ||a|| can occur. O

Remark 2.7. With just a little more work one can show that all roots of the same length are conjugate
under the action of W.

Definition 2.8. In an irreducible root system shorter roots are called short, and longer roots are called
long.

Remark 2.9. One can show that the maximal root is always long (check for yourself for all rank 2 cases)

3. CARTAN MATRICES AND DYNKIN DIAGRAMS
As before, we fix a base IT = {a1, ..., a,} of ®. Moreover, we now also fix the order of simple roots.
Definition 3.1. Let a;; = (o, ;). The matrix (a;;) is called the Cartan matriz of .

Remark 3.2. The Cartan matrix is non-singular. We have essentially proved this earlier at some point.
Please convince yourself that it follows from non-degeneracy of the bilinear form.

Example 3.3. Here are the Cartan matrices for rank 2 root systems. The ones for By and G2 depend on
the order of simple roots. Figure out which order was chosen for each one (with respect to the labels «, 8
on the pictures that we had on the board).

2 0 2 —1 2 -2 2 —1
woon [Ga] e [0 w [23] e [47]

Theorem 3.4. The Cartan matrix determines the root system ® up to isomorphism.

We skip the proof of this theorem which can be found in [H, 11.1]. It should be more intuitively clear if
we formulate the statement as follows:
Let (®, E), (®',E’) be two root systems of the same rank with simple roots II = {a1,...,a,}, II' =
{ai, ..., a,} respectively. Suppose a;; = a;; for all pairs ,j. Then the map
Qv al
extends uniquely to an isomorphism of root systems & ~ @'.

It is not too hard to reconstruct the root system from its Cartan matrix. Humphreys describes how to
do this inductively on page 56.



Definition 3.5 (Coxeter graph.). Let ® be a root system of rank n, Il = {a1, ..., a,} be simple roots, (a;;)
be the Cartan matrix. The Coxeter graph of ® is a graph on n vertices labeled with «q, ..., a, such that
the number of edges connecting o; and ¢ equals a;jaj; = (o, o) (e, ).

Remark 3.6. There can be at most three edges between any two vertices of a Coxeter graph associated
to ®.

Note that if «;,a; are connected by exactly one edge then they must have the same length (since
(o, a){aj, ;) = 1), and, vice versa, if they have the same length, they are connected by at most on
edge. So vertices marked by simple roots of different length are connected by 2 or 3 edges. This, in partic-
ular, implies that if the Coxeter graph is simple, it determines completely the Cartan matrix and the root
system.

Definition 3.7 (Dyunkin diagram). The Dynkin diagram of a root system ® is a partially directed Coxeter
graphs with directions assigned to certain arrows as follows: if «; and «; are connected by two or three
edges, then we put a direction on the edges going from the long to the short root.

Example 3.8. Dynkin diagrams in rank 2.
Al X Al Y Y

Az oo
B2 e——o

G2 ——o

Proposition 3.9. Dynkin diagram completely determines the Cartan matriz.

Proof. Exercise O

Example-Exercise. Reconstruct the Cartan matrices for Dynkin diagrams of the types Fy and Dy:

Fy o———o—"—9o o

Dy

Theorem 3.10 (Cartan-Killing classification). Let ® be an irreducible root system of rank n. Then its
Dynkin diagram must be one of the following:



E¢ ° °

|
|

Es ° °

Fy o eo——9o o

G2 ——e
Moreover, root systems corresponding to different diagrams are pair-wise non-isomorphic.

Remark 3.11. In [H2], an abstract Coxeter graph is defined as a simple graph with labels assigned to edges.
To make the transition, we have to replace double edges with single edges labeled with 4 and triple edges
with single edges labeled with 6. Note that this is a very meaningful labeling. In each case, if the label is
m, then the angle between the corresponding simple roots equals 7 — .
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