All rings are commutative UNLESS specified otherwise (as in Theorem 1.3). This worksheet pursues two main results on Artinian rings:

(1) A commutative Artinian ring is a Noetherian ring of dimension 0 (Theorem 2.6).
(2) Structure theorem for commutative Artinian rings (Theorem 2.9)

1. Hopkins-Levitzki theorem (Courtesy of Reid)

Definition 1.1. An ideal I of a ring R is nilpotent if $I^n = \langle x_1 \cdots x_n \mid x_i \in I \rangle = (0)$ for some $n \in \mathbb{Z}$.

Lemma 1.2. The Jacobson radical $J(R)$ of a commutative Artinian ring R is a nilpotent ideal.

Proof. Suppose that $J(R)$ is not nilpotent; then $J^n(R) \neq 0$ for all n. Since R is Artinian, $J^k(R) = J^{k+n}(R)$ for all $n \in \mathbb{N}$ for some $k \in \mathbb{N}$. Now, let $\Sigma = \{a \subseteq R \mid J^k(R)a \neq 0\}$. By assumption Σ is nonzero since $J(R)$ is not nilpotent. If we order Σ my reverse containment, the Artinian condition guarantees that any chain has an upper bound and hence a maximal element by Zorn’s lemma (which is in fact minimal with respect to inclusion); call it h. Now, if $h \in \mathfrak{h}$ is not annihilated by $J^k(R)$ (which, since $\mathfrak{h} \in \Sigma$ must exist) then $\langle h \rangle \subseteq \mathfrak{h}$ and by inclusion-minimality $\mathfrak{h} = \langle h \rangle$. Now, $J^k(R)\langle h \rangle = J^k(R)\langle h \rangle \subseteq \langle h \rangle$ and by the stability $J^{k+n}(R) = J^kR$ we have that this ideal is itself nonzero when multiplied by $J^k(R)$ and lies in Σ; by inclusion minimality $\langle h \rangle = J^k(R)\langle h \rangle$. But then $\langle h \rangle = J(R)\langle h \rangle$ and is finitely generated as an R-module, so we can apply Nakayama’s lemma to get that $\langle h \rangle = 0$, contradicting its inclusion in Σ. Hence $J(R)$ is nilpotent. \(\hfill \square\)

The result of the lemma holds for non-commutative rings. The proof should work almost without change once one makes the necessary “non-commutativity” adjustments. For the next theorem, we will assume that the result of the lemma holds for not necessarily commutative rings.

Theorem 1.3. [Hopkins-Levitzki theorem] Let R be an Artinian ring (not necessarily commutative), and M be a finitely generated R-module. Prove that M is a Noetherian R-module.

Proof. Because the Jacobson radical is nilpotent, we have a chain of R-modules

$$0 = J^n(R)M \subseteq J^{n-1}(R)M \subseteq \cdots \subseteq J(R)M \subseteq M$$

We do induction along this series to show that M is Noetherian. Clearly 0 is Noetherian, so our base case is established. Now, suppose that $J^k(R)M$ is Noetherian; we wish to show that $J^{k-1}(R)M$ is Noetherian. Consider the exact sequence

$$0 \to J^k(R)M \to J^{k-1}(R)M \to J^{k-1}(R)M/J^k(R)M \to 0$$

with the obvious inclusion and projection maps. We know that $J^k(R)M$ is Noetherian by inductive hypothesis, so if we can show that $J^{k-1}(R)M/J^k(R)M$ is Noetherian then since we have an exact sequence we can conclude that $J^{k-1}(R)M$ is Noetherian. Now, $J^{k-1}(R)M/J^k(R)M$ inherits an $R/J(R)$-module structure since $J(R)$ annihilates $J^{k-1}(R)M/J^k(R)M$. As $R/J(R)$ is a semisimple ring (which uses the Artinian condition of R; $R/J(R)$ is Artinian since R is), $J^{k-1}(R)M/J^k(R)M$ is a direct sum of simple $R/J(R)$ modules. Since M is finitely generated M is Artinian. Being a submodule of M, $J^{k-1}(R)M$ is also Artinian and so is the quotient module $J^{k-1}(R)M/J^k(R)M$. In
order to satisfy the descending chain condition, \(J^{k-1}(R)M/J^k(R)M \) must have only finitely many summands in its decomposition. But this means that \(J^{k-1}(R)M/J^k(R)M \) has a composition series and is therefore Noetherian. Then \(J^{k-1}(R)M \) is Noetherian and our inductive step is done. As desired, by induction, \(M \) is a Noetherian \(R \)-module.

\[\square \]

Corollary 1.4. An Artinian ring is Noetherian.

