
WORKSHEET ON ARTINIAN RINGS WITH PROOFS

REID DALE (SECTION 1) AND JIM STARK (SECTION 2)

All rings are commutative UNLESS specified otherwise (as in Theorem 1.3). This worksheet
pursues two main results on Artinian rings:

(1) A commutative Artinian ring is a Noetherian ring of dimension 0 (Theorem 2.6).
(2) Structure theorem for commutative Artinian rings (Theorem 2.9)

1. Hopkins-Levitzki theorem (Courtesy of Reid)

Definition 1.1. An ideal I of a ring R is nilpotent if In = 〈x1 · · ·xn |xi ∈ I〉 = (0) for some n ∈ Z.

Lemma 1.2. The Jacobson radical J(R) of a commutative Artinian ring R is a nilpotent ideal.

Proof. Suppose that J(R) is not nilpotent; then Jn(R) 6= 0 for all n. Since R is Artinian, Jk(R) =
Jk+n(R) for all n ∈ N for some k ∈ N. Now, let Σ = {a ⊆ R | Jk(R)a 6= 0}. By assumption Σ is
nonzero since J(R) is not nilpotent. If we order Σ my reverse containment, the Artinian condition
guarantees that any chain has an upper bound and hence a maximal element by Zorn’s lemma
(which is in fact minimal with respect to inclusion); call it h. Now, if h ∈ h is not annihilated by
Jk(R) (which, since h ∈ Σ must exist) then 〈h〉 ⊆ h and by inclusion-minimality h = 〈h〉. Now,
Jk(R)(h) = Jk(R) 〈h〉 ⊆ 〈h〉 and by the stability Jk+n(R) = JkR we have that this ideal is itself
nonzero when multiplied by Jk(R) and lies in Σ; by inclusion minimality 〈h〉 = Jk(R) 〈h〉. But then
〈h〉 = J(R) 〈h〉 and is finitely generated as an R-module, so we can apply Nakayama’s lemma to get
that 〈h〉 = 0, contradicting its inclusion in Σ. Hence J(R) is nilpotent. �

The result of the lemma holds for non-commutative rings. The proof should work almost without
changeonce one makes the necessary “non-commutativity” adjustements. For the next theorem, we
will assume that the result of the lemma holds for not necessarily commutative rings.

Theorem 1.3. [Hopkins-Levitzki theorem] Let R be an Artinian ring (not necessarily commutative),
and M be a finitely generated R-module. Prove that M is a Noetherian R-module.

Proof. Because the Jacobson radical is nilpotent, we have a chain of R-modules

0 = Jn(R)M ⊆ Jn−1(R)M ⊆ · · · ⊆ J(R)M ⊆M

We do induction along this series to show that M is Noetherian. Clearly 0 is Noetherian, so our base
case is established. Now, suppose that Jk(R)M is Noetherian; we wish to show that Jk−1(R)M is
Noetherian. Consider the exact sequence

0→ Jk(R)M → Jk−1(R)M → Jk−1(R)M/Jk(R)M → 0

with the obvious inclusion and projection maps. We know that Jk(R)M is Noetherian by inductive
hypothesis, so if we can show that Jk−1(R)M/Jk(R)M is Noetherian then since we have an exact
sequence we can conclude that Jk−1(R)M is Noetherian. Now, Jk−1(R)M/Jk(R)M inherits an
R/J(R)-module structure since J(R) annihilates Jk−1(R)M/Jk(R)M . As R/J(R) is a semisimple
ring (which uses the Artinian condition of R; R/J(R) is Artinian since R is), Jk−1(R)M/Jk(R)M
is a direct sum of simple R/J(R) modules. Since M is finitely generated M is Artinian. Being a
submodule of M , Jk−1(R)M is also Artinian and so is the quotient module Jk−1(R)M/Jk(R)M . In
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order to satisfy the descending chain condition, Jk−1(R)M/Jk(R)M must have only finitely many
summands in its decomposition. But this means that Jk−1(R)M/Jk(R)M has a composition series
and is therefore Noetherian. Then Jk−1(R)M is Noetherian and our inductive step is done. As
desired, by induction, M is a Noetherian R-module. �

Corollary 1.4. An Artinian ring is Noetherian.

