Homework 2 for "Algebraic Structures I", Autumn 2016 due Friday, Nov. 28

For this homework assignment assume that k is an algebraically closed field of characteristic 0.

Problem 1. Let A be a Hopf algebra, and let $\nabla : A \to A \otimes A$ be the comultiplication. An element $a \in A$ is called primitive if $\nabla(a) = a \otimes 1 + 1 \otimes a$. The subspace of all primitive elements is denoted Prim(A). Show that Prim(U(g)) = g for any Lie algebra g over a field k of characteristic 0.

Problem 2. Let x, y be commuting semisimple elements in gl_n . Show that x + y is semisimple. Give an example when this fails if x, y do not commute.

Problem 3.

- (1) Let V be a representation of a Lie algebra \mathfrak{g} , and let $W \subset V$ be a subrepresentation. Let $B_V : \mathfrak{g} \times \mathfrak{g} \to k$ be a bilinear form associated to V via the formula $B_V(x, y) = tr(\rho_V(x)\rho_V(y))$, and define B_W and $B_{V/W}$ similarly. Show that $B_V(x, y) = B_W(x, y) + B_{V/W}(x, y)$.
- (2) Let I ⊂ g be an ideal in g. Show that the restriction of the Killing form of g to I coincides with the Killing form of I.

Problem 4. Let *n* be an even number, and let *V* be a representation of sp(n) obtained by restricting the standard representation of gl_n (that is, *V* is an n-dimensional vector space, and the action is given by matrix multiplication). Show that B_V as defined in Problem 1 is non-degenerate. (Note that if x, y are two symplectic matrices, then $B_V(x, y)$ is simply tr(xy)).

Problem 5. Let \mathfrak{g} be a simple Lie algebra. Show that an invariant symmetric bilinear form on \mathfrak{g} is unique up to a scalar.