2. Krull dimension of commutative Artinian rings (courtesy of Jim)

Lemma 2.1. Let \(R \) be an Artinian integral domain. Then \(R \) is a field.

Proof. Let \(x \in R \) be nonzero and consider \((x) \supseteq (x^2) \supseteq \ldots \) which must stabilize because \(R \) is Artinian. Then \((x^{n+1}) = (x^n) \) for some \(n > 0 \) so write \(x^n = ax^{n+1} \) for some \(a \in R \). As \(R \) is an integral domain and \(x \) is nonzero we can cancel \(x^n \) and conclude that \(1 = ax \), so \(x \) is a unit.

Proposition 2.2. Let \(R \) be an Artinian ring. Then any prime ideal is maximal.

Proof. Let \(p \) be prime, then \(R/p \) is an Artinian integral domain, hence it is a field which proves that \(p \) is maximal.

Corollary 2.3. Let \(R \) be an Artinian ring. Then the Krull dimension of \(R \) is zero.

Proof. Every prime ideal is maximal so there cannot be a chain of prime ideals of positive length.

Proposition 2.4. Let \(R \) be an Noetherian ring. Then \(\mathfrak{M}(R) \) is a nilpotent ideal.

Proof. As \(R \) is Noetherian let \(x_1, \ldots, x_n \) be generators of \(\mathfrak{M}(R) \). Each of these elements is nilpotent so we may choose \(k \in \mathbb{N} \) large enough so that \(x_i^k = 0 \) for each \(i \). An element of \(\mathfrak{M}(R) \) can be written as \(y = a_1x_1 + \cdots + a_nx_n \). If we multiply \(nk \) such elements together the result will be a linear combination of monomials of the form \(ax_1^{i_1} \cdots x_n^{i_n} \) where \(i_1 + \cdots + i_n = nk \). By the generalized pigeonhole principle we must have \(i_j \geq k \) for some \(j \), hence the result of the multiplication is zero.

This gives \(\mathfrak{M}(R)^{nk} = 0 \).

Lemma 2.5. (1) Let \(p \) be a prime ideal in \(R \). Then \(\text{rad}(p^n) = p \).

(2) Let \(p_1, p_2 \) be prime ideals in \(R \) which are also relatively prime. Then \(p_1^n, p_2^m \) are relatively prime for any \(n, m > 0 \).

Proof. The first is a previous homework problem. For the second note that for any ideal \(I \) and \(J \) we have

\[
V(I + J) = V((I \cup J)) = V(I \cup J) = V(I) \cap V(J)
\]

and for a prime ideal \(p \) we have \(V(p^k) = V(\text{rad} p^k) = V(p) \) therefore

\[
V(p_1^n + p_2^m) = V(p_1^n) \cap V(p_2^m) = V(p_1+ p_2) = V(p_1 + p_2) = V(R) = 0.
\]

If \(p_1^n + p_2^m \) were a proper ideal in \(R \) it would be contained in a maximal ideal. Maximal ideals are prime therefore \(V(p_1^n + p_2^m) \) would be nonempty, which it is not, hence \(p_1^n + p_2^m = R \).

Theorem 2.6. A ring \(R \) is Artinian if and only if it is Noetherian of Krull dimension 0.

Proof. Artinian implies Noetherian by the Hopkins-Levitzki theorem and the dimension is 0 by Corollary 2.3. Now let \(R \) be a zero-dimensional Noetherian ring. Every maximal ideal is prime; since the dimension is zero every prime ideal is both a maximal ideal and a minimal prime ideal. By Problem 2 from Homework 2, \(R \) has finitely many minimal prime ideals, hence finitely many maximal ideals.

Let \(\{m_1, m_2, \ldots, m_n\} \) be the set of all maximal ideals in \(R \). This is also the set of all prime ideals in
R therefore $\mathfrak{m} = m_1 \cap \ldots \cap m_n = m_1 \cdots m_n$ (because distinct maximal ideals are relatively prime). Hence, by Proposition 2.4, there exists a $k > 0$ such that $m_1^k \cdots m_n^k = 0$. By Lemma 1.5 m_1^k, \ldots, m_n^k are pairwise relatively prime so the Chinese Remainder Theorem gives

$$R = \frac{R}{m_1^k} \cdots \frac{R}{m_n^k} = \frac{R}{m_1^k} \times \cdots \times \frac{R}{m_n^k}.$$

Each $\frac{R}{m_i^k}$ is a local ring. To see this note that the maximal ideals of $\frac{R}{m_i^k}$ correspond to maximal ideals of R that contain m_i^k. As maximal ideals are prime this means maximal ideals that contain m_i, of which there is only one, m_i.