2. Krull dimension of commutative Artinian rings (courtesy of Jim)

Lemma 2.1. Let R be an Artinian integral domain. Then R is a field.

Proof. Let x ∈ R be nonzero and consider (x) ⊇ (x2) ⊇ . . . which must stabilize because R is
Artinian. Then (xn+1) = (xn) for some n > 0 so write xn = axn+1 for some a ∈ R. As R is an
integral domain and x is nonzero we can cancel xn and conclude that 1 = ax, so x is a unit. �

Proposition 2.2. Let R be an Artinian ring. Then any prime ideal is maximal.

Proof. Let p be prime, then R/p is an Artinian integral domain, hence it is a field which proves that
p is maximal. �

Corollary 2.3. Let R be an Artinian ring. Then the Krull dimension of R is zero.

Proof. Every prime ideal is maximal so there cannot be a chain of prime ideals of positive length. �

Proposition 2.4. Let R be an Noetherian ring. Then N(R) is a nilpotent ideal.

Proof. As R is Noetherian let x1, . . . , xn be generators of N(R). Each of these elements is nilpotent
so we may choose k ∈ N large enough so that xk

i = 0 for each i. An element of N(R) can be written
as y = a1x1 + · · · + anxn. If we multiply nk such elements together the result will be a linear
combination of monomials of the form axi1

1 · · ·xin
n where i1 + · · · + in = nk. By the generalized

pigeonhole principle we must have ij ≥ k for some j, hence the result of the multiplication is zero.
This gives N(R)nk = 0. �

Lemma 2.5. (1). Let p be a prime ideal in R. Then rad(pn) = p.
(2). Let p1, p2 be prime ideals in R which are also relatively prime. Then pn1 , p

m
2 are relatively prime

for any n,m > 0.

Proof. The first is a previous homework problem. For the second note that for any ideal I and J
we have

V (I + J) = V (〈I ∪ J〉) = V (I ∪ J) = V (I) ∩ V (J)

and for a prime ideal p we have V (pk) = V (rad pk) = V (p) therefore

V (pn1 + pm2 ) = V (pn1 ) ∩ V (pm2 ) = V (p1) ∩ V (p2) = V (p1 + p2) = V (R) = ∅.
If pn1 + pm2 were a proper ideal in R it would be contained in a maximal ideal. Maximal ideals are
prime therefore V (pn1 + pm2 ) would be nonempty, which it is not, hence pn1 + pm2 = R. �

Theorem 2.6. A ring R is Artinian if and only if it is Noetherian of Krull dimension 0.

Proof. Artinian implies Noetherian by the Hopkins-Levitzki theorem and the dimension is 0 by
Corollary 2.3. Now let R be a zero-dimensional Noetherian ring. Every maximal ideal is prime;
since the dimension is zero every prime ideal is both a maximal ideal and a minimal prime ideal.
By Problem 2 from Homework 2, R has finitely many minimal prime ideals, hence finitely many
maximal ideals.

Let {m1,m2, . . . ,mn} be the set of all maximal ideals in R. This is also the set of all prime ideals in



WORKSHEET ON ARTINIAN RINGS WITH PROOFS 3

R therefore N = m1 ∩ . . . ∩ mn = m1 · · ·mn (because distinct maximal ideals are relatively prime).
Hence, by Proposition 2.4, there exists a k > 0 such that mk

1 · · ·mk
n = 0. By Lemma 1.5 mk

1 , . . . ,m
k
n

are pairwise relatively prime so the Chinese Remainder Theorem gives

R = R/mk
1 · · ·mk

n = R/mk
1 × · · · ×R/mk

n.