The above shows not only that $\frac{R}{m_i^k}$ is local, but that the maximal ideal of this ring is nilpotent. By Corollary 1.7 we conclude that $\frac{R}{m_i^k}$ is Artinian and by Lemma 1.8 we find that R itself is Artinian (we will not use the conclusions of this last paragraph in those proofs).

Corollary 2.7. Let R be a Noetherian local ring with a maximal ideal m. Then one of the following holds:

- (i) either $m^n \neq m^{n+1}$ for any $n > 0$
- (ii) or there exists n such that $m^n = 0$. In the latter case, R is Artinian.

Proof. Assume the first is not the case and there exists an $n > 0$ such that $m^n = m^{n+1}$. As R is Noetherian m^n is finitely generated and as R is local $J(R) = m$. Then the Nakayama lemma gives $m^n = 0$. When this is the case consider the chain

$$0 = m^n \subseteq m^{n-1} \subseteq \cdots \subseteq m^2 \subseteq m \subseteq R.$$

Trivially m^n is Artinian. If m^{k+1} is Artinian then observe that m^k is an R-module therefore m^k/m^{k+1} is an R/m-module. As m is maximal R/m is a field so m^k/m^{k+1} is a vector space. Because R is Noetherian m^k/m^{k+1} is as well; therefore, it is a vector space of finite dimension, hence it is Artinian. Because m^k is an extension of m^{k+1} by m^k/m^{k+1} and both of these are Artinian we conclude that m^k is Artinian. By induction R is Artinian. □

In other words, a local Noetherian ring is Artinian if and only if the unique maximal ideal is nilpotent.

Lemma 2.8. Let R_1, R_2 be Artinian rings. Then $R_1 \times R_2$ is also Artinian.

Proof. We have previously shown that R_1 and R_2 can be made $R_1 \times R_2$-modules via the actions $(a, b) \cdot c = ac$ and $(a, b) \cdot c = bc$ respectively. It is clear from the definition of the action that R_i has the same submodules as an $R_1 \times R_2$-module that it does as an R_i-module so R_1 and R_2 are Artinian $R_1 \times R_2$-modules. From the obvious short exact sequence $R_1 \rightarrow R_1 \times R_2 \rightarrow R_2$ we find that $R_1 \times R_2$ is an Artinian $R_1 \times R_2$-module and hence an Artinian ring. □

Theorem 2.9. Any Artinian ring decomposes uniquely (up to isomorphism) as a direct product of finitely many local Artinian rings.

Proof. Existence of this decomposition is given in the proof of Theorem 1.6 so we need only show that this decomposition is unique. Assume $R = A_1 \times \cdots \times A_l$ and each A_i is a local ring with maximal ideal a_i. Every ideal in R is of the form $I_1 \times \cdots \times I_l$ where I_j is an ideal in A_j. For an arbitrary maximal ideal $m_i = I_1 \times \cdots \times I_l$ one of the I_j must be proper and hence contained in a_j. □
Then \(m_i \) is contained in and therefore equal to \(A_1 \times \cdots \times a_j \times \cdots \times A_l \). This proves that \(l = n \) and
\[
\begin{align*}
& a_1 \times A_2 \times \cdots \times A_n \\
& A_1 \times a_2 \times \cdots \times A_n \\
& \quad \vdots \\
& A_1 \times \cdots \times A_{i-1} \times a_i \times A_{i+1} \times \cdots \times A_n
\end{align*}
\]
is a complete list of maximal ideals. Without loss of generality we assume that the \(a_i \) are ordered so that \(m_i = A_1 \times \cdots \times a_i \times \cdots \times A_n \). From this we have \(m_i^k = A_1 \times \cdots \times a_i^k \times \cdots \times A_n \) and \(0 = m_i^k \cdots m_n^k = a_1^k \times \cdots \times a_n^k \) therefore \(a_i^k = 0 \) for each \(i \). Finally
\[
\begin{align*}
R/m_i^k &= (A_1 \times \cdots \times A_n)/(A_1 \times \cdots \times 0 \times \cdots \times A_n) \\
&= A_1/A_1 \times \cdots \times A_i/0 \times \cdots \times A_n/A_n \\
&= 0 \times \cdots \times A_i \times \cdots \times 0 \\
&= A_i.
\end{align*}
\]
This proves that the decomposition is unique. \(\square \)

Remark 2.10. For an Artinian ring \(R \), Spec \(R \) is just a union of finitely many points. Zariski topology becomes a discrete topology. Spec \(R \) is irreducible if and only if \(R \) is local.