Each R/mk
i is a local ring. To see this note that the maximal ideals of R/mk

i correspond to maximal
ideals of R that contain mk

i . As maximal ideals are prime this means maximal ideals that contain
mi, of which there is only one, mi.

The above shows not only that R/mk
i is local, but that the maximal ideal of this ring is nilpo-

tent. By Corollary 1.7 we conclude that R/mk
i is Artinian and by Lemma 1.8 we find that R itself

is Artinian (we will not use the conclusions of this last paragraph in those proofs). �

Corollary 2.7. Let R be a Noetherian local ring with a maximal ideal m. Then one of the following
holds:
(•) either mn 6= mn+1 for any n > 0
(•) or there exists n such that mn = 0. In the latter case, R is Artinian.

Proof. Assume the first is not the case and there exists an n > 0 such that mn = mn+1. As R is
Noetherian mn is finitely generated and as R is local J(R) = m. Then the Nakayama lemma gives
mn = 0. When this is the case consider the chain

0 = mn ⊆ mn−1 ⊆ . . . ⊆ m2 ⊆ m ⊆ R.

Trivially mn is Artinian. If mk+1 is Artinian then observe that mk is an R-module therefore mk/mk+1

is an R/m-module. As m is maximal R/m is a field so mk/mk+1 is a vector space. Because R is
Noetherian mk/mk+1 is as well; therefore, it is a vector space of finite dimension, hence it is Artinian.
Because mk is an extension of mk+1 by mk/mk+1 and both of these are Artinian we conclude that
mk is Artinian. By induction R is Artinian. �

In other words, a local Noetherian ring is Artinian if and only if the unique maximal ideal is
nilpotent.

Lemma 2.8. Let R1, R2 be Artinian rings. Then R1 ×R2 is also Artinian.

Proof. We have previously shown that R1 and R2 can be made R1 × R2-modules via the actions
(a, b) · c = ac and (a, b) · c = bc respectively. It is clear from the definition of the action that Ri

has the same submodules as an R1 × R2-module that it does as an Ri-module so R1 and R2 are
Artinian R1 × R2-modules. From the obvious short exact sequence R1 → R1 × R2 → R2 we find
that R1 ×R2 is an Artinian R1 ×R2-module and hence an Artinian ring. �

Theorem 2.9. Any Artinian ring decomposes uniquely (up to isomorphism) as a direct product of
finitely many local Artinian rings.

Proof. Existence of this decomposition is given in the proof of Theorem 1.6 so we need only show
that this decomposition is unique. Assume R = A1 × · · · × Al and each Ai is a local ring with
maximal ideal ai. Every ideal in R is of the form I1 × · · · × Il where Ij is an ideal in Aj . For an
arbitrary maximal ideal mi = I1 × · · · × Il one of the Ij must be proper and hence contained in aj .
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Then mi is contained in and therefore equal to A1 × · · · × aj × · · · ×Al. This proves that l = n and

a1 ×A2 × · · · ×An

A1 × a2 × · · · ×An

...

A1 × · · · ×Al−1 × an

is a complete list of maximal ideals. Without loss of generality we assume that the ai are ordered
so that mi = A1 × · · · × ai × · · · × An. From this we have mk

i = A1 × · · · × aki × · · · × An and
0 = mk

1 · · ·mk
n = ak1 × · · · × akn therefore aki = 0 for each i. Finally

R/mk
i = (A1 × · · · ×An)/(A1 × · · · × 0× · · · ×An)

= A1/A1 × · · · ×Ai/0× · · · ×An/An

= 0× · · · ×Ai × · · · × 0

= Ai.

This proves that the decomposition is unique. �

Remark 2.10. For an Artinian ring R, SpecR is just a union of finitely many points. Zariski
topology becomes a discrete topology. SpecR is irreducible if and only if R is local.


